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Abstract

This paper establishes the Price of Stability (PoS) for First Price Auctions, for all equilibrium concepts that
have been studied in the literature: Bayesian Nash Equilibrium ⊊ Bayesian Correlated Equilibrium ⊊ Bayesian
Coarse Correlated Equilibrium.

• Bayesian Nash Equilibrium: For independent valuations, the tight PoS is 1 − 1/e2 ≈ 0.8647, matching
the counterpart Price of Anarchy (PoA) bound [JL22]. For correlated valuations, the tight PoS is
1− 1/e ≈ 0.6321, matching the counterpart PoA bound [ST13, Syr14].

This result indicates that, in the worst cases, efficiency degradation depends not on different selections
among Bayesian Nash Equilibria.

• Bayesian (Coarse) Correlated Equilibrium: For independent or correlated valuations, the tight PoS is always
1 = 100%, i.e., no efficiency degradation.

This result indicates that First Price Auctions can be fully efficient when we allow the more general
equilibrium concepts.

1 Introduction.

It is well-known in game theory that a multi-agent system might be in suboptimal states due to selfish behavior
of the agents. Auctions are an important genre of such systems. In a single-item auction, each bidder i ∈ [n]
independently draws her value from a distribution vi ∼ Vi but does not know others’ values v−i = (vk)k ̸=i. Then,
each bidder i submits a (possibly random) bid bi = si(vi) based on her value vi and strategy si. The auction rule
determines the winner and how much the bidders need to pay. Each bidder i has a quasi-linear utility function
ui(vi, bi) = vi · xi(bi) − ρi(bi), where the winning probability xi(bi) and the expected payment ρi(bi) are taken
over the randomness of other bidders’ values and strategies, as well as the inherent randomness of the auction.
Like other game-theoretical systems, we can define the equilibria of an auction.

Definition 1.1. (Equilibria) A strategy profile s = {si}i∈[n] is a Bayesian Nash Equilibrium for an auction A
when: For each bidder i ∈ [n] and any possible value v ∈ supp(Vi), the considered strategy si(v) is optimal, namely
Esi

[
ui(v, si(v))

]
≥ ui(v, b) for any deviation bid b ≥ 0. Denote by BNE(V ) the space of Bayesian Nash Equilibria

of an instance V = {Vi}i∈[n].

Auctions are widely employed to allocate recourse in a competitive environment. Thus efficiency is a central
property of an auction. Given an auction A, the social welfare from an instance V at a specific equilibrium s,
denoted by A(V , s), is the expectation of the winner’s value. Ideally, we would like to allocate the item always
to the bidder who values it the most; in expectation, this gives the optimal social welfare OPT(V ).

For many auctions, the auction social welfare A(V , s) in general is strictly below the optimal social welfare
OPT(V ). To measure the (in)efficiency of an auction A, we can define its Price of Anarchy [KP99] as the worst-case
ratio between the two social welfares.

Definition 1.2. (Price of Anarchy) The Price of Anarchy of an auction A is given by

PoA := inf
V

inf
s∈BNE(V )

{
A(V , s)

OPT(V )

}
.
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We consider the (in)efficiency problem for the first-price auction, one of the most widely-used auctions. The
rule of the first-price auction is very simple: The bidder with the highest bid wins and pays her bid. Simple as the
rule is, it is well-known that the equilibria can be very complicated. E.g. ([Vic61]), suppose that there are only
two bidders, Alice has a [0, 1]-uniform random value v1 and Bob has a [0, 2]-uniform random value v2, then the

unique Bayesian Nash Equilibrium takes the form of s1(v1) =
4

3v1

(
1−

√
1− 3

4v
2
1

)
and s2(v2) =

4
3v2

(√
1 + 3

4v
2
2 − 1

)
.

For the PoA in the first-price auction, Syrgkanis and Tardos [ST13] obtained the first nontrivial lower bound
of 1 − 1/e ≈ 0.6321. Later, Hoy, Taggart, and Wang [HTW18] gave an improved lower bound of ≈ 0.7430. In a
recent work by the authors [JL22], the tight bound of 1−1/e2 ≈ 0.8647 was finally derived. That is a complete and
insightful characterization. However, there are still a few remaining issues about the efficiency of the first-price
auction, which we will discuss and address in this paper.

First, it is well-known that certain instances may have no equilibrium. For those instances, the tight PoA
bound by [JL22] does not imply anything about the efficiency of the first-price auction. Given this, the natural
question is, to what extent can we generalize the tight PoA results?

Second, it is also well-known that certain instances may have multiple or even infinite equilibria. For those
instances, Price of Anarchy may be too pessimistic a measure since it concentrates just on the worst-case equilibria.
Especially, the worst-case instance by [JL22] for the tight PoA = 1− 1/e2 does have other more efficient or even
fully efficient equilibria. Towards an optimistic measure of (in)efficiency, we shall consider another widely studied
concept called Price of Stability [ADK+08], which is targeted at the best-case equilibria (instead of the worst-case
equilibria as for PoA).

Definition 1.3. (Price of Stability) The Price of Stability of an auction A is given by

PoS := inf
V

sup
s∈BNE(V )

{
A(V , s)

OPT(V )

}
.

By definition, the tight PoS must be lower bounded by the tight PoA. Especially, for the first-price auction, we
have 1− 1/e2 ≤ PoS ≤ 1.

Third, there are other modelings of the (in)efficiency problem. I.e., the above canonical setting assumes
(bidder-wise) independent valuations V and strategies s. Instead, one can consider correlated valuations, which
is quite common in real life. Also, one can consider correlated strategies, for which the counterpart solution
concepts are (i) Bayesian Correlated Equilibrium and (ii) Bayesian Coarse Correlated Equilibrium;1 see Appendix A
for the formal definitions. In total, we have two valuation classes and three equilibrium concepts, thus 2× 3 = 6
meaningful settings. In each setting, the PoA and the PoS are both of fundamental interest.

The previous literature studies more on PoA and the tight bounds have been obtained in most settings; see
Section 1.2 for a detailed review. In contrast, the tight PoS bounds remain open in all settings. (Maybe this is
because, in each setting, the PoS as the solution to a minimax optimization problem shall be more challenging
than the PoA as the solution to a minimization problem.) And understanding those PoS bounds is the main focus
of our work.

Besides the concrete bounds, it is also interesting to know in which settings the PoS coincides with the PoA.
Namely, if they are equal PoA = PoS, then this bound is a better characterization of the efficiency since it is
“robust” against different equilibria.

1.1 Our results. In this work, we will address each of the three issues mentioned above.
For the (possible) non-existence of Bayesian Nash Equilibria in the first-price auction, we show that this is

just a consequence of “the underlying tie-breaking rule of the auction is incompatible with the considered value
distribution V ”. As a remedy, we prove that, for any δ > 0, there always exists a δ-approximate Bayesian Nash
Equilibrium that (i) makes any tie-breaking rule compatible with the considered value distribution V , and (ii) the
resulting auction social welfare is at least a 1 − 1/e2 fraction of the optimal social welfare. This indicates that
the PoA characterization of the first-price auction is robust and universal. See Section 3 for more details.

1It is well-known (see [Rou15]) that Bayesian Nash Equilibrium is more special than Bayesian Correlated Equilibrium, which then is
more special than Bayesian Coarse Correlated Equilibrium.

Different definitions of Bayesian (Coarse) Correlated Equilibria are considered in the literature, such as those by [CKK+15] vs. those
by [ST13]; for a thorough discussion, the reader can refer to [Syr14, Chapter 3.3.1]. This paper will use the definitions by [CKK+15].
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The main result of our work is the tight PoS bounds in all settings, summarized as follows.

Independent Valuations Correlated Valuations

BNE PoS = 1− 1/e2 [Theorem 4.1] PoS = 1− 1/e [Theorem 5.1]

BCE
PoS = 1 [Theorem A.1]

BCCE

Interestingly, in the settings of Bayesian Nash Equilibrium for either independent or correlated valuations, the tight
PoS bounds coincide with the PoA counterparts (see Table 1). This would be an easy corollary if the known
PoA-worst instances, due to [JL22] and [Syr14] respectively, each have unique equilibria. Unfortunately, this is
not the case for the either instance. Even worse, the either instance has fully efficient equilibria, so the PoS bound
thereof is 1.

Towards the tight PoS bounds = 1− 1/e2 or 1− 1/e, we shall modify the (original) PoA-worst instances from
[JL22] and [Syr14]. For each modified instance, we first show and verify a particular equilibrium, named by the
focal equilibrium s∗, that is adjusted from the worst-case equilibrium for the original instance. More importantly,
unlike the original instance, the modification eliminates other more efficient equilibria, left only with the focal
equilibrium s∗. Namely, we prove that the focal equilibrium s∗ is the unique Bayesian Nash Equilibrium of the
modified instance. Furthermore, the modification can be small enough in magnitude, such that the modified
auction/optimal social welfares are arbitrarily close to the original counterparts. As a combination, we obtain the
identity PoS = PoA = 1− 1/e2 or 1− 1/e in the either setting. See Sections 4 and 5 for more details.

That PoA and PoS have the same tight bounds is conceptually important – Such a PoA = PoS tight bound
“truly” captures the worst-case efficiency of Bayesian Nash Equilibria in the first-price action, despite the variety
of equilibria and the selection among equilibria.

For Bayesian Correlated Equilibrium and/or Bayesian Coarse Correlated Equilibrium, we show that there always
exist fully efficient equilibria. So, in those settings, whether independent or correlated valuations, we always have
PoS = 1. (Notice that regarding a more general equilibrium concept, the PoS becomes larger, while the PoA
becomes smaller.) See Appendix A for more details.

1.2 Related works. The first-price auction and its efficiency, motivated by its overwhelming prevalence in real
business, are centerpiece of modern auction theory. This study dates back to Vickrey’s seminal paper [Vic61] and
has cultivated a rich literature [SZ90, Plu92, Leb96, Leb99, MR00a, MR00b, JSSZ02, MR03, Leb06, HKMN11,
KZ12, CH13, and the references therein]. However, those works are restricted to special cases – The equilibria
in the first-price auction are notoriously complicated; thus in general, classical economic analysis suffers from
certain obstacles. From a computational perspective, there also is evidence for why the equilibria are elusive
[CP14, FGH+21].

Over the last two decades, works from computer science bring a fresh viewpoint, approximation guarantees at
the worst-/best-case equilibria, thus coining the concepts “Price of Anarchy/Stability” [KP99, ADK+08]. Regarding
the first-price auction and Bayesian Nash Equilibria, the state-of-the-art results are summarized in Table 1.

Deterministic Valuations Independent Valuations Correlated Valuations

PoA
TB = 1 folklore TB = 1− 1

e2

[JL22]
TB = 1− 1

e

[ST13, Syr14]

PoS Theorem 4.1 Theorem 5.1

Table 1: Tight PoA/PoS bounds regarding Bayesian Nash Equilibria.

Technically, the most prevalent tool for studying Price of Anarchy in auctions is the smoothness framework
proposed by Roughgarden [Rou15] and then developed by Syrgkanis and Tardos [ST13]. This framework enables
the tight bound = 1 − 1/e in most settings, but has inherent bottlenecks in the canonical setting, namely
Bayesian Nash Equilibrium for independent valuations. To mitigate those issues, Hoy, Taggart, and Wang [HTW18]
combined additional techniques into the smoothness framework, hence an improved lower bound of ≈ 0.7430.
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Until very recently, through a completely new framework, the authors [JL22] finally derived the tight bound
= 1− 1/e2 ≈ 0.8647.

The above discussions all concern efficiency guarantees. Another interesting and relevant topic is revenue
guarantees in the first-price auction. Hartline, Hoy, and Taggart [HHT14] showed that, when the auctioneer sets
bidder-personalized reserves in the first-price auction, the worst-case equilibria achieve a ≥ 1

2 (1− 1/e) ≈ 31.61%
approximation to optimal revenues. As an implication of the later works [AHN+19, JLQ+19], a better
revenue guarantee ⪆ 1

2.6202 ≈ 38.17% holds even when the auctioneer sets bidder-anonymous reserves. It
would be interesting to capture the revenue-PoA and revenue-PoS for the first-price auction with (optimal)
personalized/anonymous reserves.

2 Notation and Preliminaries.

This section presents a bunch of structural results from the literature, especially [JL22], which lay the foundation
of our paper. (More structural results will be presented in the later sections, when they are needed for our
discussions.)

In a single-item auction, the bidders [n] = {1, 2, . . . , n} submit non-negative bids b = (bi)i∈[n] to the
auctioneer. First Price Auction is a family of auctions A = (x, ρ) that all obey the first-price allocation/payment
principles.

• first-price allocation: Let X(b) := argmax{bi : i ∈ [n]}. If there is one unique first-order bidder
|X(b)| = 1, allocate the item to her x(b) ≡ X(b). Otherwise |X(b)| ≥ 2, allocate the item to one of those
first-order bidders x(b) ∈ X(b), via some (randomized) tie-breaking rule for this bid profile b.

• first-price payment: The allocated bidder x(b) pays her own bid, while the non-allocated bidders
[n] \ {x(b)} pay nothing. Formally, ρi(b) = bi · 1(i = x(b)) for each i ∈ [n].

Hence, different First Price Auctions A ∈ FPA are identified by their allocation/tie-breaking rules x(b) and, without
ambiguity, we can abuse the notation x ∈ FPA.

Regarding a joint value distribution v = (vi)i∈[n] ∼ V ∈ Vjoint, a (randomized) strategy profile s = {si}i∈[n]

maps the realized individual values vi to the (random) individual bids si(vi). Over the randomness of other bidders’
bids s−i(v−i) and the allocation rule x ∈ FPA, bidder i ∈ [n] on having a value v ≥ 0 and a bid b ≥ 0 wins with
probability xi(b) := Prv, s, x[i = x(b, s−i(v−i)) | vi = v] and gains an interim utility ui(v, b) := (v−b) ·xi(b). Such
a strategy profile s forms a Bayesian Nash Equilibrium when it satisfies the following conditions.

Definition 2.1. (Bayesian Nash Equilibria) Given a joint value distribution V ∈ Vjoint, an allocation rule
x ∈ FPA, and a precision δ > 0:

• An (exact) Bayesian Nash Equilibrium s ∈ BNE(V , x) is a strategy profile s = {si}i∈[n] that, for any bidder
i ∈ [n], any value of her v ∈ suppi(V ), and any deviation bid b∗ ≥ 0,

E
v, s, x

[ui(vi, s(v)) | vi = v ] ≥ E
v, s, x

[ui(vi, b
∗, s−i(v)) | vi = v ].

• A δ-approximate Bayesian Nash Equilibrium s ∈ BNE(V , x) is a strategy profile s = {si}i∈[n] that, for any
bidder i ∈ [n], any value of her v ∈ suppi(V ), and any deviation bid b∗ ≥ 0,

E
v, s, x

[ui(vi, s(v)) | vi = v ] ≥ E
v, s, x

[ui(vi, b
∗, s−i(v)) | vi = v ]− δ.

2.1 Independent valuations. When the value distribution V degenerates into a product value distribution
V = {Vi}i∈[n] ∈ Vprod, the equilibria thereof have several remarkable properties, which we give a brief review
here.

First, the following result on the existence of exact equilibria can be concluded from [Leb96].

Proposition 2.1. ([Leb96]) Given a product value distribution V = {Vi}i∈[n] ∈ V prod, there exists some
tie-breaking rule x ∈ FPA such that the resulting First Price Auction admits at least one exact equilibrium
BNE(V , x) ̸= ∅.
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Given an exact Bayesian Nash Equilibrium s ∈ BNE(V , x), we will adopt the following notations.

• B = {Bi}i∈[n] denotes the equilibrium bid distributions s(v) = (si(vi))i∈[n] ∼ B.

• B(b) =
∏

i∈[n] Bi(b) denotes the first-order bid distribution max(s(v)) ∼ B.

• B−i(b) =
∏

k∈[n]\{i} Bk(b) denotes the competing bid distribution of each bidder i ∈ [n].

• γ := inf(supp(B)) and λ := sup(supp(B)) denote the “infimum”/“supremum” first-order bids, respectively.
Without ambiguity, we call v, b < γ the low values/bids, v, b = γ the boundary values/bids, and v, b > γ
the normal values/bids. In other words: (i) low bids b < γ give a zero winning probability and are less
important; (ii) normal bids b > γ are the most common bids and will behave nicely; and (iii) boundary bids
b = γ are tricky and will be dealt with separately.

The next proposition, due to [JL22, Lemma 2.7], shows that the equilibrium/competing/first-order bid
distributions Bi(b), B−i(b), and B(b) have nice structures.

Proposition 2.2. ([JL22, Lemma 2.7]) Each of the following holds:

1. monotonicity: The competing/first-order bid distributions {B−i}i∈[n] and B each have probability densities
almost everywhere on b ∈ (γ, λ], thus having strictly increasing CDF’s on the closed interval b ∈ [γ, λ].

2. continuity: The equilibrium/competing/first-order bid distributions {Bi}i∈[n], {B−i}i∈[n] and B each have
no probability mass on b ∈ (γ, λ], excluding the boundary γ = inf(supp(B)), thus having continuous CDF’s
on the closed interval b ∈ [γ, λ].

Two more requisite notions for our later discussions are bid-to-value mappings and monopolists (Definitions 2.2
and 2.3). Particularly, we will leverage two structural results also from [JL22].

Definition 2.2. (Bid-to-value mappings) The bid-to-value mappings φ = {φi}i∈[n] are defined as
φi(b) := b+ B−i(b)/B′

−i(b) = b+ (
∑

k∈[n]\{i} B
′
k(b)/Bk(b))

−1 for b ∈ (γ, λ).

Definition 2.3. (Monopolists) A bidder h ∈ [n] is called a monopolist when the probability of taking a
normal value yet a boundary bid is nonzero Prvh, sh [(vh > γ) ∧ (sh(vh) = γ)] > 0.

Proposition 2.3. ([JL22, Lemma 2.13]) Each bid-to-value mapping φi(b) for i ∈ [n] is increasing on the open
interval b ∈ (γ, λ). Therefore, the domain can be extended to include the both endpoints φi(γ) := limb↘γ φi(b)
and φi(λ) := limb↗λ φi(b).

Proposition 2.4. ([JL22, Lemma 2.16]) There exists at most one monopolist h ∈ [n]. If existential:
(I) A boundary first-order bid {max(b) = γ} occurs with a nonzero probability B(γ) > 0.
(II) Conditioned on the tiebreak {bh = max(b) = γ}, the monopolist wins x(b) = h almost surely.

3 Tie-breaking Rules and Approximate Equilibria.

In this section, we discuss the existence of exact/approximate equilibria for a product value distribution
V = {Vi}i∈[n] ∈ Vprod. Following Proposition 2.1, the only possibility for nonexistence of exact equilibria is
that the underlying tie-breaking rule x ∈ FPA may be incompatible with this value distribution. To better
understand this, let us give a simple example. Consider uniform tie-breaking rule and two agents: Alice has a
deterministic value 1, and Bob has a deterministic value 0. In this example, Bob always bids 0. If Alice also bids
b = 0, she gets the item with probability 50% under the uniform tie-breaking rule. This is not an equilibrium, since
Alice can win the item with probability 100% by slightly increasing her bid. On the other hand, any nonzero bid
b > 0 also is sub-optimal, since a lower bid, say b′ = b/2 > 0, still ensures Alice to win. We think the tie-breaking
issue is incurred by mathematical formulation, rather than the essence of equilibria. In real business, there is
usually a minimum unit for bidding, say 0.01$. Then “Alice bids 0.01 and Bob bids 0” is a Nash equilibrium
under the uniform tie-breaking rule, since there is no other bid between 0 and 0.01. To treat this formally, we
introduce the notion of approximate equilibrium.
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We will start with a compatible tie-breaking and an exact equilibrium thereof s ∈ BNE(V , x). Then for any
given δ > 0, we slightly modify this equilibrium into a new strategy profile s∗ that is insensitive to different
tie-breaking rules. I.e., this strategy profile s∗ is a universal δ-approximate equilibrium for First Price Auction,
regardless of the tie-breaking rules.

To make the modification workable, we crucially leverage several structural results from [JL22] about Bayesian
Nash Equilibrium. In particular, we will use the fact that nontrivial tie-breaks can occur only when the first-order
bid is at the boundary γ = inf(supp(B)).

Before giving the formal statement of our result, we recall the concept of earth mover’s distance [Vil09,
Chapter 6], which will be used to measure the distance between two strategies.

Definition 3.1. (Earth Mover’s Distance) Given two single-dimensional distributions D and D̃, denote by

D−1(q) and D̃−1(q) for q ∈ [0, 1] the quantile functions, then:

• The ℓp-norm earth mover’s distance, for p ≥ 1, is defined as

EMDp(D, D̃) =
(∫ 1

0

∣∣D−1(q)− D̃−1(q)
∣∣p · dq)1/p

.

• The ℓ∞-norm earth mover’s distance is defined as

EMD∞(D, D̃) = sup
{∣∣D−1(q)− D̃−1(q)

∣∣ : q ∈ [0, 1]
}
.

It follows that EMDp1(D, D̃) ≤ EMDp2(D, D̃) ≤ EMD∞(D, D̃) for any p2 ≥ p1 ≥ 1.

Below, Theorem 3.1 summarizes our result on the existence of universal δ-approximate equilibria. The proof
relies on [JL22, Lemma 2.5].

Proposition 3.1. ([JL22, Lemma 2.5]) At an exact Bayesian Nash Equilibrium s ∈ BNE(V , x), for each bidder
i ∈ [n], the following hold almost surely:

1. A low/boundary value v ∈ supp≤γ(Vi) induces a low/boundary equilibrium bid si(v) ≤ γ.

2. A normal value v ∈ supp>γ(Vi) induces a boundary/normal equilibrium bid γ ≤ si(v) < v.

Theorem 3.1. (Bayesian Nash Equilibria) Given a product value distribution V = {Vi}i∈[n] ∈ Vprod, a tie-
breaking rule x ∈ FPA, and an exact Bayesian Nash Equilibrium thereof s ∈ BNE(V , x) ̸= ∅. For any precision
δ > 0, there exists another strategy profile s∗ = {s∗i }i∈[n] such that:

1. closeness: EMD∞(si(v), s
∗
i (v)) ≤ δ for any value v ∈ supp(Vi) and each bidder i ∈ [n].2

2. efficiency invariant: For an arbitrary tie-breaking rule x∗ ∈ FPA (possibly the same as x), the expected
optimal/auction Social Welfares keep the same OPT(V , x∗, s∗) = OPT(V , x, s) and FPA(V , x∗, s∗) =
FPA(V , x, s).

3. universality: For an arbitrary tie-breaking rule x∗ ∈ FPA (possibly the same as x), it forms a δ-
approximate equilibrium s∗ ∈ BNE(V , x∗, δ). Formally, it forms a universal δ-approximate equilibrium
s∗ ∈

(⋂
x∗∈FPA BNE(V , x∗, δ)

)
.

Proof. There are 9 kinds of tuples (vi, si(vi)), i.e., low/boundary/normal values vi and bids si(vi). Based on case
analysis, we construct the new strategy profile s∗ = {s∗i }i∈[n] in a coupling way.

2Recall that each strategy si or s∗i is a family of bid distributions indexed by the value v ∈ supp(Vi).
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value
bid

low si(vi) < γ BDY si(vi) = γ normal si(vi) > γ

low vi < γ s∗i (vi) = si(vi)− δ s∗i (vi) = si(vi)− δ impossible (Prop. 3.1)

BDY vi = γ s∗i (vi) = si(vi)− δ s∗i (vi) = si(vi)− δ/2 impossible (Prop. 3.1)

normal vi > γ impossible (Prop. 3.1) s∗i (vi) = si(vi) s∗i (vi) = si(vi)

This coupling intrinsically ensures Part 1 that EMD∞(si(v), s
∗
i (v)) ≤ δ for any value v ∈ supp(Vi) and each

bidder i ∈ [n]. It remains to show Part 2 and Part 3.

Part 2. The expected optimal Social Welfare, which relies just on the value distribution V , must be invariant
OPT(V , x∗, s∗) = OPT(V , x, s). To reason about the expected auction Social Welfare, recall Proposition 2.4
that the allocated bidder x = x(s(v)) has three possibilities:

• Case (I). The allocated bidder x has a normal bid sx(vx) > γ and a normal value vx > γ.

Regarding the coupling between both strategy profiles s∗ = {s∗i }i∈[n] and s = {si}i∈[n], normal bidders
{i ∈ [n] | si(vi) > γ} preserve their bids s∗i (vi) = si(vi), while low/boundary bidders {j ∈ [n] | sj(vj) ≤ γ}
never increase their bids s∗j (vj) ≤ sj(vj).

In the coupled scenario (x∗, s∗(v)), bidder x still has the first-order bid s∗x(vx) = max(s∗(v)) and, (Item 2
of Proposition 2.2) almost surely, is the only first-order bidder argmax(s∗(v)) = {x} and thus keeps winning
x∗(s∗(v)) = x.

• Case (II). The allocated bidder x has a boundary bid sx(vx) = γ and a normal value vx > γ.

Bidder x is the unique monopolist (Proposition 2.4). Further, other bidders i ∈ [n]\{x} have low/boundary
bids si(vi) ≤ γ and low/boundary values vi ≤ γ (cf. the s∗-construction table).

In the coupled scenario (x∗, s∗(v)), bidder x preserves her bid s∗x(vx) = sx(vx) = γ, while other bidders
i ∈ [n] \ {x} decrease their bids s∗i (vi) ≤ si(vi)− δ/2 ≤ γ− δ/2. Thus, bidder x is the only first order bidder
argmax(s∗(v)) = {x} and thus keeps winning x∗(s∗(v)) = x.

• Case (III). The allocated bidder x has a boundary bid/value sx(vx) = vx = γ.

The original scenario has no monopolist (Proposition 2.4), almost surely. All bidders i ∈ [n] have
low/boundary bids si(vi) ≤ γ and low/boundary values vi ≤ γ (cf. the s∗-construction table). Further,
bidders NBDY = {j ∈ [n] | sj(vj) = vj = γ}, including the allocated bidder x, have boundary bids/values.

In the coupled scenario (x∗, s∗(v)), bidders j ∈ NBDY have the bid s∗j (vj) = sj(vj)− δ/2 = γ − δ/2, while
the other bidders i ∈ [n] \NBDY have lower bids s∗i (vi) = si(vi) − δ < γ − δ. Thus, bidders j ∈ NBDY are
exactly the coupled first-order bidders argmax(s∗(v)) = NBDY. I.e., regardless of the tie-breaking rule, any
possible allocation x∗ = x∗(s∗(v)) ∈ NBDY always realizes the boundary Social Welfare vx∗ = γ, the same
as the original scenario vx = γ.

So, the coupling between s∗ = {s∗i }i∈[n] and s = {si}i∈[n] preserves the same auction Social Welfare, almost surely.
In expectation, we have FPA(V , x∗, s∗) = FPA(V , x, s).

Part 3. Under our coupling: The normal bids si(vi) > γ keep the same s∗i (vi) = si(vi). The low bids si(vi) < γ
are shifted by a −δ distance, namely s∗i (vi) = si(vi)− δ. Moreover, the boundary bids si(vi) = γ are “split” into
(i) s∗i (vi) = γ − δ for low values vi < γ, (ii) s∗i (vi) = γ − δ/2 for boundary values vi = γ, or (iii) s∗i (vi) = γ for
high values vi > γ, which occurs only for the unique monopolist (if existential).

The coupled infimum first-order bid γ∗ = inf(supp(B∗)) is bounded between γ∗ ∈ [γ − δ/2, γ], since in
the original scenario, conditioned on the boundary first-order bid {max(s(v)) = γ}, there always exists at least
one boundary/normal valuer {max(v) ≥ γ} (Proposition 2.4). We would verify the δ-approximate equilibrium
conditions, through on case analysis about the original scenario:

• A low/boundary value/bid vi ≤ γ and si(vi) ≤ γ, with at least one strict inequality.
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By construction, the coupled bid s∗i (vi) ≤ γ − δ is strictly below the coupled infimum first-order bid
γ∗ ∈ [γ − δ/2, γ], yielding a zero interim allocation/utility = 0. In contrast, because this bidder i has a
low/boundary value vi ≤ γ, any deviation bid b∗ ≥ 0 yields an interim utility at most ≤ min(vi − γ∗, 0) ≤
δ/2 < δ.

• A boundary value/bid vi = si(vi) = γ.

By construction, the coupled bid s∗i (vi) = γ − δ/2 < vi = γ yields a nonnegative interim utility ≥ 0. In
contrast, because this bidder i has a boundary value vi = γ, any deviation bid b∗ ≥ 0 yields an interim
utility at most ≤ vi − γ∗ = δ/2 < δ.

• A normal value vi > γ and a boundary/normal bid si(vi) ≥ γ.

Following Item 2 of Proposition 2.2, the coupled bid s∗i (vi) = si(vi) yields the same nonnegative interim
allocation/utility ≥ 0 as in the original scenario (x, s(v)). In comparison: (i) Any deviation bid b∗ ≥ γ
yields a smaller or equal interim utility, as a consequence of the exact equilibrium s ∈ BNE(V , x). (ii) Any
deviation bid b∗ < γ∗ yields a zero interim utility = 0. (iii) Any deviation bid b∗ ∈ [γ∗, γ) yields at most
“the bid-γ interim utility ≤ the current interim utility” plus “a term of γ − b∗ ≤ γ − γ∗ = δ/2 < δ”.

Hence, the coupled strategy profile forms a δ-approximate equilibrium s∗ ∈ BNE(V , x∗, δ).
A minor issue is the above modification may incur negative bids if the original infimum first-order bid is too

small γ < δ. Instead, we can first slightly shift the original strategies s = {si}i∈[n] by a +δ distance and then
reapply the above modification. As a consequence, everything keeps the same, except that the bidders’ utilities
each drop by a δ amount. This finishes the proof.

A revelation of Theorem 3.1 is that we can focus on exact equilibria s in studying the PoA/PoS problems, as
if we can control the tie-breaking rule x and choose a compatible one BNE(V , x) ̸= ∅. When an incompatible tie-
breaking rule x∗ are really considered, up to any precision δ > 0, we can still obtain a δ-approximate equilibrium
s∗ ∈ BNE(V , x∗, δ) by modifying any “compatible” exact equilibrium s ∈ BNE(V , x). We will adopt this
convention in Sections 4 and 5, since it simplifies the notation and (essentially) incurs no loss of generality.

4 Bayesian Nash Equilibria for Independent Valuations.

In this section, we prove the following tight PoS result for the canonical setting, namely Bayesian Nash Equilibria
for independent valuations.

Theorem 4.1. (Tight PoS) Regarding Bayesian Nash Equilibria for independent valuations, the Price of Stability
is 1− 1/e2 ≈ 0.8647.

The lower-bound part of Theorem 4.1 immediately follows from the tight PoA result from [JL22]. To get
the upper-bound part, we only need to construct an instance whose PoS is exactly 1 − 1/e2. Technically, we
provide a sequence of instances whose PoS asymptotically approaches 1 − 1/e2. The following instances are a
slight modification from the tight PoA instances due to [JL22, Example 4] such that each modified instance has
one unique equilibrium.

Example. Given an arbitrarily small constant ε ∈ (0, 1/8), consider the (n + 1)-bidder instance {H} ∪ {Li}i∈[n]

for n = ⌈1/ε⌉ ≥ 8 in terms of value distributions V = VH ⊗ {VL}⊗n.

• Bidder H has a Bernoulli random value vH ∼ VH that Pr[vH = 0] = ε and Pr[vH = 1] = 1− ε.

• Bidders {Li}i∈[n] have i.i.d. values (vL, i)i∈[n] ∼ {VL}⊗n whose common value distribution VL is given by

the parametric equation VL(1 − n−(t−1)
nt−(t−1) · t

2 · e2−2t) = n
√

4/t2 · e2t−4 for t ∈ [1, 2]. This value distribution

VL is supported on supp(VL) = [0, 1− 2n−2
2n−1 · 2/e2] and has a probability mass VL(0) =

n
√

4/e2 at the zero
value.

The considered First Price Auction x ∈ FPA, under the all-zero bid profile b = bH ⊗ (bL, i)i∈[n] = 0, favors bidder
H, but otherwise is arbitrary.
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4.1 The focal equilibrium. In this part, we verify that the worst-case equilibrium for the tight PoA instance
[JL22, Example 4], after a slight adjustment, is still an equilibrium for our modified instance. (The proof is similar
to the equilibrium condition analysis in [JL22, Section 6].)

For clarity, this modified equilibrium will be called the focal strategy profile or, after verifying the equilibrium
condition, the focal equilibrium. Let λ∗ := 1− 4/e2 ≈ 0.4587. The focal strategy profile s∗ = {s∗H} ⊗ {s∗L}⊗n is
given as follows; see Figure 1 for a visual aid.

• Bidder H has a (mixed) strategy s∗H(0) ≡ 0 for a zero value {vH = 0} and s∗H(1) ∼ S∗
H for a nonzero value

{vH = 1}. Here the bid distribution S∗
H is given by the implicit equation

b = 1− 4 · (ε+ (1− ε) · S∗
H) · e2−4

√
ε+(1−ε)·S∗

H for S∗
H ∈ [1− 3/4

1−ε , 1].

The random bid s∗H(vH) is supported on {0} ∪ supp(S∗
H) = [0, 1− 4/e2] = [0, λ∗].

• Bidders {Li}i∈[n] have (deterministic) identical strategies {s∗L}⊗n that are given by the parametric

equation s∗L(1−
n−(t−1)
nt−(t−1) · t

2 · e2−2t) = 1− t2 · e2−2t for t ∈ [1, 2].

The random bids s∗L(vL, i) are supported on {1− t2 · e2−2t | t ∈ [1, 2]} = [0, 1− 4/e2] = [0, λ∗].

Lemma 4.1 checks the equilibrium condition for the focal strategy profile s∗.

Lemma 4.1. (Equilibrium) The following hold for the focal strategy profile s∗ = {s∗H} ⊗ {s∗L}⊗n:

1. Bidder H has the bid distribution B∗
H given by the implicit equation b = 1−4B∗

H ·e2−4
√

B∗
H for B∗

H ∈ [1/4, 1],
and a constant bid-to-value mapping φH(b) = 1 for b ∈ [0, λ∗].

2. Bidders {Li}i∈[n] have identical bid distributions {B∗
L}⊗n given by B∗

L(b) = n
√
(1− λ∗)/(1− b) for b ∈

[0, λ∗], and identical bid-to-value mappings {φ∗
L}⊗n given by the parametric equation φ∗

L(1 − t2 · e2−2t) =

1− n−(t−1)
nt−(t−1) · t

2 · e2−2t for t ∈ [1, 2].

3. The focal strategy profile s∗ = s∗H ⊗ {s∗L}⊗n forms a Bayesian Nash Equilibrium s∗ ∈ BNE(V ).

Proof. We first reason about Item 1 and Item 2.
For bidder H, the strategy s∗H converts (i) all densities at the zero value Pr[vH = 0] = ε to densities at the

zero bid s∗H(0) ≡ 0 and (ii) all densities at the nonzero value Pr[vH = 1] = 1− ε to densities that follow the bid
distribution S∗

H , which is supported on supp(S∗
H) = [0, λ∗]. Overall, the bid distribution s∗H(vH) ∼ B∗

H can be
written as B∗

H(b) = ε + (1 − ε) · S∗
H(b), over the bid support b ∈ [0, λ∗]. Plugging this formula into the defining

implicit equation for S∗
H , we can conclude with b = 1− 4B∗

H · e2−4
√

B∗
H for B∗

H ∈ [1/4, 1], as desired.

For bidders {Li}i∈[n] and their identical strategies {s∗L}⊗n, the value formula 1 − n−(t−1)
nt−(t−1) · t2 · e2−2t

and the bid formula 1 − t2 · e2−2t both are increasing in t ∈ [1, 2]. Thus, the identical bid distributions
{B∗

L}⊗n can be written as {(b, B∗
L) = (s∗L(v), VL(v)) | v ∈ supp(VL) = [0, 1 − 2n−2

2n−1 · 2/e2]}. Plugging

the defining parametric equations for s∗L and VL into this formula, those bid distributions {B∗
L}⊗n can be

formulated as {(b, B∗
L) = (1 − t2 · e2−2t, n

√
4/t2 · e2t−4) | t ∈ [1, 2]}. After rearranging, we can conclude with

B∗
L(b) =

n
√
(1− λ∗)/(1− b) for b ∈ [0, λ∗], as desired.

Bidder H competes with bidders {Li}i∈[n], thus having the competing bid distribution B∗
−H(b) =

(
B∗

L(b)
)n

=
(1 − λ∗)/(1 − b) and the constant bid-to-value mapping φ∗

H(b) = b + B∗
−H(b)/B∗

−H
′(b) = 1 for b ∈ [0, λ∗], as

desired.
Let t := 2

√
B∗

H ∈ [1, 2]. Then we have b = 1 − 4B∗
H · e2−4

√
B∗

H = 1 − t2 · e2−2t and the derivative
db
dt = (2t2−2t) · e2−2t. Each bidder Li for i ∈ [n] competes with bidders {H}∪{Lj}j∈[n]\{i}, hence the competing

bid distribution B∗
−L(b) = B∗

H(b) ·
(
B∗

L(b)
)n−1

. In terms of the parameter t ∈ [1, 2], we can substitute B∗
H = t2/4,

λ∗ = 1− 4/e2, and b = 1− t2 · e2−2t, rewriting

B∗
−L = B∗

H ·
(
B∗

L

)n−1
= B∗

H ·
(1− λ∗

1− b

)n−1
n

= t2/4 ·
( 4/t2

e4−2t

)n−1
n

.
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Figure 1: Demonstration for the (n+ 1)-bidder instance V = VH ⊗ {VL}⊗n in Section 4.
(red) Bidder H has a Bernoulli value distribution VH(v) = ε for v ∈ [0, 1) and VH(v) = 1 for v ≥ 1.
(blue) Bidders {Li}i∈[n] have identical value distributions {VL}⊗n given by the parametric equation VL(1 −
n−(t−1)
nt−(t−1) · t

2 · e2−2t) = n
√
4/t2 · e2t−4 for t ∈ [1, 2].

Under the focal strategy profile s∗ = {s∗H}⊗{s∗L}⊗n: Over the support b ∈ [0, λ∗], the resulting bid distributions

B∗ = B∗
H ⊗ {B∗

L}⊗n are given by (orange) the implicit equation b = 1 − 4B∗
H · e2−4

√
B∗

H for B∗
H ∈ [1/4, 1] and

(green) the parametric equation B∗
L(1− t2 · e2−2t) = n

√
4/t2 · e2t−4 for t ∈ [1, 2].

Then in terms of t ∈ [1, 2], the bid-to-value mapping φ∗
L(b) = b+

B∗
−L

dB∗
−L/db is given by

φ∗
L = b+ B∗

−L · db/dt

dB∗
−L/dt

= (1− t2 · e2−2t) + nt · (t
2 − t) · e2−2t

nt− (t− 1)

= 1− n− (t− 1)

nt− (t− 1)
· t2 · e2−2t.

Hence, we obtain the parametric equation φ∗
L(1 − t2 · e2−2t) = 1 − n−(t−1)

nt−(t−1) · t
2 · e2−2t for t ∈ [1, 2], as desired.

Notably, this bid-to-value mapping is the inverse function of {Li}i∈[n]’s focal strategies s
∗
L(1−

n−(t−1)
nt−(t−1) ·t

2 ·e2−2t) =

1− t2 · e2−2t for t ∈ [1, 2].3 Item 1 and Item 2 follow then.

Item 3. Bidder H has the interim utility formula u∗
H(vH , b) = (vH − b) · B∗

−H(b) = (vH − b) · 1−λ∗

1−b for b ∈ [0, λ∗].
Under a zero value {vH = 0}, clearly the focal bid s∗H(0) ≡ 0 must be utility-optimal. Under a nonzero value

3It is easy to check that both formulas 1− n−(t−1)
nt−(t−1)

· t2 · e2−2t and 1− t2 · e2−2t are strictly increasing in t ∈ [1, 2].
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{vH = 1}, all bids b ∈ [0, λ∗] yield the same interim utility u∗
H(1, b) = 1− λ∗, so the focal bid s∗H(1) ∼ S∗

H that
supp(S∗

H) = [0, λ∗] also is utility-optimal.
Moreover, bidders {Li}i∈[n] have the same interim utility formula u∗

L(vL, b) = (vL− b) ·B∗
−L(b) for b ∈ [0, λ∗].

For any given value vL ∈ [0, 1 − 2n−2
2n−1 · 2/e2], a bid b ∈ [0, λ∗] is utility-optimal when it satisfies that

0 = ∂
∂bu

∗
L(vL, b) = −B∗

−L(b) + (vL − b) · B∗
−L

′(b), or equivalently, that vL = φ∗
L(b). The focal bid s∗L(vL) is

utility optimal, namely vL = φ∗
L(s

∗
L(vL)), because the bid-to-value mapping φ∗

L is the inverse function of the focal
strategy s∗L.

Thus, all bidders {H} ∪ {Li}i∈[n] meet the equilibrium conditions. Item 3 follows then.

Below, Lemma 4.3 measures the expected optimal/auction Social Welfares from our (n + 1)-bidder instance
V = VH ⊗ {VL}⊗n at the focal equilibrium s∗ = {s∗H} ⊗ {s∗L}⊗n. The proof relies on the auction Social Welfare
formula from [JL22, Lemma 2.20].

Lemma 4.2. (Auction Social Welfare [JL22]) The expected auction Social Welfare FPA(V , s) at a Bayesian
Nash Equilibrium s ∈ BNE(V ), on having a monopolist H, can be formulated as follows:

FPA(V , s) = E
vH , sH

[vH | sH(vH) = γ] · B(γ) +
∑
i∈[n]

(∫ λ

γ

φi(b) ·
B′

i(b)

Bi(b)
· B(b) · db

)
.

Lemma 4.3. (Efficiency) The following hold for the focal equilibrium s∗ = {s∗H} ⊗ {s∗L}⊗n:

1. The expected optimal Social Welfare OPT(V , s∗) ≥ 1− ε.

2. The expected auction Social Welfare FPA(V , s∗) ≤ 1− (1− ε) · e−2.

Proof. Let us prove Items 1 and 2 one by one.

Item 1. The realized optimal Social Welfare is at least bidder H’s realized value vH ∼ VH , namely a
Bernoulli random value Pr[vH = 0] = ε and Pr[vH = 1] = 1 − ε (Section 4). In expectation, we have
OPT(V , s∗) ≥ E[vH ] = 1− ε. Item 1 follows then.

Item 2. Following Lemma 4.2, with the focal first-order bid CDF B∗(b) = B∗
H(b) ·

(
B∗

L(b)
)n

, the expected auction
Social Welfare FPA(V , s∗) from our (n+ 1)-bidder instance is given by

FPA(V , s∗)

= E
vH , s∗H

[vH | s∗H(vH) = 0] · B∗(0) +

∫ λ∗

0

(
φ∗
H(b) · B

∗
H

′(b)

B∗
H(b)

· B∗(0) + n · φ∗
L(b) ·

B∗
L
′(b)

B∗
L(b)

· B∗(b)
)
· db

≤ B∗(0) +

∫ λ∗

0

(B∗
H

′(b)

B∗
H(b)

· B∗(0) + n · φ∗
L(b) ·

B∗
L
′(b)

B∗
L(b)

· B∗(b)
)
· db

= B∗(0) +

∫ λ∗

0

B∗′(b) · db−
∫ λ∗

0

n ·
(
1− φ∗

L(b)
)
· B

∗
L
′(b)

B∗
L(b)

· B∗(b) · db

= 1−
∫ λ∗

0

n ·
(
1− φL(b)

)
· 1

n · (1− b)
·B∗

H(b) · 1− λ∗

1− b
· db

= 1− (1− λ∗) ·
∫ λ∗

0

(
1− φ∗

L(b)
)
· B∗

H(b)

(1− b)2
· db

= 1− (1− λ∗) ·
∫ 2

1

( n− (t− 1)

nt− (t− 1)
· t2 · e2−2t

)
· t2/4

(t2 · e2−2t)2
·
(db
dt

)
· dt

= 1− (1− λ∗) ·
∫ 2

1

( n− (t− 1)

nt− (t− 1)
· t2 · e2−2t

)
· t2/4

(t2 · e2−2t)2
· (2t2 − 2t) · e2−2t · dt

= 1− (1− λ∗) ·
∫ 2

1

n− (t− 1)

nt− (t− 1)
· t

2 − t

2
· dt
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≤ 1− (1− λ∗) ·
∫ 2

1

(
1− 1

n

)
· t− 1

2
· dt

= 1−
(
1− 1

n

)
· e−2

≤ 1− (1− ε) · e−2.

The definition of t ∈ [1, 2] and the expressions of b, B∗
H , φ∗

L and db
dt in terms of t are given in the proof of

Lemma 4.3. Item 2 follows then. This finishes the proof of Lemma 4.3.

4.2 Uniqueness of equilibria. In this part, we show that the focal equilibrium s∗ = {s∗H} ⊗ {s∗L}⊗n is the
unique equilibrium for our modified instance V = VH ⊗ {VL}⊗n; thus the tight PoS bound is the same as the
tight PoA bound. This uniqueness is the key ingredient of our PoS characterization. To have a better sense, let
us explain the high-level ideas before giving the formal proof.

We first prove that bidders {Li}i∈[n] must have identical strategies because they have identical value
distributions (Lemma 4.5). Thus, we “truly” have just two kinds of bidders, H versus {L}⊗n. Then an equilibrium
can be obtained by resolving an ordinal differential equation (ODE) in terms of the bid distributions for H and L
(Lemma 4.8). Once the boundary conditions are specified, an ODE “usually” has one unique solution. Essentially,
the possible non-uniqueness of equilibria stems from different boundary conditions.

The main technical part is to uniquely determine the boundary condition, namely every bidder H or L must
have her bid support being exactly the interval [0, λ∗]. Compared with the tight PoA instances [JL22, Example 4],
we modify bidder H’s value distribution by putting a tiny probability mass at the zero value Pr[vH = 0] = ε. In
this way, every bidder H or L is enforced a zero bid, once this bidder has a zero value (Lemma 4.4). Then, it is
easy to conclude that the identical bid support of bidders {L}⊗n is exactly an interval [0, λ] – having densities
almost everywhere – since those bidders have an uninterrupted value support supp(VL) = [0, 1 − 2n−2

2n−1 · 2/e2]
(Lemma 4.6); but whether this supremum bid λ is exactly the λ∗ = 1− 4/e2 ≈ 0.4587 is still unclear.

However, determining the desirable boundary condition for bidder H is highly nontrivial. This bidder has
an interrupted value support supp(VH) = {0, 1}, so the above arguments fail to work. Instead, we first show
that bidder H’s bid support is the union {0} ∪ [µ, λ] of (i) the zero bid {0}, which corresponds to the zero
value Pr[vH = 0] = ε; and (ii) an interval [µ, λ] for some µ ≥ 0 – having densities almost everywhere – which
corresponds to the nonzero value Pr[vH = 1] = 1− ε.4 The undesirable case µ > 0 is really possible, if we could
slightly adjust Section 4, e.g., changing the “success = ε”/“failure = 1− ε” probabilities of bidder H’s Bernoulli
random value. But under our particular construction, only the desirable case µ = 0 turns out to be possible; thus
bidder H also has densities almost everywhere on the interval [0, λ] (Lemma 4.7).

Provided with the desirable boundary conditions, we resolve the mentioned ODE, thus uniquely determining
the bid support [0, λ] = [0, λ∗] and the equilibrium – precisely the focal equilibrium s∗ = {s∗H} ⊗ {s∗L}⊗n

(Lemma 4.8).
In the rest of Section 4.2, we start with a generic equilibrium s = {sH} ⊗ {sL, i}i∈[n] ∈ BNE(V ) and present

the formal proof.

Lemma 4.4. Each bidder σ ∈ {H} ∪ {Li}i∈[n], on having a zero value {vσ = 0}, takes a zero bid sσ(vσ) = 0
almost surely. Hence, bidder H takes a zero bid with probability BH(0) ≥ VH(0) = ε and each bidder Li for i ∈ [n]
takes a zero bid with probability BL, i(0) ≥ VL(0) =

n
√
4/e2. Further, the infimum bid γ = inf(supp(B)) is zero

γ = 0.

Proof. The all-zero value profile {v = 0} occurs with probability VH(0) · (VL(0))
n = ε · 4/e2 > 0. Conditioned

on this, the bid profile must also be all-zero {s(v) = 0}, almost surely – Otherwise, with a nonzero probability,
the allocated bidder x = x(s(v)) gains a strictly negative utility < 0 since she has a nonzero bid sx(vx) > 0 and a
zero value vx = 0, which contradicts the equilibrium condition (Definition 2.1). We are considering Bayesian Nash
Equilibria, namely the strategies sσ(vσ) for σ ∈ {H} ∪ {Li}i∈[n] only depend on individual values vσ. Therefore,
for each individual bidder, a zero value {vσ = 0} enforces a zero bid {sσ(vσ) = 0}, almost surely.

4A better interpretation is from the perspective of quantiles; then there is no ambiguity even in the case µ = 0.
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Lemma 4.5. Bidders {Li}i∈[n] play identical strategies {sL, i}i = {sL}⊗n everywhere except on a zero-measure
set of values. Hence, bid distributions {BL, i}i∈[n] = {BL}⊗n are identical and the bid-to-value mappings
{φL, i}i∈[n] = {φL}⊗n are identical.

Proof. Lemma 4.5 is almost a direct implication of [CH13, Corollary 3.2], which claims the same result for any
subset of bidders J = {j1, . . . , jk} ⊆ [m] in an m-bidder First Price Auction that have identical value distributions
Vj1 ≡ · · · ≡ Vjk . The only issue is that [CH13, Corollary 3.2] requires a tie-breaking rule xJ ∈ FPA that is
symmetric for those bidders J . However, regarding our instance {H} ∪ {Li}i∈[n] and tie-breaking rule x ∈ FPA
in Section 4:
(i) Tie-breaks at nonzero first-order bids {max(s(v)) > 0} never occur, almost surely (Proposition 2.2).
(ii) Tie-breaks at a zero first-order bid {max(s(v)) = 0}, i.e., at the all-zero bid profile {s(v) = 0}, always favor
bidder H and thus is symmetric for bidders {Li}i∈[n].
Accordingly, the symmetry requirement on the tie-breaking rule fails just for a zero-measure set of values. Clearly,
we can readopt the arguments for [CH13, Corollary 3.2] to derive Lemma 4.5.

Recall that under the focal equilibrium s∗, bidders {Li}i∈[n] are non-monopoly bidders and have the same

probability masses B∗
L(0) = BL(0) =

n
√
4/e2. Below we show that this also holds for the considered equilibrium

s = {sH} ⊗ {sL}⊗n.

Lemma 4.6. Bidders {Li}i∈[n] are non-monopoly bidders. Hence, the common bid distribution BL has a

probability mass BL(0) = VL(0) = n
√
4/e2 at the zero bid and has densities almost everywhere over the bid

support b ∈ [0, λ].

Proof. Bidders {Li}i∈[n] have identical value/bid distributions {VL}⊗n and {BL}⊗n. According to Definition 2.3,
they either ALL are non-monopoly bidders BL(0) = VL(0) or ALL are monopolists BL(0) > VL(0). However,
Proposition 2.4 (that there exists at most one monopolist) eliminates the second case. Hence, bidders {Li}i∈[n]

are non-monopoly bidders BL(0) = VL(0).
For the sake of contradiction, assume that bid distribution BL has no density around some bid b ∈ [0, λ].

Then, the competing bid distribution (BL(b))
n =

∏
i∈[n] BL, i(b) for bidder H also has no density around this bid

b ∈ [0, λ]. However, this contradicts Item 1 of Proposition 2.2. Refuting our assumption finishes the proof of
Lemma 4.6.

Lemma 4.7. Bidder H is the (unique) monopolist. Hence, bid distribution BH has a probability mass BH(0) >
VH(0) = ε at the zero bid and the bid-to-value mapping is constant φH(b) = 1 over the bid support b ∈ [0, λ].

Proof. Bidder H has (Section 4) a Bernoulli random value Pr[vH = 0] = ε and Pr[vH = 1] = 1 − ε and
(Proposition 2.3) an increasing bid-to-value mapping φH(b).

Assume to the contrary that bidder H is a non-monopoly bidder BH(0) = VH(0) = ε, namely a zero value
{vH = 0} induces a zero bid sH(vH) = 0 almost surely, and a nonzero value {vH = 1} induces a nonzero bid
sH(vH) ∈ (0, λ] almost surely.

Consider the threshold bid µ := inf{b ∈ [0, λ] |φH(b) ≥ 1}; this threshold bid µ ∈ [0, λ] is well defined
regardless of our non-monopoly assumption for bidder H. Fact 4.1 and Fact 4.2 will be helpful for the later
proof; only Fact 4.2 relies on our non-monopoly assumption for bidder H.

Fact 4.1. (I) Bid distribution BH has no density on the interval b ∈ (0, µ), namely BH(µ) = BH(0), and has
densities almost everywhere on the interval b ∈ (µ, λ).
(II) The bid-to-value mapping φH(b) ≤ 1 for b ∈ [0, λ]; the equality holds when b ∈ [µ, λ].

Proof. By the definition of µ = inf{b ∈ [0, λ] |φH(b) ≥ 1}, a nonzero bid sH(vH) ∈ (0, λ] due to the nonzero
value {vH = 1} can be further restricted to the range sH(vH) ∈ (µ, λ]. (Recall Item 2 of Proposition 2.2 that the
bid CDF BH(b) is a continuous function over the bid support b ∈ [0, λ].) Namely, bid distribution BH has no
density on the interval b ∈ (0, µ) and thus BH(µ) = BH(0).

For the sake of contradiction, assume that bid distribution BH has no density around some bid β ∈ (µ, λ),
namely B′

H(β) = 0. Then at this particular bid β ∈ (µ, λ), the two bid-to-value mappings φH(b) and φL(b)
satisfy that

1 ≤ φH(β) = β +
(
n ·B′

L(β)/BL(β)
)−1

β ∈ (µ, λ)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited344

D
ow

nl
oa

de
d 

03
/1

4/
23

 to
 1

17
.1

44
.9

0.
79

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



≤ φL(β) = β +
(
(n− 1) ·B′

L(β)/BL(β) +B′
H(β)/BH(β)

)−1

. B′
H(β) = 0

This means value distribution VL has densities around some value vβ ≥ 1. Precisely, value distribution VL

can be reconstructed via the parametric equation {(v, VL) = (φL(b), BL(b)) | b ∈ [0, λ]}. Furthermore, bid
distribution BL has densities almost everywhere over the bid support b ∈ [0, λ] (Lemma 4.6), including the
particular bid β ∈ (µ, λ) for which vβ = φL(β) ≥ 1. But this contradicts our construction – The hypothetical
value vβ = φL(β) ≥ 1 is bounded away from value distribution VL’s support supp(VL) = [0, 1 − 2n−2

2n−1 · 2/e2]
(Section 4).

Refuting the above assumption results in Part (I): Bid distribution BH has densities almost everywhere on
b ∈ (µ, λ). All those densities stem from the value {vH = 1}, since bidder H has a Bernoulli random value
vH ∈ {0, 1} and (by assumption) is a non-monopoly bidder. Therefore, we have φH(b) = 1 for b ∈ [µ, λ]. This
together with monotonicity of the bid-to-value mapping φH(b), immediately gives Part (II). This finishes the
proof.

Fact 4.2. Assume that bidder H is a non-monopoly bidder BH(0) = VH(0) = ε.
(I) The supremum bid λ ≤ λ∗ = 1− 4/e2.
(II) BL(b) ≥ B∗

L(b) for b ∈ [0, λ].
(III) B′

L(b)/BL(b) ≥ B∗
L
′(b)/B∗

L(b) for b ∈ [0, λ]; the equality holds when b ∈ [µ, λ].
(IV) B′

H(b)/BH(b) ≤ B∗
H

′(b)/B∗
H(b) for b ∈ [µ, λ].

Proof. The bid-to-value mapping φH(b) = b + 1
n · BL(b)/B

′
L(b) ≤ 1 over the bid support b ∈ [0, λ]; the equality

holds when b ∈ [µ, λ]. In contrast, the focal bid-to-value mapping φ∗
H(b) = b + 1

n · B∗
L(b)/B

∗
L
′(b) = 1 over the

focal bid support b ∈ [0, λ∗]. Therefore, for b ∈ [0, min(λ, λ∗)] we have B′
L(b)/BL(b) ≥ B∗

L
′(b)/B∗

L(b) and thus

BL(b)/BL(0) = exp
(∫ b

0

B′
L(b)/BL(b) · dx

)
≥ B∗

L(b)/B
∗
L(0) = exp

(∫ b

0

B∗
L
′(b)/B∗

L(b) · dx
)
.

The two bid distributions have the same probability mass BL(0) = B∗
L(0) = VL(0) =

n
√
4/e2 at the zero bid, so

we have BL(b) ≥ B∗
L(b) for b ∈ [0, min(λ, λ∗)]. To achieve the boundary conditions BL(λ) = 1 and B∗

L(λ
∗) = 1

at the respective supremum bids λ and λ∗, we must have Part (I) that λ ≤ λ∗ = 1− 4/e2.
Part (II) and Part (III), including the equality B′

L(b)/BL(b) = B∗
L
′(b)/B∗

L(b) for b ∈ [µ, λ], can be easily
inferred from the above arguments.

Value distribution VL can be reconstructed from EITHER bid distributions BH ⊗ {BL}⊗n OR the focal
bid distributions B∗

H ⊗ {B∗
L}⊗n, via the parametric equations {(v, VL) = (φL(b), BL(b)) | b ∈ [0, λ]} or

{(v, VL) = (φ∗
L(b), B

∗
L(b)) | b ∈ [0, λ∗]}. As Figure 2 suggests, this observation together with Part (II) implies

that φL(b) ≥ φ∗
L(b) for b ∈ [0, λ]. Especially, on the restricted interval b ∈ [µ, λ], we can deduce that

φL(b) = b+
(
(n− 1) ·B′

L(b)/BL(b) +B′
H(b)/BH(b)

)−1

≥ φ∗
L(b) = b+

(
(n− 1) ·B∗

L
′(b)/B∗

L(b) +B∗
H

′(b)/B∗
H(b)

)−1

.

Rearranging this equation and applying Part (III) of Fact 4.2 (that B′
L(b)/BL(b) = B∗

L
′(b)/B∗

L(b) when
b ∈ [µ, λ]), we can conclude Part (IV) immediately. This finishes the proof of Fact 4.2.

However, combining everything together, we can derive the following contradiction:

1 = BH(λ) = BH(λ)/BH(µ) ·BH(µ)

= exp
(∫ λ

µ

B′
H(b)/BH(b) · dx

)
·BH(µ)

= exp
(∫ λ

µ

B′
H(b)/BH(b) · dx

)
· ε Part (I) of Fact 4.1

≤ exp
(∫ λ

µ

B∗
H

′(b)/B∗
H(b) · dx

)
· ε Part (IV) of Fact 4.2
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Figure 2: Demonstration for the proof of Part (IV) of Fact 4.2.

= B∗
H(λ)/B∗

H(µ) · ε

≤ 4ε < 1/2.

Here the last line uses B∗
H(µ) ≥ B∗

H(0) = 1/4, B∗
H(λ) ≤ B∗

H(λ∗) = 1, and ε ∈ (0, 1/8); all of which can be found
from Section 4 and Part (I) of Fact 4.2.

Refute our assumption: Bidder H is the unique monopolist BH(0) > VH(0) = ε; the probability mass
BH(0) > ε at the zero bid stems from BOTH a zero value {vH = 0} (by the whole amount ε = Pr[vH = 0]) AND
a nonzero value {vH = 1} (by a partial amount BH(0) − ε ≤ Pr[vH = 1]). This implies that the threshold bid
µ = inf{b ∈ [0, λ] |φH(b) ≥ 1} is zero µ = 0. As a consequence, we can infer Lemma 4.7 from Fact 4.1. This
finishes the proof.

Lemma 4.8. (Uniqueness of Equilibria) The following hold:

1. The supremum bid λ = 1− 4/e2, the same as the focal supremum bid λ = λ∗.

2. Bid distributions {BL, i}i∈[n] = {BL}⊗n are given by BL(b) =
n
√

(1− λ)/(1− b) for b ∈ [0, λ], the same as
the focal bid distribution BL ≡ B∗

L.

3. Bid distribution BH is given by the implicit equation b = 1− 4BH · e2−4
√
BH for BH ∈ [1/4, 1], the same as

the focal bid distribution BH ≡ B∗
H .

Proof. Following Lemma 4.7, over the bid support b ∈ [0, λ], bidder H has a constant bid-to-value mapping
φH(b) = b+ 1

n ·BL(b)/B
′
L(b) = 1. By resolving this ODE, under the boundary condition BL(0) =

n
√
4/e2 at the

infimum bid = 0, we have BL(b) = n
√
(4/e2)/(1− b) for b ∈ [0, λ]. Plugging this CDF formula into the other

boundary condition BL(λ) = 1 at the supremum bid = λ, we can deduce that λ = 1− 4/e2. Item 1 and Item 2
follow then.
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It remains to show Item 3. By construction (Section 4), bidders {Li}i∈[n] have identical value distributions

{VL}⊗n given by VL(1 − n−(t−1)
nt−(t−1) · t

2 · e2−2t) = n
√
4/t2 · e2t−4 for t ∈ [1, 2]. Those value distributions also can

be reconstructed through the parametric equation
{
(v, VL) = (φL(b), BL(b))

∣∣ b ∈ [0, λ]
}
. As a combination, in

terms of t ∈ [1, 2], the bid-to-value mapping φL can be rewritten as follows:

(4.1) φL = 1− n− (t− 1)

nt− (t− 1)
· t2 · e2−2t.

Similarly, we can deduce that n
√
4/t2 · e2t−4 = BL(b) =

n
√

(1− λ)/(1− b) and thus rewrite the bid b = 1−t2 ·e2−2t

for t ∈ [1, 2]. Then, the derivative db/dt = (2t2 − 2t) · e2−2t.
On the other hand, each bidder Li for i ∈ [n] competes with bidders {H}∪{Lj}j∈[n]\{i}, hence the competing

bid distribution B−L(b) = BH(b) ·
(
BL(b)

)n−1
. Consequently, in terms of t ∈ [1, 2], the bid-to-value mapping

φL = b+ B−L

dB−L/db also can be rewritten as follows:

φL = b+
(
(n− 1) · dBL/db

BL
+

dBH/db

BH

)−1

= b+
(n− 1

n
· 1

1− b
+

dBH/dt

BH
· 1

(2t2 − 2t) · e2−2t

)−1

= (1− t2 · e2−2t) +
(n− 1

n
· 1

t2 · e2−2t
+

dBH/dt

BH
· 1

(2t2 − 2t) · e2−2t

)−1

.(4.2)

Here the second line applies BL(b) =
n
√
(1− λ)/(1− b) and db/dt = (2t2 − 2t) · e2−2t, and the last line applies

b = 1− t2 · e2−2t.
The above two formulas for the φL must be identical for t ∈ [1, 2], so we can deduce that

Equation (4.1) = Equation (4.2)

⇐⇒
(
1− n− (t− 1)

nt− (t− 1)

)
· t2 · e2−2t =

(n− 1

n
· 1

t2 · e2−2t
+

dBH/dt

BH
· 1

(2t2 − 2t) · e2−2t

)−1

⇐⇒ nt− (t− 1)

n · (t− 1)
· 1

t2 · e2−2t
=

n− 1

n
· 1

t2 · e2−2t
+

dBH/dt

BH
· 1

(2t2 − 2t) · e2−2t

⇐⇒ 1

t− 1
· 1

t2 · e2−2t
=

dBH/dt

BH
· 1

(2t2 − 2t) · e2−2t

⇐⇒ 2

t
=

dBH/dt

BH

⇐⇒ d

dt
(2 ln t) =

d

dt
(lnBH).(4.3)

Especially, when t = 2, the bid b = 1− t2 · e2−2t = 1− 4/e2 achieves the supremum bid λ = 1− 4/e2 and we have
the boundary condition BH(b) = BH(λ) = 1. Resolving ODE (4.3) under this boundary condition, we derive
that 2 ln(t/2) = lnBH and thus BH = t2/4. Plugging this into the formula b = 1 − t2 · e2−2t for t ∈ [1, 2] gives

the implicit equation b = 1− 4BH · e2−4
√
BH for BH ∈ [1/4, 1], as desired. This finishes the proof of Lemma 4.8.

5 Bayesian Nash Equilibria for Correlated Valuations.

In this section, we give the tight PoS bound for correlated valuations.

Theorem 5.1. (Tight PoS) Regarding Bayesian Nash Equilibria for correlated valuations, the Price of Stability is
1− 1/e ≈ 0.6321.

The proof framework is similar to that in the previous section, given that this tight PoS bound = 1−1/e also
coincides with the tight PoA bound by [ST13, Syr14]. We slightly modify the tight PoA instance from [Syr14,
Appendix A.2] into the next instance and prove that it has one unique equilibrium. (Namely, by setting ε = 0,
Section 5 is precisely the original tight PoA instance.)
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Example. Given an arbitrarily small constant ε ∈ (0, 1), consider the instance {H, L1, L2} in terms of the joint
value distribution v = (vH , vL, 1, vL, 2) ∼ V .

• Bidder H has an independent Bernoulli random value Pr[vH = 0] = ε and Pr[vH = 1] = 1− ε. Denote by
VH this (marginal) value distribution.

• Bidders L1 and L2 have perfectly correlated and identical values vL, 1 ≡ vL, 2, which follow the (marginal)

value distribution VL(v) =
ε+1/e
ε+1−v for v ∈ [0, 1− 1/e].

The considered First Price Auction x ∈ FPA, under the all-zero bid profile b = (bH , bL, 1, bL, 2) = 0, favors bidder
H, but otherwise is arbitrary.

5.1 The focal equilibrium. The focal strategy profile s∗ = {s∗H} ⊗ {s∗L}⊗2 is given as follows.

• Bidder H has a fixed strategy s∗H(vH) ≡ 0 for vH ∈ {0, 1}.

• Bidders L1 and L2 have identical and truthful strategies s∗L(v) ≡ v for v ∈ [0, 1− 1/e].

Lemma 5.1. (Equilibrium) The focal strategy profile s∗ = s∗H ⊗ {s∗L}⊗2 forms a Bayesian Nash Equilibrium
s∗ ∈ BNE(V ).

Proof. Bidder L1 satisfies the equilibrium condition: Given a specific bid s∗L(v1) = b ∈ [0, 1 − 1/e], bidder L1’
value and bidder L2’s value/bid ALL must be the same v1 = v2 = s∗L(v1) = s∗L(v2) = b. Clearly, bidder L1 gains
a zero utility = 0 and cannot benefit from a deviation bid b′ ̸= b, namely a higher bid b′ > b gives a nonpositive
utility ≤ 0 and a lower bid b′ < b = s∗L(v2) makes bidder L1 lose to bidder L2. By symmetry, bidder L2 also
meets the equilibrium condition.

Bidder H’s competing bid distribution max(s∗L(v1), s
∗
L(v2)) ∼ B∗

−H is exactly bidders L1 and L2’s value
distribution VL. For any value vH ∈ {0, 1} and any bid b ∈ [0, 1 − 1/e], bidder H gains an interim utility
= (vH − b) · VL(b) =

vH−b
ε+1−b · (ε + 1/e). We can easily verify that, under the either value vH ∈ {0, 1}, the zero

bid b = 0 is the unique maximizer for this interim utility formula; thus bidder H also satisfies the equilibrium
condition. This finishes the proof.

Lemma 5.2. (Efficiency) The following hold for the focal equilibrium s∗ = {s∗H} ⊗ {s∗L}⊗2:

1. The expected optimal Social Welfare OPT(V , s∗) ≥ 1− ε.

2. The expected auction Social Welfare FPA(V , s∗) ≤ 1− 1/e.

Proof. Let us prove Items 1 and 2 one by one.

Item 1. The realized optimal Social Welfare is at least bidder H’s realized value vH ∼ VH , namely a
Bernoulli random value Pr[vH = 0] = ε and Pr[vH = 1] = 1 − ε (Section 5). In expectation, we have
OPT(V , s∗) ≥ E[vH ] = 1− ε. Item 1 follows then.

Item 2. The first-order bid distribution max(s∗(v)) ∼ B∗ is exactly bidders L1 and L2’s value distribution VL.
Conditioned on a zero first-order bid {max(s∗(v)) = 0}, bidder H wins and the realized auction Social Welfare is
her value vH ∼ VH . And conditioned on a nonzero first-order bid {max(s∗(v)) > 0}, either bidder L1 or bidder L2

wins and the realized auction Social Welfare is their identical value v1 = v2 = s∗L(v1) = s∗L(v2) = max(s∗(v)) > 0.
In expectation, we have

FPA(V , s∗) = E[VH ] · VL(0) +E[VL]

= (1− ε) · ε+ 1/e

ε+ 1
+

∫ 1−1/e

0

(
1− VL(v)

)
· dv

= 1− 1/e− (ε+ 1/e) ·
( 2ε

1 + ε
− ln

(eε+ 1

ε+ 1

))
≤ 1− 1/e.

Here the last two steps can be easily verified via elementary algebra. This finishes the proof.
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5.2 Uniqueness of equilibria. In this part, we prove the focal equilibrium s∗ is the unique equilibrium for
Section 5. Once again, we start with a generic equilibrium s = {sH , sL, 1, sL, 2} ∈ BNE(V ).

Lemma 5.3. Each bidder i ∈ {H, L1, L2} cannot overbid, si(v) ≤ v almost surely over the randomness of the
strategy si, everywhere v ∈ supp(Vi) except on a zero-measure set of values.

Proof. First, on having a zero value {vi = 0}, each bidder i ∈ {H, L1, L2} has a zero bid si(vi) = 0 almost surely.
Otherwise, with a nonzero probability > 0, the following event occurs.
{v = 0 ∧ s(v) ̸= 0}: The value profile v is all-zero but the bid profile s(v) is not.
But conditioned on this, the allocated bidder x(s(v)) realizes a negative utility = −max(s(v)) < 0, which
contradicts the equilibrium condition.

Second, on having a nonzero value {vH = 1}, bidder H cannot overbid sH(vH) ≤ vH . (Recall that value
vH ∼ VH is independent from the other two values vL, 1 ≡ vL, 2 ∼ VL.) Otherwise, with a nonzero probability
> 0, the next two events occur simultaneously.
{vH = 1 ∧ sH(vH) > 1}: Bidder H has a nonzero value and overbids;
{vL, 1 = vL, 2 = sL, 1(vL, 1) = sL, 1(vL, 1) = 0}: Bidders L1 and L2 have zero values and zero bids.
But conditioned on this, bidder H gets allocated and realizes a negative utility = vH − sH(vH) < 0, which
contradicts the equilibrium condition.

Third, on having nonzero values (vL, 1 ≡ vL, 2) > 0, bidders L1 and L2 cannot overbid. Otherwise, with a
nonzero probability > 0, the next two events occur simultaneously.
{max(sL, 1(vL, 1), sL, 2(vL, 2)) > (vL, 1 ≡ vL, 2) > 0}: Bidders L1 and L2 have identical and nonzero values > 0
and at least one of them overbids;
{vH = sH(vH) = 0}: Bidder H has a zero value and a zero bid.
But conditioned on this, the allocated bidder x(s(v)) ∈ argmax(s(v)) is the higher bidder between L1 and L2,
realizing a negative utility < 0, which contradicts the equilibrium condition.

This finishes the proof of Lemma 5.3.

Lemma 5.4. Bidders L1 and L2 play the truthful strategies, sL, 1(v) = sL, 2(v) = v almost surely, everywhere
v ∈ [0, 1− 1/e] except on a zero-measure set of values.

Proof. Following Lemma 5.3, bidders L1 and L2 cannot overbid sL, 1(v), sL, 2(v) ≯ v and play the truthful
strategies sL, 1(0) = vL, 2(0) = 0 on having the zero values. It remains to show that bidders L1 and L2 also cannot
“shade” their bids, namely sL, 1(v), sL, 2(v) ≮ v for v > 0.

Assume the opposite: For some nonzero value (vL, 1 ≡ vL, 2) = v > 0, either or both of {L1, L2} “shades” her
bid with a nonzero probability PrsL, 1, sL, 2

[min(sL, 1(v), sL, 2(v)) < v] > 0. Let us do case analysis conditioned
on the event E = {(vL, 1 ≡ vL, 2) = v > 0}:

• Case (I). Exactly one bidder ∈ {L1, L2} “shades” her bid with a nonzero probability.

Without loss of generality, bidder L1 plays the shade strategy PrsL, 1
[sL, 1(v) < v] > 0, while bidder L2 plays

the truthful strategy PrsL, 2
[sL, 2(v) = v] = 1. But if so, bidder L2 can benefit from a certain deviation

bid b∗ against the current zero utility = 0 from the truthful strategy. Specifically, bidder L1’s infimum
strategy s1 = inf(supp(sL, 1(v))) is bounded away from the considered value s1 < v. Using the deviation
bid b∗ = 1

2 (s1 + v), bidder L2 realizes a positive utility = v − b∗ > 0 on winning, and wins with a nonzero
probability > 0: Independently,
(i) bidder H loses with probability ≥ PrvH , sH [sH(vH) < b∗] ≥ PrvH , sH [vH = 0] = ε, because bidder H on
having a zero value {vH = 0} also has a zero bid sH(vH) = 0 (Lemma 5.3);
(ii) bidder L1 loses with a nonzero probability ≥ PrsL, 1

[sL, 1(v) < b∗] > 0, as a consequence of
b∗ = 1

2 (s1 + v) > s1 = inf(supp(sL, 1(v))).

Thus, bidder L2 can benefit from a certain deviation bid b∗. This contradicts the equilibrium condition and
refutes Case (I).

• Case (II). Each bidder ∈ {L1, L2} “shades” her bid with a nonzero probability.

Consider the infimum strategies s1 = inf(supp(sL, 1(v))) < v and s2 = inf(supp(sL, 2(v))) < v and their
likelihoods p1 = PrsL, 1

[sL, 1(v) = s1] and p2 = PrsL, 2
[sL, 2(v) = s2].
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– Case (a). s1 = s2 = s for some bid s ∈ [0, v] and p1, p2 > 0.

A tiebreak at the bid s occurs with a nonzero probability PrvH , s[max(s(v)) = s | E ] =
PrvH , sH [sH(vH) ≤ s] · p1 · p2 > 0, since bidder H on having a zero value Pr[vH = 0] = ε also
has a zero bid sH(vH) = 0 (Lemma 5.3). In this tiebreak E ∧ {max(s(v)) = s}, at least one bidder
between L1 and L2 loses with a nonzero probability > 0, say bidder L1. But this means, using a
higher but close enough deviation bid b∗ ↘ s, bidder L1 realizes an arbitrarily close positive utility
= (v − b∗) ↗ (v − s) > 0 on winning, yet the winning probability increases by a nonzero amount
≥ PrvH , s[max(s(v)) = s | E ] > 0.

Thus, bidder L1 can benefit from a higher but close enough deviation bid b∗ ↘ s. This contradicts the
equilibrium condition and refutes Case (a).

– Case (b). Either s1 ̸= s2 or p1 · p2 = 0.

If s1 ̸= s2, without loss of generality we have s1 < s2 < v. But if so, bidder L1 gains a nonzero utility
> 0 from any bid b∗ ∈ (s2, v), in contrast to a zero utility = 0 from any bid ∈ [s1, s2). The current
strategy sL, 1(v) has densities on the “useless” bids ∈ [s1, s2) and cannot be utility-optimal.

If s1 = s2 = s for some bid s ∈ [0, v] and p1 · p2 = 0, without loss of generality we have p1 = 0. But
if so, bidder L2 gains a nonzero utility > 0 from any bid b∗ ∈ [s, v] that is bounded away from both
s and v, in contrast to an arbitrarily small utility ↘ 0 (as the winning probability ↘ 0) when her
bid ∈ [s, v] approaches the infimum strategy ↘ s. The current strategy sL, 2(v) has densities in any
neighborhood around the infimum strategy s and cannot be utility-optimal.

Thus, at least one bidder between L1 and L2 can benefit from a certain deviation bid b∗. This
contradicts the equilibrium condition and refutes Case (b).

In sum, Case (II) gets refuted.

Refute our assumption: Bidders L1 and L2 play truthful strategies sL, 1(v) ≡ sL, 2(v) ≡ v everywhere
v ∈ [0, 1− 1/e]. This finishes the proof.

Lemma 5.5. Bidder H has a fixed strategy sH(vH) ≡ 0 for vH ∈ {0, 1}.

Proof. We reuse the arguments for Lemma 5.1. Given a value vH ∈ {0, 1} and a bid b ∈ [0, 1 − 1/e], bidder
H gains an interim utility = (vH − b) · VL(b) = vH−b

ε+1−b · (ε + 1/e). The zero bid b = 0, under the either value
vH ∈ {0, 1}, is always the UNIQUE maximizer for this interim utility formula.
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A Bayesian (Coarse) Correlated Equilibria.

We first introduce the definition of joint strategies and Bayesian (Coarse) Correlated Equilibria.

Definition A.1. (Joint Strategies) A joint strategy profile s(v) ≡ (si(v))i∈[n] involves n ≥ 1 many n-variate
functions; each one maps the whole value profile v ∈ Rn

≥0 to a nonnegative bid si(v) ≥ 0. (When the functions
(si(v))i∈[n] degenerate into univariates si(v) ≡ si(vi), the strategy profile s(v) degenerates into an independent
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strategy profile, as before for Bayesian Nash Equilibria.)

Definition A.2. (Bayesian (Coarse) Correlated Equilibria) Given a joint value distribution V ∈ Vjoint, a tie-
breaking rule x ∈ FPA, and a precision δ > 0:

• A δ-approximate Bayesian Correlated Equilibrium s ∈ BCE(V , x, δ) is a joint strategy profile that, for any
bidder i ∈ [n], value v ∈ suppi(v), bid b ∈ suppi(s(v)), and deviation bid b∗ ≥ 0,

E
v, s, x

[
ui(vi, s(v))

∣∣ vi = v, si(v) = b
]

≥ E
v, s, x

[
ui(vi, b

∗, s−i(v))
∣∣ vi = v, si(v) = b

]
− δ.

• A δ-approximate Bayesian Coarse Correlated Equilibrium s ∈ BCCE(V , x, δ) is a joint strategy profile that,
for any bidder i ∈ [n], value v ∈ suppi(v), and deviation bid b∗ ≥ 0,

E
v, s, x

[
ui(vi, s(v))

∣∣ vi = v
]

≥ E
v, s, x

[
ui(vi, b

∗, s−i(v))
∣∣ vi = v

]
− δ.

It is well-known (see [Rou15]) that all equilibrium concepts together form the following inclusion: Bayesian Nash
Equilibrium ⊆ Bayesian Correlated Equilibrium ⊆ Bayesian Coarse Correlated Equilibrium.

We remark that Definition A.2 follows the definition of Bayesian (Coarse) Correlated Equilibria by [CKK+15],
different from those by [ST13] (see [Syr14, Chapter 3.3.1] for a thorough discussion).

Theorem A.1. (Tight PoS) Given a joint value distribution V ∈ Vjoint and any tie-breaking rule x∗ ∈ FPA,
for any δ > 0, there exists a joint strategy profile s(v) ≡ (si(v))i∈[n] such that

1. The expected auction/optimal Social Welfares are equal FPA(V , x∗, s) = OPT(V , x∗, s).

2. It forms a δ-approximate Bayesian Correlated Equilibrium s ∈ BCE(V , x∗, δ) and thus also a δ-approximate
Bayesian Coarse Correlated Equilibrium s ∈ BCCE(V , x∗, δ).

Proof. Let us consider the first-order valuer h = h(v) := argmax(v) ∈ [n]; breaking ties in favor of the smallest
index. We explicitly construct a (deterministic) workable joint strategy profile:
(i) The first-order valuer h bids the second highest value, namely sh(v) = max(v−h).
(ii) Each other bidder i ∈ [n] \ {h} bids her value minus a δ term, namely si(v) = vi − δ.
This strategy profile s always allocates the item to the first-order valuer h and realizes the optimal Social Welfare
= max(v). In expectation, we have Item 1 that FPA(V , x∗, s) = OPT(V , x∗, s).

The first-order valuer h realizes a utility uh(vh, s(v)) = vh − sh(v) = max(v) − max(v−h) ≥ 0. The
threshold winning bid for this bidder h is the highest other bid max(s−h(v)) = max(v−h)− δ. Thus with another
deviation bid b∗h ≥ 0, bidder h realizes a deviation utility uh(vh, b

∗
h, s−h(v)) ≤ (vh− b∗h) ·1(b∗h ≥ max(s−h(v))) ≤

max(v)−max(v−h) + δ = uh(vh, s(v)) + δ, which is at most a δ increase over the current utility.
Each other bidder i ∈ [n] \ {h} realizes a zero utility ui(vi, s(v)) = 0. The threshold winning bid for this

bidder i is the highest other bid max(s−i(v)) = sh(v) = max(v−h) ≥ vi. To win in the considered First Price
Auction x∗ ∈ FPA, bidder i must overbid b∗i ≥ max(s−i(v)) ≥ vi and realize a nonpositive deviation utility
uh(vh, b

∗
h, s−h(v)) ≤ 0.

In sum, the considered strategy profile s forms a δ-approximate Bayesian Correlated Equilibrium s ∈
BCE(V , x∗, δ). Item 2 follows then. This finishes the proof.

Our δ-approximate Bayesian Correlated Equilibrium has almost the same output as the second-price auction
(under the truthful strategies). We would like to present Theorem A.1 in terms of a universal δ-approximate
Bayesian Correlated Equilibrium for any tie-breaking rule x∗ ∈ FPA, instead of an exact equilibrium for a particular
tie-breaking rule x that is compatible with the underlying value distribution V . We would avoid the latter,
because a typical tie-breaking rule should only depend on the bid profile and the bidders’ identities, while a
compatible tie-breaking rule further keeps track of the value profile.
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