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Abstract We study the network routing problem with restricted and related links. There are parallel links with possibly
different speeds, between a source and a sink. Also there are users, and each user has a traffic of some weight to assign
to one of the links from a subset of all the links, named his/her allowable set. The users choosing the same link suffer
the same delay, which is equal to the total weight assigned to that link over its speed. A state of the system is called a
Nash equilibrium if no user can decrease his/her delay by unilaterally changing his/her link. To measure the performance
degradation of the system due to the selfish behavior of all the users, Koutsoupias and Papadimitriou proposed the notion
Price of Anarchy (denoted by PoA), which is the ratio of the maximum delay in the worst-case Nash equilibrium and in

an optimal solution. The PoA for this restricted related model has been studied, and a linear lower bound was obtained.
However in their bad instance, some users can only use extremely slow links. This is a little artificial and unlikely to appear
in a real world. So in order to better understand this model, we introduce a parameter for the system, and prove a better
Price of Anarchy in terms of the parameter. We also show an important application of our result in coordination mechanism
design for task scheduling game. We propose a new coordination mechanism, Group-Makespan, for unrelated selfish task
scheduling game with improved price of anarchy.

Keywords routing, Nash equilibria, price of anarchy

1 Introduction

Network routing is one of the most important prob-
lems in the network management. In most networks,
especially in a large-scale network like Internet, it is
unlikely that there is a centralized controller who can
coordinate the behavior of all the users in the network.
In such situations, every user in the network decides
how to route his/her traffic, aware of the congestion
caused by other users. Users only care about the de-
lay they suffer, and their selfish behavior often leads
the whole network to a suboptimal state. Recently,
researchers start to investigate the performance degra-
dation due to the lack of the coordination for the users.

In the model first studied by Kautsoupias and Pa-
padimitriou (KP model)[1], there are m identical paral-
lel links from the same origin to the same destination.
There are n users, and each with a traffic of weight wi.
We assume that each user’s traffic cannot be split and as
a result each user chooses exactly one link. After all the
users choose their links, the delay of a link is equal to
the total weight of the traffics on it, and the delay a user

suffers is equal to the delay of the link he/she chooses.
The performance of the system we consider here is the
maximum delay of all the links. We are mainly in-
terested in stable states, where no user can decrease
his/her delay by unilaterally changing his/her choice.
In game theory, such a state is also called a Nash equi-
librium. In order to measure the performance degrada-
tion, they compared the performance of Nash equilib-
rium with the optimal solution when there is centralized
coordination. In particular, we analyze the Price of An-
archy (PoA for short) of the system, which is defined to
be the performance ratio between the worst-case Nash
equilibrium and an optimal solution. In [1], Kautsou-
pias and Papadimitriou showed that the PoA of that
system is at most 2 − 1/m.

Since then, a lot of research works have been done
along this line. There are mainly two generalized mod-
els of this problem which are well studied. One model
is routing with related links, where different links may
have different speeds and the delay of a link is equal to
the total weight on this link over its speed. In this uni-
form related model, Czumaj and Vöcking proved that

Regular Paper
A preliminary version of this paper appeared in WINE 2008. Work was done when the authors were graduate students at Tsinghua

University.
�2012 Springer Science +Business Media, LLC & Science Press, China



Pin-Yan Lu et al.: Worst-Case Nash Equilibria in Restricted Routing 711

the PoA is Θ( log m
log log m )[2]. The other model is routing

with restricted links, where each user i is only allowed
to choose links from a subset Si of all the links. However
the links are still identical in the sense that the speed
of each link is the same. In this restricted model, Awer-
buch et al. proved that the PoA is also Θ( log m

log log m )[3].
In light of these results, one may conjecture that

the common extension of these two models, where the
links are both related and restricted, also has a PoA of
Θ( log m

log log m ). In fact, this model was studied by Gair-
ing et al. in [4], and they showed that the PoA of this
problem can be as large as m−1. However, in their bad
instance demonstrating the lower bound of m−1, some
users can only use extremely slow links (with speed less
than smax

(m−1)! , where smax is the largest speed). This is
a little artificial and unlikely to appear in a real world.
So in order to better understand this model, we intro-
duce a property called λ-goodness for the structure of
the users’ link sets. An instance is called λ-good if and
only if every user can at least use a link with speed no
less than smax

λ . Now in our notation, the result in [4]
says that the PoA can be as large as m − 1 when the
system is only (m−1)!-good. So what is the exact rela-
tion between the PoA and the λ-goodness of a system?

In this paper, we answer this question completely by
giving a tight bound for the PoA of a λ-good system
in term of λ. This reflects the exact relation between
the PoA and the λ-goodness of the system. We prove
that for λ-good instances, the PoA is Θ

(
log λm

log log λm

)
, as

long as λ � (m − 1)!. Formally, we have the following
theorem.

Theorem 1. For λ-good instances, the price of an-
archy is Θ

(
min{ log λm

log log λm , m}).
Another brightness in this work lies on our technique

used in the proof. In the proof of Czumaj and Vöcking
for related links, they essentially used the property that
the links are uniformly related, which means that each
link has a fixed speed and all the users can choose it.
And in the proof of Awerbuch et al. for restricted links,
they essentially used the property that the links are
identical, which means that all the links have the same
speed. In our extended model, namely restricted re-
lated links, none of the two properties holds and as a
result none of their techniques can be adopted to ana-
lyze the PoA of the new model directly. In this paper,
we use a new proof approach. We calculate the delay
of links interval by interval, obtain some recursive re-
lations between them based on the property of Nash
equilibrium, and finally we are able to derive a bound
of the maximum delay in the system.

Our result also has an important application in task
scheduling game with coordination mechanism. Task
scheduling can be viewed as another model for rout-

ing problem by treating the links as machines, the
traffics as tasks, the delay of a user as the comple-
tion time of his/her task, and the delay of the sys-
tem as the makespan of the system. Then we have
scheduling with identical machines, related machines,
and restricted machines corresponding to the above
three models of routing problems. Furthermore, we also
have a general model, called scheduling with unrelated
machines, in which each machine may have different
speeds for different tasks. An instance of scheduling
unrelated machines is denoted by a matrix t = (tij),
where tij denotes the processing time that machine j
needs for task i. In this language, when each machine
uses the Makespan policy, i.e., to process its tasks in
such a parallel way that all of them are completed at
the same time, the task scheduling game is essentially
the same as the routing problem. However, as observed
by Christodoulou, Koutsoupias, and Nanavati in [5],
the scheduling policies of the machines may affect the
choices of the users, and hence the PoA of the system.
So they considered the problem of designing a set of lo-
cal scheduling policies such that the PoA of the system
is small. Such a set of scheduling policies are called co-
ordination mechanism, and the PoA of the system with
a coordination mechanism is also called the PoA of this
mechanism.

Given our Theorem 1, we directly know that the
PoA of Makespan mechanism for λ-good restricted re-
lated instances is Θ

(
min{ log λm

log log λm , m}). Furthermore,
using our main result, we propose a new coordination
mechanism, named Group-Makespan mechanism, for
scheduling unrelated machines. This Group-Makespan
mechanism ensures the existence of a pure Nash equi-
librium and its PoA is O

(
log2 m

log log m

)
, improving the best

known result O(log2 m) by Azar, Jain and Mirrokni in
[6].

Theorem 2. The Group-Makespan mechanism for
scheduling m unrelated machines ensures the existence
of pure Nash equilibria, and the PoA of the task schedul-
ing game with this mechanism is O

(
log2 m

log log m

)
.

Now we talk about the high level ideas of our new
mechanism. This new mechanism is inspired by the
mechanism Split&Shortest in [6]. However, we change
some languages to fit in our framework well. Given
an instance t for scheduling with unrelated machines,
we can define ti = minj∈[m] tij as the weight of task i,
and define the speed sij of a machine j with respect to
a task i as sij = ti/tij , namely the minimum running
time of task i on all the machines over the running time
of task i on machine j. In our Group-Makespan mecha-
nism, every machine simulates log m submachines and
submachine k of machine j only runs those tasks i for
which machine j has speed sij ∈ [2−k, 2−k+1). We



712 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

artificially delay a task so that the k-th submachines
of different machines all have fixed speed 2−k. Each
machine simulates its submachines by round-robin, and
for each submachine we use the Makespan scheduling
policy. In the submachine level, each submachine has a
fixed speed, and a task can only be assigned to some of
the submachines. So it becomes a problem of schedul-
ing with restricted related machines. Furthermore, all
the instances obtained in this way have a very good
structure, namely they are 1-good. Therefore in the
submachine level, the PoA is bounded by Θ

(
log m

log log m

)
.

Since each machine has to simulate log m machines all
the time, this may loss a factor of at most log m.

1.1 Related Work

The line of work on studying PoA of routing prob-
lem was first initiated by Koutsoupias and Papadim-
itriou in [1]. In their paper, they showed an exact ra-
tio of 3

2 for two identical links, and a lower bound of
1+

√
5

2 for any two links with possible different speeds.
For m identical links, they also showed a lower bound
of Ω

(
log m

log log m

)
and an upper bound of 3 +

√
4m lnm.

For the related case, they showed an upper bound of
O

(√
s1
sm

∑
j∈[m]

sj

sm
log m

)
, where sj is the speed of link

j, and the links are ordered so that s1 � s2 � · · · � sm.
Czumaj and Vöcking[2], Awerbuch et al.[3] also

proved a tight bound of Θ
(

log m
log log m

)
for the related, re-

stricted routing models respectively in mixed strategies
case. Gairing et al.[4] also gave a comprehensive col-
lection of bounds on the PoA for several special cases
of the restricted routing model in pure Nash equilibria
case.

There is also another approach in studying the rout-
ing problem. In the KP model, the network only con-
sists of m-parallel links between two nodes, and the
users are atomic. In another model, the underlying
network can be a general network, but with nonatomic
users, which means that each user only controls a neg-
ligible fraction of the total traffic. Furthermore, each
edge in the network is associated with a delay func-
tion, which defines the common delay incurred to all
the users who select this edge, as a function of the con-
gestion in this edge. This routing model dates back to
Wardrop[7], and is also known as Wardrop model. The

PoA of this model is first studied by Roughgarden and
Tardos[8], who proved that the price of anarchy in net-
works with linear edge delay functions is precisely 4/3.
After that, a lot of work appears in this model with
different delay functions[9-12].

Coordination mechanism was first studied by
Christodoulou, Koutsoupias and Nanavati in [5], and
there have been a lot of results in this area. Several
simple scheduling policies are well studied, such as the
Shortest/Longest First policy, in which each machine
performs the jobs in the non-decreasing/non-increasing
order of their processing times on this machine. Most of
the previously best results about PoA in coordination
mechanism for job scheduling game are listed in Table
1 (the main part of this table appears in [13]).

The Randomized policy is for each machine to run
tasks on this machine in a random order. In the Inef-
ficiencyBased mechanisms, each task i’s inefficiency eij

is defined as mink∈[m] tik/tij , and each machine sched-
ules its jobs based on their inefficiencies. The result
of Θ(log m) marked by ∗ in the column of Inefficien-
cyBased means that this mechanism does not always
possess a pure Nash equilibrium. This is demonstrated
by an example in [6]. In their work, they modify
this mechanism so that Nash equilibrium always exists,
however the PoA loses a factor of log m.

2 Preliminaries and Notations

In this section, we define our problem formally.
There are m independent links from certain origin to
destination, and n independent users. We use [m]
and [n] to denote the link set {1, . . . , m} and user
set {1, . . . , n} respectively. Each link j ∈ [m] has a
speed sj and w.l.o.g, we assume s1 � s2 � · · · � sm.
Each user i ∈ [n] has a traffic of weight wi, which
can only be assigned to a link from a set Si ⊆ [m].
We use 〈w, s,S〉 to denote an instance of the prob-
lem, where w = (w1, . . . , wn), s = (s1, . . . , sm) and
S = {S1, . . . , Sn} denote the weights, speeds and allow-
able link sets. We introduce the property of λ-goodness
for an instance 〈w, s,S〉.

Definition 1 (λ-Goodness). An instance 〈w, s,S〉
is λ-good if and only if the following condition holds:
for any user i ∈ [n], there exists a machine j ∈ Si such
that the speed sj is at least s1/λ.

Table 1. Summary of Results

Makespan ShortestFirst LongestFirst Randomized InefficiencyBased

P ||Cmax
2m

m+1
[14-15] 2m

m+1
[14-15] 4

3
− 1

3m
[5] 2 − 2

m
[14-15]

Q||Cmax Θ( log m
log log m

)[2] Θ(log m)[13,16] > 4m−1
3m

< 2m
m+1

[13] Θ( log m
log log m

)[2]

B||Cmax Θ( log m
log log m

)[14] Θ(log m)[13,16] Θ(log m)[13,17] Θ( log m
log log m

)[18]

R||Cmax Unbounded[15] m[6,13] Unbounded Θ(m)[13] Θ(log m)∗
Θ(log2 m)

[6]
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We consider pure strategies for users, and each user’s
strategy is to decide which link to assign his/her traf-
fic. We use a = (a1, . . . , an) ∈ S1×· · ·×Sn to denote a
combination of all users’ strategies, where user i selects
a link ai ∈ Si. We also use a−i to denote the strategies
of all the other users except user i. In a state a, the
delay of link j, denoted by laj , is the total weights on it
over its speed, and the delay of the system, denoted by
la, is the maximum delay over all the links. That is

laj =
1
sj

∑
i:ai=j

wi, la = max
j

laj .

We consider the optimum when there is centralized
coordination, that is, the minimal delay of the system
over all the possible states. We use opt to denote the
optimum as well as an optimal solution, so we have

opt = min
a∈S1×···×Sn

la.

We assume the users are all non-cooperative and
each one wishes to minimize his/her own cost, with-
out any regard to performance the system. The cost of
user i in a state a is the delay of link ai and we use ca

i

to denote it. We have

ca
i = laai

.

Now we define the Nash equilibriums of the system
formally.

Definition 2 (Nash Equilibrium). A state a is called
a Nash equilibrium (NE for short) of the system if and
only if no user can decrease his/her cost by unilaterally
changing a link. That is, for any user i ∈ [n], any
strategy a′

i ∈ Si and a′ = (a−i, a
′
i), we have ca

i � ca′
i .

For any instance of the problem, pure Nash equilib-
rium always exists. The proof of this fact is using a
quite common method with an elegant potential func-
tion, which is pointed out in several places (see [19] for
example).

Theorem 3 (Existence of Nash Equilibrium) For
λ � 1 and any λ-good instance 〈w, s,S〉, there exists an
Nash equilibrium state a of it.

To compare the performance of Nash equilibrium
with optimum, we have the definition of Price of Anar-
chy.

Definition 3 (Price of Anarchy). For instance of re-
stricted routing problem, the Price of Anarchy (PoA for
short) is defined as the performance ratio between the
worst-case Nash equilibrium and the optimal solution.
That is

PoA = max
a∈S1×···×Sn

a is an NE

la

opt
.

And for any family of instances, its Price of Anarchy
is defined to be the largest PoA among all its possible
instances.

3 PoA of λ-Good Restricted Routing

In this section, we prove our main result Theorem 1.
If λ > (m − 1)!, Gairing et al. gave a tight bound
Θ(m)[4]. So in this section, we always assume λ �
(m − 1)! and prove that the PoA of the system for λ-
good instances is Θ

(
log λm

log log λm

)
. We prove the upper

bound and lower bound in the following two subsec-
tions respectively.

3.1 Proof of the Upper Bound

Theorem 4 (Upper Bound). Given any λ-good in-
stance 〈w, s,S〉 and a state a ∈ S1 × · · · × Sn which is
a Nash equilibrium, delay of the system la is at most
opt · O(

log λm
log log λm

)
.

For notational simplicity, we scale the speeds and
weights such that s1 = 1 and opt = 1. We also
define several notations used in the proof. For any
k ∈ R

+ and j ∈ [m], let W k
j = max{laj − k, 0} · sj

and W k =
∑

j∈[m] W
k
j . Especially, we use Wj = W 0

j to
denote the total weight assigned to link j, and W = W 0

to denote the total weight of all the users. Fix an opti-
mal solution opt , let Oj be the set of users assigned to
link j in opt . We also define Ok

j to be the set of users
who choose link j in opt and have cost at least k, that
is, Ok

j = {i ∈ Oj , c
a
i � k}.

Our proof of the upper bound theorem comes from
the following lemmas. In Lemma 1, we give an initial
condition of W k and this is the only point we use the
condition that the instance is λ-good. Then Lemma
2 and Lemma 3 give recursive relations between W ks,
which basically says that W k should increase signifi-
cantly when k becomes small. So we can bound the
total weight W from below in terms of makespan la

and λ. And on the other hand, the total weight is
bounded from above by m. Putting things together,
we can bound la.

Lemma 1. For any λ-good instance and any Nash
equilibrium a, we have W la−2 � 1

λ .
Proof. Consider a link whose delay achieves la, say

link j∗. Let i be a user on link j∗, and let link j ∈ Si

has the maximum speed in Si. Now if j = j∗, we have
laj = la. If j �= j∗, since a is a Nash equilibrium, i can-
not decrease his/her cost by changing from link j∗ to
link j. We have:

la = ca
j∗ � laj +

wi

sj
.

As in the optimal solution, task i can only be as-
signed to a link from Si, whose speed is at most sj , we
have wi/sj � opt = 1. Therefore, we have laj � la − 1.
So no matter whether j = j∗ or not, we have laj � la−1,
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hence
W la−2 � W la−2

j � 1 · sj � 1
λ

,

where the last inequality is because the instance is λ-
good. �

Lemma 2. For any Nash equilibrium a and 0 �
k � la − 2, we have W k � la

la−(k+2)W
k+2.

Proof. Firstly, we want to prove that

W k
j �

∑
i∈Ok+2

j

wi.

If Ok+2
j is empty, then we are done. Otherwise, for any

task i ∈ Ok+2
j , ca

i � k + 2, by the definition of Nash
equilibrium, we have

k + 2 � ca
i � laj + wi/sj � laj + 1.

The last inequality is because that the task i is assigned
to link j in opt . Therefore, laj � k + 1 and

W k
j � 1 × sj �

∑
i∈Oj

wi �
∑

i∈Ok+2
j

wi.

Noticing that
⋃

j Ok
j = {i : ca

i � k}, we can bound W k

as follows:

W k =
∑

j∈[m]

W k
j �

∑
j∈[m]

∑
i∈Ok+2

j

wi

=
∑

i:ca
i �k+2

wi =
∑

j:laj �k+2

Wj . (1)

By the definition of Wj and W k+2
j , for any j, laj >

k + 2, we have:

Wj =
laj

laj − (k + 2)
W k+2

j � la

la − (k + 2)
W k+2

j . (2)

The last inequality is because the function f(x) =
x

x−(k+2) is monotone decreasing when x > k + 2 and
for all j, we have laj � la.

So from (1) and (2), we have:

W k � la

la − (k + 2)

∑
j:laj >k+2

W k+2
j

=
la

la − (k + 2)
W k+2. �

From Lemma 1 and Lemma 2, we have recursive
relation about W k and an initial condition. These
ensure us to prove an upper bound on la, which is
O(log λm). There is a little gap between our expected
bound. The reason is that in the above estimation in
(2), we bounded all the laj from above by la. This is a lit-
tle weak since there cannot be too many links with large

laj . The following lemma uses a more careful estimation,
and explores a recursive relation between W k, W k+2,
and W k+4, which helps us to obtain a better bound on
la.

Lemma 3. For any λ-good instance and any Nash
equilibrium a, we have

W k � k + 6
4

(W k+2 − 2W k+4).

Proof. First, we omit some links in the summation
of the last term in (1), and have:

W k �
∑

j:laj >k+2

Wj �
∑

j:k+6�laj >k+2

Wj .

Now, the estimation occurred in (2) can be more tight:
for any j, k + 6 � laj > k + 2, we have

Wj =
laj

laj − (k + 2)
W k+2

j (3)

� k + 6
k + 6 − (k + 2)

W k+2
j (4)

=
k + 6

4
W k+2

j . (5)

So, we can bound W k as

W k � k + 6
4

∑
j:k+6�laj >k+2

W k+2
j

=
k + 6

4

(
W k+2 −

∑
j:laj >k+6

W k+2
j

)
. (6)

For ∀j, laj > k+6, we have W k+2
j = (laj − (k+2)) ·sj

and W k+6
j = (laj − (k + 6)) · sj , hence

2W k+4
j = W k+2

j + W k+6
j .

Using this equality, we can bound the negative term
in (6) as follows:∑

j:laj >k+6

W k+2
j �

∑
j:laj >k+6

2W k+4
j � 2W k+4.

Substituting this into (6), and we finish the proof.
�

Proof of Theorem 4. Let k0 = 
 la

6 �. For any
k � la − 2k0 � 2la

3 , we have:

W k � k + 6
4

(W k+2 − 2W k+4)

� k + 6
4

(
W k+2 − 2 × la − (k + 4)

la
W k+2

)

=
2(k + 4) − la

4la
× (k + 6)W k+2

�
2
(2la

3
+ 4

)
− la

4la
×

(2la

3
+ 6

)
W k+2 � la

18
W k+2.
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The first inequality is by Lemma 3 and the second in-
equality is by Lemma 2.

So using this recursive relation and lemma 1, we
have:

W la−2k0 � W la−2 ×
( la

18

) la

6 � 1
λ
×

( la

18

) la

6
.

Since ∀j, sj � s1 = 1, and opt = 1, we have
W � opt · ∑j sj � m. By W � W la−2k0 , we have

( la

18

) la

6 � λm.

Since the solution to the equation xx = y is x =
Θ( log y

log log y ), we can obtain that la is at most

O
( log λm

log log λm

)
.

3.2 Proof of the Lower Bound

In this subsection, we prove that our upper bound is
also tight. First, we give a technique lemma, which is
useful in expressing our lower bound. The proof is put
into the Appendix.

Lemma 4.

max
{ log m

log log m
,

log λ

log log λ

}
= Ω

( log λm

log log λm

)
.

Now we have the following lower bound for the PoA
of λ-good instances.

Theorem 5 (Lower Bound). For λ < (m−1)!, there
exists a λ-good instance and a Nash equilibrium a of it,
such that the delay of the system la is at least

opt · Ω
( log λm

log log λm

)
.

Proof. Firstly, since any 1-good instance is also λ-
good, the lower bound Ω

(
log m

log log m

)
for PoA of related

routing problem in [2] also holds. So given Lemma 6,
it is enough to prove a lower bound of Ω

(
log λ

log log λ

)
.

The following is a λ-good instance whose PoA is at
least Ω

(
log λ

log log λ

)
.

• There are m links and m − 1 users. Let k be
the largest integer such that k! � λ. (Note that
k = Ω

(
log λ

log log λ

)
and k � m − 1.)

• For link j, 1 � j � k + 1, sj = 1
(j−1)! (we use the

convention that s1 = 0! = 1); for link j > k +1, sj = 1.
For user i, i � k, the weight is wi = si; for user i, i > k,
the weight is wi = si+1.

• For user i, i � k, the allowed links set Si =
{i, i + 1}; for user i, i > k, the allowed links set is
Si = {i + 1}.

For this instance, we have:

• This instance is λ-good, since smax = 1 and
smin = 1

k! � 1
λ .

• For this instance, the optimal solution opt is fol-
lowing: the user i goes to link ai = i if i � k, and to
link ai = i + 1 if i > k. The optimal value is opt = 1.

• The state a, in which user i selects link ai = i + 1,
∀i, is a Nash equilibrium and the maximum delay la is
k. Since for link i, i > k, only one user can select link i
in any state. we do not need to consider them in the fol-
lowing analysis. In the state a, for i � k, user i selects
link i+1, and link i+1 has delay lai+1 = wi

si+1
= si

si+1
= i.

If user i changes to link i, then his/her cost will also be
i − 1 + wi/si = i. So the state a is a Nash equilibrium,
and the system’s delay is la = k.

Therefore, this instance has a Nash equilibrium a
such that the system’s delay la is at least k · opt =
opt · Ω(

log λ
log log λ

)
. This completes the proof. �

4 Application in Coordination Mechanism

In this section, we see an application in coordi-
nation mechanism design for selfish task scheduling
game. Azar, Jain and Mirrokni[6] gave the state of
art result for unrelated scheduling. They showed a co-
ordination mechanism with price of anarchy at most
O(log m), though it may not possess any Nash equilib-
rium. They further modified this mechanism so that
Nash equilibrium always exists, and the price of anar-
chy is O(log2 m).

Our work focuses on restricted related routing,
which corresponds to the makespan policy in restricted
related scheduling game. Surprisingly, our result has an
application in unrelated scheduling (R||Cmax), which
is more general. We improve the above result by a
mechanism with PoA of O

(
log2 m

log log m

)
. The overall idea

is that we transform the given instance to a new one,
which is restricted and related, and simply apply the
Makespan mechanism on the new instance. Our Group-
Makespan mechanism is adopted from the inefficiency-
based mechanism in [6]. To fit our framework, we use
some different language and notations. For each task i,
let ti = minj∈[m] tij denote the weight of task i, and we
define sij = ti

tij
to be the speed of machine j for task

i (this corresponds to the notation inefficiency intro-
duced in [6]). Let K = �log m
 + 1.

Group-Makespan Mechanism. For each machine j,
its scheduling policy is as follows:

1) For any task i assigned to machine j, if sij < 1
m ,

refuse to perform this task, or equivalently, delay this
task for infinite time.

2) Divide the tasks assigned to machine j into K
groups. If sij ∈ [2−k, 2−k+1), k = 0, 1, 2, . . . , K−1, put
task i into group k. Note that the group 0 consists of
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the tasks which have sij = 1.
3) Simulate K submachines. The simulation here

means that the machine divides the time slots into equal
tiny pieces, and use one time slot for simulating ev-
ery submachine one by one. We remark that, even
some submachines already finished, the machine still
uses time slots for those submachines.

4) For each submachine k, since it has speed for all
the tasks assigned to it in [2−k, 2−k+1), we can make
this submachine have a fixed speed 2−k by artificially
rounding the running time of task i to t̃ij = 2kti. This
rounding can be achieved by delaying the tasks when
processing them, and pretending their processing time
is after rounding. All the submachines run the tasks
using the Makespan policy with respect to the rounded
processing time.

We firstly present another view of the mechanism.
Given an instance t = (tij) of the unrelated scheduling
problem R||Cmax, we create a corresponding instance
of those jobs to mK machines as follows: we label the
machine corresponding to the k-th submachine of ma-
chine j as jk. If a task i has running time tij , and will
be put on the k-th submachine by machine j, then let
the running time of task i on machine jk be Kt̃ijk

, oth-
erwise it has running time +∞. All the machines run
the tasks in a makespan way.

Lemma 5. Given an instance to the R||Cmax prob-
lem and its corresponding instance on mK machines,
we have

1) The optimum of the new instance is at most 4K
times the optimum of the original instance.

2) Given an allocation for the new instance on the
mK machines, we can get an allocation for the original
instance with the same completion time for each task in
our mechanism. In the other direction, given an allo-
cation for the original instance in our mechanism, we
can also get an allocation for the new instance with the
same completion time for each task.

Proof. The proof is similar as in [6] and we give the
proof here to be self-contained.

1) Given any allocation a for the original instance
on the m machines, we create an allocation for the
corresponding instance on mK machines in two steps.
Firstly, we put all the task i where siai < 1

m to the
machines where they have the least running time, and
obtain an allocation a′. Denote the set of these tasks
by I. Then, the makespan can only increase additively
by at most

∑
i∈I ti. So we have:

la
′ � la +

∑
i∈I

ti � la +
1
m

∑
i∈I

tiai � 2la.

Next, we create from an allocation a′′ from a′. Assign
the tasks on machine j in a′ to the machine jk if it will

be put on the k-th submachine by machine j. The load
will not increase since the tasks are split among K sub-
machines. But we round the running time of tasks on
each submachine and scaled it up by a factor K, which
means the completion time of any task may be scaled
up by a factor at most 2K. By applying the two steps,
we create an allocation a′′ with the makespan which is
at most increased by a factor of 4K. In particular, the
optimal solution for the original instance will be modi-
fied to a feasible solution for the new instance with the
makespan increased by a factor of at most 4K. There-
fore, the optimum for the new instance is at most 4K
times the optimum for the original instance.

2) This correspondence is easy. The tasks being as-
signed to machine jk correspond to being assigned to
machine j. Since our mechanism shares the time slots
evenly between K submachines all the time. This just
kills the K factor in the new instance. Both in the new
instance and in our mechanism, the rounding exists.
Therefore, the corresponding allocations have the same
cost for each task. In particular, the makespan does
not change. �

Now we prove that this new mechanism has a better
PoA, which is Theorem 2.

Proof of Theorem 2. We firstly notice that the
makespan policy always possesses Nash equilibria. So
given any instance on m machines of our problem, there
exists an allocation a which defines a Nash equilibrium
in the corresponding instance on mK machines. By the
above lemma, this allocation corresponds to an alloca-
tion a′ in our mechanism, and the makespan does not
change. We claim that a′ still defines a Nash equilib-
rium, since if any task i can decrease its cost by chang-
ing machines in our mechanism, it can also do this in
the new instance, which is impossible. Similarly, any al-
location defining a Nash equilibrium in our mechanism
also corresponds to an allocation in the new instance
on mK machines.

Now, fix any allocation a defining a Nash equilibrium
in our mechanism, we obtain an allocation a′ for the
new instance on mK machines. We have la = la

′
. Since

in the new instance, each machine jk has a fixed speed
of 2−k, and each task i can be processed on a subset
of machines. So this is a restricted related scheduling
case. Now, each task’s allowed machines set contains
a fastest machine. Therefore, this new instance can be
viewed as a 1-good instance of the restricted related
routing problem. Applying Theorem 4, we have

la = la
′ � O

( log(mK)
log log(mK)

)
opt ′,

where opt ′ is the optimum of the new instance on
mK machines. Substituting opt ′ � 4Kopt and K =
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�log m
+1 into the above inequality, we prove the theo-
rem.

la � opt · O
( log2 m

log log m

)
. �

5 Conclusions and Open Problems

In this paper, we study the restricted related rout-
ing problem, a common extension model of two pre-
vious generalized models. We define a property called
λ-goodness for the users’ allowed links sets, and charac-
terize the relation between this property and the price
of anarchy of the system. In particular, we prove that
any λ-good instance has PoA at most O

(
log λm

log log λm

)
. We

also construct a λ-good instance and a Nash equilib-
rium state a, whose maximum delay is opt ·Ω(

log λ
log log λ

)
.

Combining this lower bound with the lower bound of
Ω

(
log λ

log log λ

)
for related routing in [2], we prove that our

upper bound of PoA for λ-good instances is tight.
As an important application, we use this main result

and design a new coordination mechanism for the job
scheduling game in the unrelated case. Our mechanism
has PoA at most O

(
log2 m

log log m

)
, which improves the best

previous result O(log2 m) in [6].
The major open problem left in coordination mecha-

nism is whether we can design a coordination mecha-
nism with constant PoA, or whether we can achieve the
PoA O(log m) with a coordination mechanism which
promises the existence of Nash equilibrium.
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Appendix Proof of Lemma 4.
Proof. Since the function log x is a concave function,

we have:

log
(x1 + x2

2

)
� log x1 + log x2

2
.

Then we have:

log λm

log log λm
=

log m + log λ

log
( log m + log λ

2

)
+ 1

� log m + log λ

log log m + log log λ

2
+ 1

� 2 max{ log m

log log m
,

log λ

log log λ

}
. �
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