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In the generalized assignment problem (gap), a set of jobs seek to be assigned to a set of machines. For every job-machine
pair, there are a specific value and an accommodated capacity for the assignment. The objective is to find an assignment that
maximizes the total sum of values given that the capacity constraint of every machine is satisfied.

The gap is a classic optimization problem and has been studied extensively from the algorithmic perspective. Dughmi
and Ghosh [Dughmi S, Ghosh A (2010) Truthful assignment without money. ACM Conf. Electronic Commerce (ACM, New
York), 325–334.] proposed the game theoretical framework in which every job is owned by a selfish agent who aims to
maximize the value of his own assignment. They gave a logarithmic approximation truthful in expectation mechanism and left
open the problem whether there exists a truthful mechanism with a constant approximation factor. In this paper, we give an
affirmative answer to this question and provide a constant approximation mechanism that enjoys a stronger incentive property
of universal truthfulness than that of truthfulness in expectation.

Our mechanism is inspired by stable matching, which is a fundamental solution concept in the context of matching
marketplaces. The mechanism uses a stable matching algorithm as a critical component and adopts other approaches like
random sampling.
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MSC2000 subject classification : Primary: 91B26; secondary: 91B68
OR/MS subject classification : Primary: games/group decisions: bidding/auctions
History : Received September 14, 2012; revised May 9, 2013. Published online in Articles in Advance October 23, 2013.

1. Introduction. Consider a scenario in which there are a set of jobs and a set of machines. Each job i
has a value vik for machine k and occupies a corresponding capacity cik. Further, each machine k has a sharp
capacity constraint Ck, which gives an upper bound on the total capacity of jobs that can be feasibly scheduled
on the machine. This defines a natural optimization question, called the generalized assignment problem (gap),
where the objective is to find a feasible assignment that maximizes the total sum of values given the capacity
constraints. The gap models resource allocation problems in which different agents (i.e., jobs) compete for
limited resources and has numerous applications in computer science, operation research, and economics.

From the theoretical point of view, the gap model generalizes a number of classic optimization problems and
receives considerable attention in the literature. It is easy to see that the problem is NP-hard because it includes
in particular the knapsack problem as a special case. Shmoys and Tardos [31] and Chekuri and Khanna [10]
gave a 2-approximation algorithm for the gap. Chekuri and Khanna [10] also developed a polynomial time
approximation scheme for a special case in which every job has the same value and capacity for all machines.
Fleischer et al. [18] gave an e/4e− 15-approximation for the gap based on linear program rounding. The ratio
was later improved to e/4e − 15 − � for a very small � by Feige and Vondrak [17]. On the negative side,
Chakrabarty and Goel [9] showed that the problem does not admit any approximation ratio better than 11/10.

In all aforementioned approximation analyses, there is one important factor that is not taken into account:
incentives. In many applications, jobs are owned by self-interested agents, who would like to receive as much
benefit as possible. To achieve such an objective, agents may misreport some of their private information to the
assignment designer. Algorithmic mechanism design, initiated by the seminal work of Nisan and Ronen [27],
takes incentive preferences of self-interested agents into account for a multitude of algorithmic challenges. The
objective in the field of algorithmic mechanism design is to find algorithms that create incentives for the agents
to reveal their private information (such algorithms are called truthful or incentive compatible mechanisms) and
yield as good solutions as possible. Note that a specific feature in the considered gap model is that there are no
money transfers in an assignment.

In order to design truthful mechanisms, we should first decide on what private information is held by the
agents. A natural assumption is that all the values vik are private information. Unfortunately, we cannot expect
to have any mechanism with a good approximation in such a setting because each agent can always bid a
sufficiently large value to achieve his desired assignment (because there is no charged payment as a medium
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of compensation). However, in some scenarios, valuations (either the exact values or estimations) are publicly
known. For instance, in a job market, a company lists a number of part-time job positions and their corresponding
salaries (e.g., search for “part-time job” at http://www.e4s.co.uk/), which are precisely valuations for job hunters.
As another example, in Bayesian mechanism design (e.g., Myerson [26], Hartline and Roughgarden [24], Hartline
and Lucier [23]), there are publicly known probability distributions over the valuations. In some applications,
agents are uncertain about the exact values but instead rely only on the knowledge of the public distributions
(see, e.g., Feige and Tennenholtz [16] and Chiesa et al. [11] for more discussion). The agent’s expected value
in such settings is the mean of the respective distribution and is a fixed known value.

The preference of an agent in gap is usually determined not only by valuations but also by some other factors,
e.g., compatibility. In the above job market example, a job candidate only considers those positions to which he
will be able to commute. To capture the feature of compatibility, Dughmi and Ghosh [15] and Bochet et al. [7]
assume that there is a subset Si for each job i that describes the set of compatible machines. That is, the job is
willing to be assigned only to a machine in Si (the preference of the jobs within Si is determined by valuations).
The set Si is the private information of agent i. In a mechanism, each agent/job i submits a subset of machines
S ′
i ; then the mechanism decides on an assignment given the public valuations and capacity constraints. The

objective of the mechanism designer is to maximize the total valuation in the assignment.
The model considered in Dughmi and Ghosh [15] and Bochet et al. [7] captures the feature that in some

applications agents can only specify their interested outcomes (but not preferences). As another example, consider
assigning teaching assistants (or tutors) to courses in a department. Before the assignment, the department may
first look at the performances (e.g., scores) of candidate students for these courses, and usually high scores are
desired in the assignment. Likewise, a student may also prefer courses in which he has a high score because
then he is more confident in leading tutorials. In practice, a candidate student may only indicate which courses
he is willing to teach, and the final assignment is determined by the department. See more discussions on the
motivation of the model in Dughmi and Ghosh [15] and Bochet et al. [7].

Dughmi and Ghosh [15] first studied this algorithmic mechanism design problem in gap and gave a truthful
in expectation mechanism that approximates by a logarithmic factor the optimal solution in the complete infor-
mation setting. They left open the question whether there exists a constant approximation truthful mechanism.
We solve the problem with an affirmative answer. Our mechanism is universally truthful (i.e., distributed over
deterministic truthful mechanisms), which is stronger than that of the truthfulness in expectation (i.e., truthful
bidding maximizes expected utility).

Theorem (Main). There is a polynomial time–constant approximation universally truthful mechanism for
the generalized assignment problem.

An important feature of the gap model and our mechanism is that there are no payments. Indeed, in a large
number of important domains, e.g., political elections, organ transplants, and resource allocations, monetary
transfers are undesirable or strictly prohibited. Mechanism design in these settings, tracing back to the well-
studied social choice theory that maps agents’ preferences to a set of alternatives, allows no payment and
therefore is more challenging. In particular, the strong impossibility theorems by Arrow [3], Gibbard [20],
and Satterthwaite [30] imply that in some settings no nontrivial truthful mechanisms exist. Because of those
impossibility results, exploring domains in which there exist truthful mechanisms that generate desirable solutions
is one of the main questions in social choice.

Approximation, a powerful approach from theoretical computer science, provides an elegant tool to analyze
designed mechanisms. In particular, the existence of constant approximation mechanisms can be considered as a
balance between interests of the centralized mechanism designer and individual self-interested agents. Our result
implies that in the gap resource allocation model, a reasonable loss in the social welfare suffices to ensure a
truthful bidding environment.

1.1. Techniques. The mechanism design for the gap is in a multiparameter domain. Our main truthful
mechanism is inspired by stable matching, which is introduced by Gale and Shapley [19] and is a fundamental
solution concept in the context of matching marketplaces. In the setup, there are a set of men and a set of
women, each with a preference ranking over members of the other side; a matching between the men and women
is stable if there is no man-woman pair who both strictly prefer each other to their current partners. From the
strategic point of view, although Roth’s impossibility result (Theorem 4.4, Roth and Sotomayor [29]) implies
that it does not admit any truthful design for both men and women to claim their preferences truthfully, the
men-optimal stable matching algorithm (i.e., men make proposals in the deferred acceptance algorithm of Gale
and Shapley) is indeed truthful for all men. The same incentive result holds in many-to-one matching models
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(i.e., one side of the market can have multiple assignments) if matches are proposed from the unit demand side
of the market (Theorem 5.16, Roth and Sotomayor [29]).

In order to apply stable matching theory, we need to define preferences for the two parties, i.e., jobs and
machines in gap. In particular, since every machine with a knapsack constraint can take multiple jobs, one has to
also specify the preference of the machine over the subsets of jobs, not only over individual jobs. Given carefully
designed preferences of jobs and machines, we run a similar deferred acceptance stable matching algorithm (jobs
make proposals) to generate a feasible assignment. The mechanism, although shown to be truthful for some
special cases (Theorem 1), for the general case of gap, surprisingly (compared to the incentive result described
above for many-to-one matchings) is not truthful (Example 1). In other words, stability no longer guarantees
truthfulness.

To derive a truthful mechanism with a constant approximation, we build our mechanism on the stable matching
algorithm as a critical component and use the idea of random sampling, which turns out to be a powerful
approach in mechanism design and used in, e.g., digital goods auctions (Goldberg et al. [21]), combinatorial
auctions (Dobzinski [14]), and budget feasible mechanisms (Bei et al. [6]). We choose, in expectation, half of
the jobs to form a test set T and run the stable matching algorithm on T . The returned stable assignment AT

gives a close estimate to the structure of the optimal solution with a high probability. Then using the sampled
outcome AT as a guidance, we compute a real assignment A for the rest of the jobs. Stable matching also plays
a crucial role in the analysis of the mechanism. In particular, for every unassigned job-machine pair in a stable
assignment, since at least one of them prefers its current assignment, the contribution of either the job or the
machine will compensate the loss of the pair. Based on this idea, we establish an upper bound on the optimal
solution using a stable assignment A∗ returned by the stable matching algorithm running on all jobs. By using
a probabilistic analysis, we compare the stable assignments A, AT , and A∗ and show that they are all close to
each other, which yields the desired constant approximation.

1.2. Related work. There was a recent surge in the study of approximate mechanism design without money
since the pioneer work of Procaccia and Tennenholtz [28]. The resource allocation problems that have been
studied in this framework include those of facility location (Procaccia and Tennenholtz [28], Lu et al. [25], Alon
et al. [1]); kidney exchange (Ashlagi et al. [4], Caragiannis et al. [8]); voting (Alon et al. [2]); and job scheduling
(Dughmi and Ghosh [15]). All of these works, as well as ours, consider designing truthful mechanisms that
approximate optimal solutions and use no monetary transfers.

Bochet et al. [7] studied an assignment problem in a bipartite marketplace: every vertex is held by an agent,
and the set of edges incident to a vertex is considered as private information. Similar to Dughmi and Ghosh [15]
and our work, in the model studied in Bochet et al. [7], valuations on the edges are public as well (which is
simply one) and agents can hide some edges to the mechanism. However, Bochet et al. [7] used a “single peaked
preference” for each agent that depends solely on the quantity of matched edges. Thus, the utility function of
every agent depends only on a single parameter (the number of edges matched), whereas in our model we
consider a more diverse preference in terms of the distinct valuations.

Baiou and Balinski [5] and Dean et al. [13] studied a similar job-machine assignment problem in which
both jobs and machines have strict preferences over the other side and provided efficient algorithms to compute
job-optimal stable assignments. However, the settings studied in Baiou and Balinski [5] and Dean et al. [13] are
quite different from ours: a job can be assigned to multiple machines (Baiou and Balinski [5]) and a machine
can be overcapacitated (Dean et al. [13]).

2. Preliminaries. Consider an instance of the generalized assignment problem (gap) in which we are given
a set of jobs and a set of machines. Throughout the paper, we will denote a generic job by i and a generic
machine by k. For each job i and machine k, there is a value vik ≥ 0 and a capacity cik ≥ 0. Further, each
machine k has a capacity constraint Ck. An output of the gap is a feasible assignment A between the jobs and
machines, where each job is assigned to at most one machine and the aggregate capacity of the assigned jobs
to each machine is within the machine’s capacity constraint.

Given a feasible assignment A between the jobs and machines, let Ai be the machine that job i is assigned
to (denote by Ai = � if i is not assigned to any machine) and Ak = 8i � Ai = k9 be the set of jobs that are
assigned to the machine k. To simplify notations, let v4A5 =

∑

4i1 k5∈A vik be the total value of the assignment
and vi4A5 = vi1Ai

be the value of job i in the assignment (let vi4A5 = 0 if Ai = �). Further, for any subset of
jobs S, let v4S5=

∑

i∈S vi4A5; in particular, for the set of jobs Ak assigned to machine k, the total value is given
by v4Ak5=

∑

i∈Ak
vi4A5=

∑

i∈Ak
vik. We define short hand notations for c4 · 5 similarly to all previous v4 · 5.
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We now have a natural optimization problem to find a feasible assignment that maximizes the total valuation
(i.e., social welfare):

max
A

v4A5

s.t. c4Ak5≤Ck1 ∀k

We denote by opt the value of an optimal solution to this problem.
Assume that each job i is held by an agent and the private information of the agent is the set of compatible

machines. The problem can be then described as a bipartite graph G where one side corresponds to agents/jobs,
the other side corresponds to machines, and edges represent compatible job-machine pairs. The value vik and
capacity cik on every edge (i1 k) are public. The private information of every agent/job i is the set of edges
Si = 84i1 k5 ∈G � k9 incident to the vertex. All considered job-machine pairs are with respect to the underlying
compatible graph G.

Every agent i, as a self-interested individual, has his own objective and would like to get assigned to a machine
k with maximum possible value vik. It is therefore not always the case that agent i reports his true information Si
to the protocol to his best interest. Algorithmic mechanism design takes such incentive issues into account with
a focus on managing self-interested behavior of the agents. In our framework, upon receiving a submitted bid S ′

i

from each agent, which can be any subset of machines,1 the mechanism decides on an assignment Ai ∈ S ′
i ∪ 8�9

for each agent as an output so that the overall assignments satisfy the capacity constraints for all machines.
We say a mechanism is truthful if it is a dominant strategy for every agent to report his true information Si.

That is, for any submitted bids of other agents, no individual can get a better outcome by reporting a set that
is different from his true information. If a mechanism is nondeterministic, we say the mechanism is universally
truthful if it takes a random distribution over deterministic truthful mechanisms and is truthful in expectation if
no risk-neutral agent can obtain more utility in expectation by misreporting his private information.

Note that the mechanisms considered in the current paper only determine assignments and do not collect or
distribute any payment. This is the reason why some classic designs (e.g., the VCG mechanism Vickrey [32],
Clarke [12], Groves [22]) are not applicable. At the cost of being truthful and without payment, we cannot
expect a mechanism to have an output that maximizes social welfare (see examples in, e.g., Procaccia and
Tennenholtz [28] and Dughmi and Ghosh [15]). Our focus therefore is to design truthful mechanisms (without
money) that can be implemented in polynomial time and yield good approximations to the optimal social welfare
opt (which is the optimal value of the above optimization problem). We say a (randomized) mechanism has
an approximation ratio of � if for any gap instance, the ratio between opt and the generated (expected) social
welfare is at most �.

3. Stable matching algorithm. Stable matching is a fundamental solution concept in the context of two-
sided matching marketplaces, introduced by Gale and Shapley in their seminal work (Gale and Shapley [19]).
A matching between the two parties of a bipartite marketplace is called stable if there is no pair who both
strictly prefer each other to their current partners. The deferred acceptance algorithm of Gale and Shapley [19]
computes a stable matching.

In order to apply stable matching theory to our problem gap, one needs to define preferences for the two
parties, jobs and machines. For every job i, its preference over machines is pretty straightforward, which is
simply according to the preference of the agent, i.e., ranking machines by the value vik. For every machine
k, we may define its preference over jobs in a similar way according to the value vik. For such preferences,
the deferred acceptance algorithm can be implemented in the same way as the greedy algorithm (i.e., match
job-machine pairs according to the decreasing order of vik) where ties are broken arbitrarily. We denote such
implementation by gap-greedy. Because every job goes to at most one machine, this defines a many-to-one
matching. Thus, by Theorem 5.16 of Roth and Sotomayor [29], we have the following observation:

Lemma 1. The algorithm gap-greedy is truthful for all jobs for any fixed tie-breaking rule.

The solution generated by gap-greedy, however, may have an arbitrarily bad total valuation since the prefer-
ences completely ignore the capacities of the jobs. To balance the value vik and capacity cik, in the rest of this
section, we will consider the following preferences:

• Every job i has a strict preference list, denoted by Li, which is according to the decreasing order of vik.

1 If a job is assigned to a machine that is not in Si, which is possible if the job bids machines that are not in Si, we assume that the utility
of the job is 0 (or any other nonpositive number; this does not affect our universally truthful mechanism).
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• For every machine k, its strict preference over individual jobs is according to the decreasing order of the
ratio vik/cik. That is, the machine prefers jobs that provide a higher value per capacity. Since a machine may
take multiple jobs, we have to specify the preference of each machine k over subsets of jobs. For any two
feasible subsets of jobs S and S ′, where

∑

i∈S cik ≤ Ck and
∑

i∈S′ cik ≤ Ck, consider the two vectors 4vik/cik5i∈S
and 4vik/cik5i∈S′ with decreasing coordinate values and let k prefer the subset that is lexicographically larger
with respect to the two vectors. We denote such preference list of every machine by Lk.

2

We require that the preferences Li and Lk are strict. If there are the same values vik = vik′ or ratios vik/cik =

vi′k/ci′k, we always break ties in favor of the smaller capacity; if the capacities are the same as well, ties are
broken in an arbitrary but fixed order. We say a feasible assignment A is stable if it does not contain any
blocking pair i and k, where i strictly prefers k to Ai and k can pick a strictly better subset of jobs in the
collection Ak ∪ 8i9 (which is easy to verify).

We consider the following deferred acceptance algorithm, called sm-da-alg.

sm-da-alg
1. Initialize all jobs to be free and set A= �.
2. while there is a free job i that did not propose to all machines in Li

• Among all pairs (i1 k) where i is free and k is the highest unproposed machine in Li, pick one with
the maximum vik/cik and let i propose to k.

• Let S = �.
• For each i′ ∈Ak ∪ 8i9 in the preference order of Lk

� if S ∪ 8i′9 is feasible for k, let S ← S ∪ 8i′9.
• If i ∈ S, let Ak ∪ 8i9\S be free and update assignment Ak ← S.
• Else (we must have S =Ak), let i remain free.

3. Output A.

When there are ties in the selection of the largest ratio, i.e., vik/cik = vi′k′/ci′k′ , to implement the algorithm,
we use the same tie-breaking rule as described above for Li and Lk. Given this tie-breaking rule and the strict
preferences of Li and Lk, the output of the algorithm is uniquely determined. Since every job proposes to every
machine at most once, the algorithm is guaranteed to terminate. Note that in the first step of the “while” loop,
picking a pair with the largest ratio vik/cik, is necessary in order to derive the following Theorem 1.

We note that sm-da-alg is not truthful for the general gap, as the following example shows.

Example 1. There are four jobs 811213149 and three machines 8x1 y1 z9. The values, capacities, and prefer-
ences of compatible pairs are given by the following table:

Job 1 Job 2 Job 3 Job 4

Job
Value v1x = 11 v1y = 005 v2x = 11 v2z = 005 v3x = 101 v3z = 20 v4x = 51 v4y = 001
Capacity c1x = 0051 c1y = 1 c2x = 0051 c2z = 1 c3x = 11 c3z = 100 c4x = 11 c4y = 1
Preference L12 x > y L22 x > z L32 z > x L42 x > y

Machine x Machine y Machine z

Machine
Capacity Cx = 1 Cy = 1 Cz = 100
Preference Lx2 839 > 849 > 81 = 29 Ly2 819 > 849 Lz2 829 > 839

If all agents report their true information, jobs 1 and 2 propose to x, and job 3 proposes to z; then job 4
proposes to x, which kicks jobs 1 and 2 off to y and z, respectively. Job 3 is kicked off by 2 then and next
proposes to x, which kicks job 4 off. Hence, job 4 does not get any assignment eventually. However, if job 4
hides x and only reports machine y, then it will get y by the algorithm. Therefore, sm-da-alg is not truthful.

2 Alternatively, one can define the preference over feasible subsets of jobs by simply comparing the aggregate values of the jobs in the
subsets. Such a preference rule, although capturing the real preference of social welfare, is not implementable as for any given unfeasible
set S; finding a feasible subset S ′ ⊂ S that has the largest total value is equivalent to solving a knapsack problem, which is known to
be NP-hard. Our preference Lk, however, still balances the values and capacities in terms of their ratios and is easy to implement in the
following stable matching algorithm and the main mechanism.
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Although sm-da-alg is not truthful for the general gap, for the special cases job/machine value/capacity
invariant (defined below), it is truthful. Indeed, the combination between sm-da-alg and gap-greedy gives a
universally truthful mechanism with an approximation ratio of 4 for these special cases. (Note that Dughmi and
Ghosh [15] gave a 4-approximation truthful in expectation mechanisms for the job value/capacity invariant by
an LP-based approach.)

Theorem 1. Consider the following mechanism: Run either gap-greedy or sm-da-alg with equal proba-
bility. The mechanism is universally truthful with an approximation ratio of 4 for each of the following cases:

1. (Job value invariant) vik = vik′ for all machines k1k′ and any job i.
2. (Job capacity invariant) cik = cik′ for all machines k1k′ and any job i.
3. (Machine value invariant) vik = vi′k for all jobs i1 i′ and any machine k.
4. (Machine capacity invariant) cik = ci′k for all jobs i1 i′ and any machine k.

To see the idea behind our mechanism, consider the following two illustrative examples:
• There are one machine with capacity 1 and two jobs with values and sizes (v1 = 2�1 c1 = �) and

(v2 = 11 c2 = 1), respectively.
• There are one machine with capacity 1 and a job with value and size (v1 = 11 c1 = 1). In addition, there are

many identical jobs with value and size (v2 = 1 − �1 c2 = �) each.
It can be seen that the two greedy algorithms, deciding allocations according to the decreasing order of vik
(i.e., gap-greedy) and vik/cik (denoted by gap-greedyratio), respectively, yield an optimal solution and work
arbitrarily badly (and the other way around) for the above two examples, respectively. Indeed, a randomization
between these two greedy algorithms gives a constant approximation for any instance. However, it can be seen
that gap-greedyratio is not truthful. (For instance, there are a job and two machines with v1 = c1 = 1 and v2 = 005
and c2 = �. Then the job would only claim the first machine in order to achieve an assignment of value 1.) We
therefore need to find an alternative to replace gap-greedyratio.

Our stable matching algorithm, sm-da-alg, ensures truthfulness and captures the feature of gap-greedyratio

because of the preferences Lk defined for the machines. We next give the formal proof of Theorem 1.

Proof of Theorem 1. Since gap-greedy is truthful, it suffices to show that sm-da-alg is truthful as well
under the assumptions stated in the theorem. For all four invariant settings, the process of the sm-da-alg has
the following nice property: Once i and k are matched, the assignment will never be broken.

We first consider the job value invariant setting and consider the first pair, say i and k, picked by the algorithm.
According to the algorithm, for every job i, its first proposed machine has the largest value vik. Because in the
job value invariant setting every job is indifferent between machines and in the algorithm we always select a
pair with the largest ratio, the first picked pair i and k have the largest ratio vik/cik among all pairs. Thus, job i
has the highest rank in the preference Lk of machine k. Hence, and after i is assigned to k, the assignment will
never be broken. We can then apply the same argument iteratively for all assigned pairs. The argument for the
job capacity invariant case is similar.

We note that the machine capacity invariant case can be reduced to the standard many-to-one matching
problem because in this case every machine has a fixed amount of slots to allocate. In the machine value invariant
case, all jobs have identical preferences over machines. Hence, the algorithm runs in such a way that all jobs
try to fill machines one by one, according to the increasing order of their capacities. As before, we have that
every assignment will never be broken.

Given the above property, we can see that the assignment returned by the algorithm is stable and truthful.
Indeed, given that the assignments are never broken, no job would want to get assigned to a machine without a
real edge between them. On the other hand, since each job i makes proposals according to the decreasing order
of its preference Li, hiding an edge can only make the assignment worse.

Next we will prove that the approximation ratio of the mechanism is 4. We denote by A415, A425 the assignments
we get from gap-greedy and sm-da-alg, respectively, and by Aopt the optimal assignment.

The expected value of the mechanism is given by 1
2v4A

4155+
1
2v4A

4255. We want to show that

4 ·

(

1
2
v4A4155+

1
2
v4A4255

)

= 2v4A4155+ 2v4A4255≥ v4Aopt50

We denote by S the set of jobs i for which vi4A
opt5 > vi4A

4155 and vi4A
opt5 > vi4A

4255. Then we get

∑

i

vi4A
4155+

∑

i

vi4A
4255≥

∑

iyS

vi4A
opt50
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Further, we have v4Aopt5=
∑

iyS vi4A
opt5+

∑

i∈S vi4A
opt5=

∑

iyS vi4A
opt5+

∑

k v4A
opt
k ∩ S5.

Now consider any job i0 ∈ S; let Aopt
i0

= k. By the definition of S, we know that in both assignments A415

and A425, job i0 prefers machine k to its actual assignments. Therefore, for A415, by the greedy rule, we have
v4A415

k 5≥ vik = vi4A
opt5 for any i ∈Aopt

k ∩ S.
For A425, by the property of stability, for any i ∈ Aopt

k ∩ S, we have (i) vi4A
opt5 ≤ ci4A

opt54vi′4A
4255/ci′4A

42555

for each i′ ∈A425
k and (ii) Ck < c4A425

k 5+ ci4A
opt5, since we cannot add i to A425

k 0 Then we get

vi4A
opt5≤ ci4A

opt5

∑

i∈A425
k
vi4A

4255
∑

i∈A425
k
ci4A4255

= ci4A
opt5

v4A425
k 5

c4A425
k 5

0

For the considered job i0 ∈Aopt
k ∩ S, we can write

v44Aopt
k ∩ S5\8i095=

∑

i∈Aopt
k ∩S

i 6=i0

vi4A
opt5≤ c44Aopt

k ∩ S5\8i095
v4A425

k 5

c4A425
k 5

≤ v4A425
k 51

where the last inequality follows because c44Aopt
k ∩ S5\8i095≤Ck − ci04A

opt5 < c4A425
k 5. Then we have

v4A415
k 5+ v4A425

k 5≥ v44Aopt
k ∩ S5\8i095+ vi04A

opt5= v4Aopt
k ∩ S50

Hence,
∑

k

v4A415
k 5+

∑

k

v4A425
k 5≥

∑

k

v4Aopt
k ∩ S50

Therefore, we have

2v4A4155+ 2v4A4255 =
∑

i

vi4A
4155+

∑

i

vi4A
4255+

∑

k

v4A415
k 5+

∑

k

v4A425
k 5

≥
∑

iyS

vi4A
opt5+

∑

k

v4Aopt
k ∩ S5

= v4Aopt50

This completes the proof. �

4. Main mechanism. In this section we use sm-da-alg as a critical component to describe a universally
truthful mechanism for the general gap. We first give three truthful mechanisms; then the main mechanism
takes a uniform distribution on these mechanisms. Throughout this section, � > 2 is an integer and �> 0 is a
constant, both fed as parameters to the mechanisms; their values can be taken appropriately with some conditions
described at the end of the analysis.

We first present two simple deterministic mechanisms, which try to assign those pairs with large values. The
first one is designated to deal with the pairs that have “large” capacities with respect to the capacity of the
corresponding machine.

gap-mechanism-1(�)
1. Remove all pairs (i1 k) with capacity cik < 41/�5Ck.
2. For the remaining pairs, output an assignment by the gap-greedy algorithm with the restriction that

each machine can take at most one job.

The following procedure divides the capacity of each machine evenly into � slots and assigns at most one
job to each slot.

gap-mechanism-2(�)
1. Remove all pairs (i1 k) with capacity cik > 41/�5Ck.
2. For the remaining pairs, output an assignment by the gap-greedy algorithm with the restriction that

each machine can take at most � jobs.
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Next we will describe the key mechanism, which will apply the stable matching algorithm sm-da-alg as a
critical component. In fact, we will use a slightly different version of sm-da-alg: For every machine k and a
given number C ′

k <Ck, we define as follows a virtual capacity constraint C ′
k that provides an additional restriction

on the feasible set: Given a feasible assignment i11 i21 : : : 1 il on machine k with preferences i1 � i2 � · · · � il on
Lk, we require

∑l−1
j=1 cijk ≤C ′

k and
∑l

j=1 cijk ≤Ck (note that it is allowed that
∑l

j=1 cijk >C ′
k). That is, although

the total capacity of the assigned job on machine k can be larger than C ′
k, the removal of the least preferred one

must ensure that the total capacity is within the virtual capacity. Running sm-da-alg with virtual capacity C ′
k

means that in the process of the algorithm, the assigned jobs on machine k always satisfy the virtual capacity
constraint.

gap-mechanism-3(�1�)
1. Remove all pairs (i1 k) with capacity cik > 41/�5Ck.
2. Select each job independently at random with probability 1

2 into group T .
• For each job i ∈ T , let Li be its preference list over machines.
• For each machine k, let Lk be its preference list over jobs in T .
• Run the sm-da-alg with virtual capacity 44�− 15/�5Ck for each machine k.
• Denote the generated assignment by AT .

3. For each machine k, define the threshold value tk =� · 4v4AT
k 5/Ck5.

4. Let R be the remaining jobs that are not selected in T and set A= �.
5. For each job i ∈R in a given fixed order

• Let k = arg maxk8vik � cik + c4Ak5≤Ck and vik/cik ≥ tk9.
• If k defined above exists, let Ai = k; otherwise, let Ai = �.

6. Output A.

In the mechanism, we first sample, in expectation, half of the jobs in T and then on this set T run the stable
matching algorithm sm-da-alg. The assignment AT from T gives a good estimate to the structure of the optimal
solution with a high probability. We therefore use the density v4AT

k 5/Ck, multiplied by a given constant �, as
a threshold tk for the jobs that can be assigned to machine k. (Note that the jobs in T are then discarded from
step 4 and will not be assigned to any machine at the end of the mechanism; randomness ensures that these jobs
are still willing to participate in the mechanism.) For the remaining jobs that are not in T , we explicitly remove
those pairs (i1 k) with a ratio less than the threshold; i.e., vik/cik < tk. This ensures that the value-to-size ratios
of all jobs that are finally assigned on the machine are large enough. The assignment of these jobs simulates an
online greedy mechanism: When a job arrives, the mechanism assigns it to the best possible machine, given the
capacity constraints on the machine.

To make the whole idea of stable matching and random sampling in gap-mechanism-3 work, we need the
condition that there is a constant probability of computing a reasonable estimate of the threshold for a constant
fraction of the machines. This condition fails if most of the values in the optimal solution are generated by a
few jobs. In such a case, at least one of the other two mechanisms is guaranteed to yield a good solution.

Our main mechanism, as described in the following claim, is a combination of the aforementioned three
mechanisms.

Theorem 2. Consider the following mechanism gap-mechanism-main(�1�): Run one of the following three
mechanisms gap-mechanism-1(�), gap-mechanism-2(�), or gap-mechanism-3(�1�) with uniform probability.
Then gap-mechanism-main is a universally truthful mechanism with a constant approximation ratio for the gap
problem.

The proof of the above main theorem are given in the following subsections.

4.1. Truthfulness.

Proposition 1. The mechanisms gap-mechanism-1(�) and gap-mechanism-2(�) are deterministic truthful
mechanisms, and gap-mechanism-3(�1�) is a universally truthful mechanism.

To prove the claim, we first argue that gap-mechanism-1(�) and gap-mechanism-2(�) are deterministic
truthful mechanisms and then show that gap-mechanism-3(�1�) is a universally truthful mechanism.

Claim 1. gap-mechanism-1(�) is a truthful mechanism. Further, for any instance where all pairs (i1 k)
satisfy cik ≥ 41/�5Ck, its approximation ratio is at most 2�.
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Proof. For truthfulness, reporting pairs with cik < 41/�5Ck will not change anything in the mechanism.
Therefore, we may restrict ourselves to the setting only with pairs cik ≥ 41/�5Ck. Then by Lemma 1, it is truthful
for all jobs.

Consider the optimal assignment Aopt of jobs to machines. Note that for each machine k we have �Aopt
k � ≤ �

(we recall that Aopt
k is the set of jobs that machine k is assigned to). Let A be the assignment generated by our

mechanism. Let us consider a pair (i1 k) in Aopt
k with the highest value vik. Let vi4A5 and vi4A

opt5 be the values
of the assignments of job i in A and Aopt, respectively. In the assignment A, there are two possibilities for job i:

• either vi4A5≥ vi4A
opt5

• or vi4A5 < vi4A
opt5. For the latter case, by the greedy rule, machine k should be assigned in A to a job

with a value greater than or equal to vik.
Hence, we have

2v4A5=
∑

k

∑

i∈Ak

vik +
∑

k

v4Ak5≥
∑

k

max
i∈Aopt

k

vik ≥
1
�
v4Aopt50

Therefore, 2� · v4A5≥ v4Aopt5 and the claim follows. �

Claim 2. gap-mechanism-2(�) is a truthful mechanism.

Proof. Observe that reporting pairs with cik > 41/�5Ck will not change anything in the mechanism. There-
fore, we may restrict ourselves to the setting only with pairs cik ≤ 41/�5Ck. Note that the value �, i.e., the
number of jobs that each machine can take, is independent of the bids of all jobs. Thus, Lemma 1 implies that
all jobs are truthful. �

Claim 3. gap-mechanism-3(�1�) is a universally truthful mechanism.

Proof. Although gap-mechanism-3(�1�) is not deterministic, it does not use any reported information
from jobs to generate the testing group T . Once T is generated, the mechanism performs deterministically.
Therefore, it runs on a distribution over deterministic mechanisms. Further, notice that every job in the testing
group T derives utility zero. Therefore, given the fixed set T , none of the jobs in T can benefit from reporting
untruthfully. On the other hand, for each remaining job i ∈ R, reporting truthfully maximizes its utility since
jobs are processed one by one in a fixed given order and every time we search for the best possible assignment
for the processed job. (Note that the threshold value tk is computed according to the outcome of AT from the
testing group T ; thus it is independent of the bids of any job in R.) �

Since all three mechanisms are (universally) truthful, gap-mechanism-main is a universally truthful mecha-
nism as well.

4.2. Stability. Recall that we say an assignment A is stable if it does not contain any blocking pair i and k,
where i strictly prefers k to Ai and k can pick a strictly better subset of jobs in the collection Ak ∪ 8i9.

Proposition 2. The assignment AT returned by the mechanism gap-mechanism-3(�1�) is stable with
respect to all jobs in T and all machines with virtual capacity 44�− 15/�5Ck.

Proof. Assume the contrary, that i and k form a blocking pair, where i strictly prefers k to Ai and k can
get a better assignment from jobs in Ak ∪ 8i9 (with respect to the virtual capacity constraint). Since every job
proposes according to its preference list Li, we know that at a certain step job i has proposed to k during the
execution of the algorithm. Then either i got rejected right away or got assigned but rejected later (because of
proposals from other jobs). For both cases, from that moment until the end of the algorithm, because the capacity
of all considered pairs is at most 41/�5Ck, we know that (i) the total capacity of the assigned jobs on k is strictly
larger than the virtual capacity 44�− 15/�5Ck (and, of course, less than or equal to the real capacity Ck) and
(ii) k prefers every assigned job to i. These two facts imply that k cannot get a better assignment from Ak ∪ 8i9,
a contradiction. �

We note that the stability result established in the above claim is only with respect to the virtual capacity
constraint, without which the sm-da-alg may not compute a stable assignment. Stability plays a critical role in
the approximation analysis of the main mechanism. In particular, in a solution generated by the stable matching
algorithm, if a job i is not assigned to a machine k because the property of stability and the definitions of the
preferences of i and k, we know that the value vik can be “charged” to either the machine k or the job i: if the
machine k is fully occupied, then the total value of the machine is large enough since all assigned jobs have a
higher rank in the preference; if not, the job i must be assigned to a machine with a larger value.
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4.3. Approximation ratio. We first establish the following technical lemma.

Lemma 2. Let �1 ≤ 1/36 and a1 ≥ a2 ≥ · · · ≥ al be positive real numbers, such that the sum a= a1 + a2 +

· · ·+al satisfies �1a> a1. We select each number a11 : : : 1 al independently at random with probability 1/2 each
and let b to be the random variable equal to the sum of the selected numbers. Then

Pr
(

1
3
a< b <

2
3
a

)

≥
3
4
0

Proof. Let us consider for each 1 ≤ j ≤ l, the random variables Xj with Pr4Xj = 05 = Pr4Xj = aj5 = 005.
Let X =

∑l
i=j Xj ; we have b =X. Then the expectation E4X5= a/2 and variance

�2
=Var4X5=

l
∑

j=1

Var4Xj5=
1
4

l
∑

j=1

a2
j 0

Applying Chebyshev’s inequality, we get

Pr
(

∣

∣

∣

∣

X −
a

2

∣

∣

∣

∣

≥ 2�
)

≤
1
4
0

In order to conclude the proof of the lemma, it remains to show that 2� ≤ a/6, which is equivalent to showing
that

36 · 4a2
1 + a2

2 + · · · + a2
l 5≤ 4a1 + a2 + · · · + al5

20

Since a≥ a1/�1 ≥ aj/�1 for every 1 ≤ j ≤ l, we have

4a1 + a2 + · · · + al5
2
=

l
∑

j=1

aj · a≥

l
∑

j=1

a2
j

�1

≥ 36
l
∑

j=1

a2
j 0

Therefore, the lemma follows. �

Let OPT be the optimal allocation. We denote by A415, A425, and A435 the allocations obtained in the mech-
anisms gap-mechanism-14�5, gap-mechanism-24�5, and gap-mechanism-3(�1�), respectively. The expected
value of the mechanism gap-mechanism-main is therefore 1

3 4v4A
4155+ v4A4255+ v4A43555.

We divide all pairs into two groups: a group containing the “large” pairs (i1 k) with cik >Ck/� and a group
containing the remaining “small” pairs. Let OPT small and OPT large denote the optimal allocations for the settings
restricted on the pairs only in the “small” group and “large” group, respectively. Then we have

v4OPT5≤ v4OPT small5+ v4OPT large50

By Claim 1, we know that the total value derived from gap-mechanism-14�5 satisfies v4A4155 ≥

v4OPT large5/42�5. It remains to handle OPT small. Instead of dealing with OPT small directly, we consider the allo-
cation A∗ defined according to step 4 of gap-mechanism-3(�1�) for all jobs with respect to the pairs with
capacities less than or equal to Ck/�. Formally, A∗ is defined as follows:

1. Remove all pairs (i1 k) with capacity cik >Ck/�.
2. For each job i, let Li be his preference list over machines.
3. For each machine k, let Lk be its preference list over jobs.
4. Run the sm-da-alg with virtual capacity 44�− 15/�5Ck for each machine k.
5. Denote the generated assignment by A∗.
Similarly to the proof of Proposition 2, A∗ is a stable assignment with respect to virtual capacity

44�− 15/�5Ck. The following claim implies that v4A∗5 is a constant approximation to v4OPT small5.

Claim 4. 42 + 1/4�− 155 · v4A∗5≥ v4OPT small5.

Proof. To simplify the notations, let Aopt denote the assignment OPT small. Since A∗ is a stable assignment,
for each pair 4i1 k5 ∈Aopt\A∗, we have either (i) vi4A

opt5= vik ≤ vi4A
∗5 or (ii) vik/cik ≤ vi′k/ci′k for every i′ ∈A∗

k,
and c4A∗

k5≥Ck44�− 15/�5. The latter implies that vik/cik ≤ v4A∗
k5/c4A

∗
k5≤ 4v4A∗

k5/Ck5�/4�− 15.
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In the assignment Aopt, we denote by X the set of jobs i such that vi4A
opt5≤ vi4A

∗5 and by Y the remaining
jobs. Then we have

v4Aopt5 =
∑

i∈X

vi4A
opt5+

∑

k

v4Aopt
k ∩ Y 5

≤
∑

i∈X

vi4A
∗5+

�

�− 1

∑

k

v4A∗
k5

Ck

∑

i∈Aopt
k ∩ Y

cik

≤ v4A∗5+
�

�− 1

∑

k

v4A∗

k5

=

(

1 +
�

�− 1

)

v4A∗50

Hence, we get v4Aopt5≤ 42 + 1/4�− 155v4A∗5. �

In addition, the stable assignment A∗ enjoys the following useful properties.

Claim 5. For each job i ∈ T and machine k, we have vi4A
T 5≥ vi4A

∗5 and v4AT
k 5≤ 4�/4�− 155v4A∗

k5.

Proof. Our proof of the claim exploits similar ideas from the standard one-to-one stable matching. Note
that both assignments A∗ and AT are generated by the same algorithm, but A∗ is on a bigger set of jobs. Similar
to the proof of Proposition 2, the virtual capacity 44�− 15/�5Ck and that all considered pairs have capacities
cik ≤ Ck/� ensure that at any moment of the algorithm, the set of assigned jobs to any machine is simply the
best possible subset selected from the set of all jobs that have ever proposed to the machine up to that moment.
In particular, at the end of the algorithm, every machine k will have its most preferred feasible set (given the
virtual capacity constraint) chosen from the set of all proposals that k has ever received.

For each job i, denote by best4i5 the best possible assignment for i taken over all stable assignments. In
what follows we argue that sm-da-alg assigns every job i to best4i5. Assume otherwise, since every job i
makes proposals in decreasing order of Li, in the course of the algorithm, there must be a job i0 that has
been rejected by best4i05. We consider the first moment in the algorithm when a job i0 is rejected from the
machine k = best4i05. At that moment, let S be the set of jobs that are assigned to k. By the above argument,
we know that for any i ∈ S, k prefers i to i0. Next consider a stable assignment A′, where i0 is assigned to k
(by the definition of best4i05, such assignment exists). Then there exists i′ ∈ S that is not assigned to k in A′; let
A′

i′ = k′4 6= k5. By the definition of best4i′5, we know that i′ weakly prefers best4i′5 to k′. Since A′ is a stable
assignment, i′ and k do not form a blocking pair, which implies that i′ prefers k′ to k. Now we recall that i
is the first job rejected from the machine best4i5 in sm-da-alg; we know that at that moment, i′ has not been
rejected by best4i′5. Hence, i′ weakly prefers k to best4i′5. Therefore, on the preference list Li′ , we have the
following preference order: k � best4i′5� k′ � k, which gives a contradiction. Therefore, each job i is assigned
to best4i5 in the output of sm-da-alg.

Note that the above argument does not rely on any specific order of proposals (especially the one defined
in Step 1 of sm-da-alg). That is, an arbitrary order of proposals, as long as every job proposes to the most
preferred machine that it has not yet proposed to, will lead to the same assignment by matching every job i to
best4i5. Now given that the order in which jobs propose does not matter for the outcome of the algorithm, in
the computation of A∗, we may consider the order where jobs in T are settled first and then add the remaining
jobs. Thus, for each job i ∈ T the assignment A∗

i can only be worse than that in AT
i , i.e., vi4A

T 5≥ vi4A
∗50

In addition, we know that the set of jobs proposed to each machine k in AT is a subset in A∗. Thus, by
the above argument, the average ratio vik/cik of the assigned jobs in A∗

k is larger than or equal to that in AT
k .

Notice that in the assignment AT
k , the total capacity used is at most Ck. For the assignment A∗

k, either we
use more than 41 − 1/�5Ck capacity or otherwise (which implies that AT

k ⊆ A∗
k). For either case, we have

v4AT
k 5≤ 4�/4�− 155v4A∗

k5, which completes the proof. �

For the assignment A∗, let us consider a restricted assignment Ã∗, where we only keep the first � largest
value jobs of A∗ for each machine k. Note that Ã∗ is a feasible assignment for the setting in gap-mechanism-2
as well. We have the following claim.

Claim 6. v4A4255≥
1
2v4Ã

∗50
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Proof. We observe that both A425 and Ã∗ use the same set of feasible pairs; i.e., cik ≤ Ck/�. We may split
each machine into � equal slots, where each slot can take only one job. Thus, Ã∗ may be viewed as a matching
and A425 as a maximal matching for the new setting between jobs and slots. Since a maximal matching is a
2-approximation to the maximum matching, which is an upper bound on v4Ã∗5, we have 2 ·v4A4255≥ v4Ã∗5. �

Consider the partition of jobs into the two sets T and R in the gap-mechanism-3(�1�). For a fixed machine k,
we consider the jobs A∗

k ∩T and A∗
k ∩R. By the definition of T and R, every job in A∗

k will be placed in T with
probability 1/2. Recall that Ã∗

k keeps the top � value jobs in A∗
k. Depending on the relation between v4Ã∗

k5 and
v4A∗

k5, at least one of the following alternatives has to be true (where the latter follows from Lemma 2):
1. v4Ã∗

k5≥ �1v4A
∗
k51

2. Pr
T
4 1

3v4A
∗
k5≤ v4A∗

k ∩ T 5≤
2
3v4A

∗
k55≥

3
4 0

Intuitively, if there are many similar jobs in A∗
k, then with a high probability the total value of jobs in

A∗
k ∩ T and in A∗

k ∩ R will be close to each other. On the other hand, if the former does not hold, the gap-
mechanism-2 gives us a good value for machine k. Let us denote the set of the machines satisfying the condition
v4Ã∗

k5 ≥ �1v4A
∗
k5 by G and the remaining set of machines by H . We note that H and G do not depend upon

the particular draw of T .
Thus, by Claim 6, gap-mechanism-2 guarantees that we get a constant fraction of the total value of A∗ taken

over all machines in G. For every machine k ∈H , Lemma 2 ensures that

1
3
v4A∗

k5≤ v4A∗

k ∩ T 5≤
2
3
v4A∗

k5 (1)

occurs with a probability of at least 3/4. Consider the collection D∗
k of “regular” realizations of T for which

(1) holds; slightly abusing the notations we let D∗
k to denote as well the distribution of T drawn from such

collection of sets.
The desired constant approximation follows from the following arguments (to be shown later):
• Due to Claim 6, for each machine k ∈G

v4A4255≥
1
2

· v4Ã∗5≥
�1

2
·
∑

k∈G

v4A∗

k50

• For each fixed machine k ∈ H and a random draw T ∈ D∗
k, we show that either the total value of jobs

allocated on k in A435 is comparable to v4AT
k 5 or the total value of jobs allocated to k in A∗ is comparable to

v4AT
k 5. That is,

v4A435
k 5≥ �2 · v4AT

k 5≥ �4 · v4AT
k 5

and
∑

i∈A∗
k∩R

vi4A
4355≥ �3 · v4A∗

k5≥ �4 · v4AT
k 5

for some constants �21 �31 �4 > 0 depending on � and �.
• Using the previous lower bounds, we estimate the expected value of gap-mechanism-3

ET 6v4A
43557≥ �5 · v4A∗5−

�4�

24�− 15
·
∑

k∈G

v4A∗

k51

for a constant �5 > 0 depending on �3�3 and �21 �31 �4.
• We finally derive a lower bound on the expected value of gap-mechanism-main(�1�), for a proper choice

of the parameters �3�; and �11 �21 �31 �41 �5:

1
3

· 4v4A4155+ v4A4255+ET 6v4A
435575≥ �6 · v4OPT51

for a certain positive constant �6.
We next give a detailed proof of these arguments. We first estimate the value obtained by gap-mechanism-

3(�1�) over machines from H . For each machine k ∈H , there are following two cases.
1. In gap-mechanism-3(�1�), we have rejected a job at machine k due to the capacity constraint, that

is, we have rejected a pair (i1 k) because of cik + c4Ak5 > Ck. Since gap-mechanism-3(�1�) only considers
pairs with capacities less than or equal to Ck/�, in that case almost all the capacity of k is used. That is,
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∑

i∈A435
k
cik ≥ Ck41 − 1/�5. Further, by the rule of the mechanism, for every i ∈ A435

k , we have vik/cik ≥ tk; i.e.,
vik ≥ cik44� · v4AT

k 55/Ck5. Let �2 =�41 − 1/�5 > 0; therefore, we have

v4A435
k 5≥

∑

i∈A435
k

cik
� · v4AT

k 5

Ck

≥�

(

1 −
1
�

)

v4AT
k 5= �2 · v4AT

k 50 (2)

2. No job who has passed the threshold tk has been rejected from machine k in gap-mechanism-3(�1�).
Denote by R+ the set of jobs in R who have passed the threshold for the corresponding machine in assignment
A∗; denote by R− the remaining jobs in R. Therefore, all jobs in A∗

k ∩R+ get an assignment at least as good as
in A∗. Then for any i ∈A∗

k ∩R+, we have vi4A
4355≥ vi4A

∗50
Further, for each job i ∈A∗

k ∩R−, we have vik < ciktk =�44v4AT
k 5cik5/Ck5. Therefore,

v4A∗

k ∩R−5≤� · v4AT
k 5

∑

i∈A∗
k∩R

− cik

Ck

≤� · v4AT
k 5≤�

�

�− 1
v4A∗

k5

where the last inequality follows from Claim 5. Thus,

∑

i∈A∗
k∩R

vi4A
4355≥

∑

i∈A∗
k∩R

+

vi4A
4355≥ v4A∗

k ∩R5−�
�

�− 1
v4A∗

k50

Let �3 =
1
3 −��/4�− 15. Taking appropriate values for � and �, we can ensure that �3 > 0. For any T ∈ D∗

k,
we have v4A∗

k ∩R5≥
1
3v4A

∗
k5; then we get

∑

i∈A∗
k∩R

vi4A
4355≥

(

1
3

−�
�

�− 1

)

v4A∗

k5= �3 · v4A∗

k50 (3)

Next we estimate the expectation of v4A4355. Let D denote the distribution of the mechanism gap-mechanism-
3(�1�) to generate T .

ET∼D62 · v4A43557 = ET∼D

[

∑

k

v4A435
k 5+

∑

k

∑

i∈A∗
k∩R

vi4A
4355

]

≥
∑

k∈H

ET∼D

[

v4A435
k 5+

∑

i∈A∗
k∩R

vi4A
4355

]

≥
∑

k∈H

Pr4T ∈D∗

k5 ·ET∼D∗
k

[

v4A435
k 5+

∑

i∈A∗
k∩R

vi4A
4355

]

0

The last inequality follows because for any random variable �4t5, one has

Ex6�4x57= Pr4x �Z5 ·Ex2 x∈Z6�4x57+Pr4x � Z̄5 ·Ex2 x∈Z̄6�4x570

We continue the argument; by applying either (2) or (3), we have

ET∼D62 · v4A43557 ≥
∑

k∈H

Pr4T ∈D∗

k5 ·ET∼D∗
k
6min4�2 · v4AT

k 51 �3 · v4A∗

k557

≥ min
(

�21
4�− 15�3

�

)

·
∑

k∈H

Pr4T ∈D∗

k5 ·ET∼D∗
k
6v4AT

k 57

where the last inequality follows from Claim 5. Let �4 = min4�21 4�− 15�3/�5 > 0.
Recall that

ET∼D6v4A
T
k 57= Pr4T ∈D∗

k5 ·ET∼D∗
k
6v4AT

k 57+Pr4T yD∗

k5 ·ET∼D\D∗
k
6v4AT

k 570

Since Pr4T yD∗
k5≤

1
4 , by Claim 5, which says that v4AT

k 5≤ 4�/4�− 155v4A∗
k5, for each k ∈H we get

Pr4T ∈D∗

k5 ·ET∼D∗
k
6v4AT

k 57≥ET∼D6v4A
T
k 57−

1
4

�

�− 1
v4A∗

k50 (4)
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We continue our lower bound on ET∼D62 · v4A43557; by applying (4), we have

ET∼D62 · v4A43557 ≥ �4 ·
∑

k∈H

(

ET∼D6v4A
T
k 57−

�

44�− 15
v4A∗

k5

)

≥ �4 ·
∑

k∈H

ET∼D6v4A
T
k 57− �4 ·

�

44�− 15
v4A∗5

≥ �4 ·
∑

k

ET∼D6v4A
T
k 57− �4 ·

�

�− 1

∑

k∈G

v4A∗

k5− �4 ·
�

44�− 15
v4A∗50

By using the first property of Claim 5, we have

∑

k

ET∼D6v4A
T
k 57=ET∼D6v4A

T 57=ET∼D

∑

i∈T

vi4A
T 5≥ET∼D

∑

i∈T

vi4A
∗5=

1
2

· v4A∗50

Then we have the following lower bound:

ET∼D6v4A
43557≥ �4 ·

(

1
4

−
�

484�− 155

)

v4A∗5−
�4�

24�− 15
·
∑

k∈G

v4A∗

k50 (5)

Let �5 = �4 · 4 1
4 −�/484�− 1555. Taking an appropriate value for �, we can ensure that �41 �5 > 0.

Recall the definition of group G and what we already got for v4A4255 in Claim 6:

v4A4255≥
1
2

· v4Ã∗5≥
�1

2
·
∑

k∈G

v4A∗

k50

Taking appropriate values for �1 and �4 (such that �1/2 ≥ 4�4�5/424�− 15)), we have

ET∼D6v4A
43557+ v4A4255≥ �5 · v4A∗50

Finally, the expected value of the gap-mechanism-main(�1�) satisfies

1
3

· 4v4A4155+ v4A4255+ET∼D6v4A
435575 ≥

1
3

·

(

1
2�

v4OPT large5+
�5

2 + 1/4�− 15
· v4OPT small5

)

≥
1
3

· min
(

1
2�

1
�5

2 + 1/4�− 15

)

· v4OPT50

By choosing, e.g., � = 3, � =
1
6 , and �1 =

1
36 , it can be seen that all conditions for �21 �31 �41 and�5 are

satisfied. Hence, gap-mechanism-main gives a constant approximation. This completes the proof of Theorem 2.

5. Concluding remarks. We give a constant approximation universal truthful mechanism for the generalized
assignment problem (gap). Our mechanism, from a high level viewpoint, is based on and extensively exploits
the ideas of stable matching and random sampling. The fairness condition captured by stable matching enables
us to manage self-interested behavior of the participating agents and to bound efficiency loss for unmatched
pairs. We believe that the idea of stable matching may find applications in other mechanism design problems.

In the generalized assignment problem, one side of the market has knapsack constraints, which is a general-
ization of the original many-to-one matching model. Specifically, the original deferred acceptance algorithm may
not compute a stable assignment for gap.3 This illustrates a significant difference between gap and the original
model, where the deferred acceptance algorithm always computes a stable outcome. It is an interesting direction
for future work to explore different aspects of stable matchings in gap, say, existence, efficient computation,
solution structure, and economic properties (e.g., incentives).

3 The main reason of it is that because of sizes and capacities, the preference structure may not satisfy the substitutability condition (Roth
and Sotomayor [29]). For instance, a machine has capacity of 10 and there are four jobs of sizes 7151413 and with values 10151511. When
the whole set is available, the machine prefers the first and last job; however, if the first job is removed, the machine prefers the second and
third job and the last job is not preferred anymore. This is a major difference between our model with the knapsack constraints and those
classic matching models, e.g., Roth and Sotomayor [29], in which substitutability is a critical assumption.
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