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Abstract In the theory of holographic algorithms proposed by Valiant, computa-
tion is expressed and processed in terms of signatures. We substantially develop the
signature theory in holographic algorithms. This theory is developed in terms of d-
realizability and d-admissibility. For the class of 2-realizable signatures we prove
a Birkhoff-type theorem which determines this class. It gives a complete structural
understanding of the relationship between 2-realizability and 2-admissibility. This is
followed by characterization theorems for 1-realizability and 1-admissibility. Finally,
using this theory of general (i.e., unsymmetric) signatures we give additional count-
ing problems solvable in polynomial time by holographic algorithms.

Keywords Holographic algorithms · Signature · d-realizability · Complexity
theory · Counting problems

1 Introduction

It is generally conjectured that many combinatorial problems in the class NP or #P
are not computable in polynomial time. The prevailing opinion is that these problems
seem to require the accounting or processing of exponentially many potential solution
fragments to the problem. However it is rather natural, and it should not cause any
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surprise, that the answer to such a problem can in general be expressed as a suitable
exponential sum.

Take for instance the canonical Boolean Satisfiability problem SAT. It is NP-
complete, and its counting version is #P-complete. Moreover the problem remains
complete for many restricted classes. If we define #Pl-Rtw-Mon-3CNF to be the
counting problem which counts the number of satisfying assignments to a planar
read-twice monotone 3CNF formula �, it remains #P-complete. The number of sat-
isfying assignments to � can be expressed as an exponential sum as follows. For
each clause C in � with 3 variables we define a vector RC = (0,1,1,1,1,1,1,1),
where the entries are indexed by 3 bits b1b2b3 ∈ {0,1}3. Here b1b2b3 corresponds
to a truth assignment to the 3 variables, and RC corresponds to a Boolean OR gate.
Suppose in the formula � a Boolean variable x appears in two clauses C and C′.
Then we use Gx = (1,0,0,1)T, indexed by b1b2 ∈ {0,1}2, to indicate that the fan-
out value from x to C and C′ must be consistent. In the language of holographic
algorithms these RC and Gx are called signatures. Now we can form the tensor
product R = ⊗

C RC and G = ⊗
x Gx . Suppose in the planar formula � there are

exactly e edges connecting various x’s to various C’s, then both R and G have
e indices, each taking values in {0,1}, and both tensors have 2e entries. The in-
dices of R = (Ri1i2...ie ) and G = (Gi1i2...ie ) match up one-to-one according to which
x appears in which C. Then a moment reflection shows that the exponential sum
〈R,G〉 = ∑

i1,i2,...,ie∈{0,1} Ri1i2...ieG
i1i2...ie counts exactly the number of satisfying as-

signments to �. Basically, each tuple (i1, i2, . . . , ie) ∈ {0,1}e assigns a value 0 or 1
to each connecting edge. The product Ri1i2...ieG

i1i2...ie is 1 when this is a consistent
assignment of truth values to each variable as it fans out to its two connecting clauses,
and the truth assignment satisfies each clause; the product value is 0 otherwise.

Of course, this is not a big deal, as we just expressed something that can be com-
puted in exponential time as an expression involving exponentially many terms. The
power of holographic algorithms is to evaluate such an exponential sum in polynomial
time, for a variety of combinatorial problems. This happens when suitable signatures
are realizable. In particular, for #Pl-Rtw-Mon-3CNF this theory can evaluate the sum
over the field Z7. This counts the number of satisfying assignments mod 7 for �. (It is
known that counting mod 2 for #Pl-Rtw-Mon-3CNF is NP-hard.) Exactly which sum
is computable in polynomial time by holographic algorithms brings us to the subject
of signature theory.

This paper develops the signature theory of holographic algorithms for general
signatures.

The theory of holographic algorithms was initiated by Valiant [21]. It pro-
duces surprising algorithms by evaluating certain exponential sums in polynomial
time [1, 4, 21, 22]. Somewhat analogous to quantum computing, information in these
algorithms is represented and processed through a choice of linear basis vectors in
an exponential “holographic” mix. The algorithm is designed to create huge can-
cellations on these exponential sums. Ultimately the computation is reduced to the
Fisher-Kasteleyn-Temperley (FKT) method on planar perfect matchings [13, 14, 18]
via the Holant Theorem. Unlike quantum algorithms, these give classical polynomial
time algorithms. We give a brief review of definitions and background on holographic
algorithms in Sect. 2. More details can be found in [1–3, 19–21].
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The success of finding a holographic algorithm for a particular combinatorial prob-
lem typically boils down to the existence of suitable signatures in a suitable tensor
space. This is the realizability problem. The requirements are specified by families of
algebraic equations. These families of equations are non-linear, exponential in size,
and difficult to handle. But whenever we find a suitable solution, we get an exotic
polynomial time algorithm.1 Of course the big question is whether such “freak ob-
jects” exist for any of the NP-hard problems. If not, is there a coherent explanation?
“Any proof of P �= NP may need to explain, and not only to imply, the unsolvabil-
ity” [21] of NP-hard problems using this approach. Thus, the primary motivation for
us is complexity theory.

In [4] we have developed an algebraic framework which gave a satisfactory theory
of symmetric signatures. In this framework, we defined a basis manifold M, and the
signature theory is expressed in terms of d-admissibility and d-realizability, where d

is the dimension of the algebraic variety of M corresponding to a desired signature.
While a priori the tensor space can have basis vectors of arbitrary dimension, in [5]
we have proved a general basis collapse theorem which effectively restricted the the-
ory to the basis manifold M corresponding to GL2. Thus to Valiant’s challenge what
remains is the general (i.e., not necessarily symmetric) signature theory on M.

We first prove a Birkhoff-type theorem which gives a complete and explicit charac-
terization of the class of 2-realizable signatures (over char. 0). This turns out to be the
vertices of a simplex, of which the linear span is precisely the class of 2-admissible
signatures, whose dimension is the Catalan number. The 2-realizable signatures also
have an explicit combinatorial interpretation in terms of planar tensor product of
perfect matchings. In general the realizability of signatures is controlled by an ex-
ponential sized set of algebraic equations called Matchgate Identities (MGI), a.k.a.
useful Grassmann-Plücker Identities [1, 3, 20]. The proof here uses MGI implicitly,
in the form of explicit Pfaffian representations. Next we give characterization theo-
rems concerning 1-realizability and 1-admissibility. The proof techniques are mainly
algebraic. Finally we present some new algorithms using this general theory of signa-
tures. The structural theory for general signatures developed here substantially move
forward our understanding of the ultimate capabilities of holographic algorithms.

2 Some Background

In this section, for the convenience of readers, we review some definitions and results.
More details can be found in [1–3, 19–21].

Let G = (V ,E,W), G′ = (V ′,E′,W ′) be weighted undirected planar graphs.
A generator matchgate � is a pair (G,X) where X ⊂ V is a set of external out-
put nodes. A recognizer matchgate �′ is a tuple (G′, Y ) where Y ⊂ V ′ is a set of

1From [22]: “The objects enumerated are sets of polynomial systems such that the solvability of any one
member would give a polynomial time algorithm for a specific problem. . . . the situation with the P =
NP question is not dissimilar to that of other unresolved enumerative conjectures in mathematics. The
possibility that accidental or freak objects in the enumeration exist cannot be discounted, if the objects in
the enumeration have not been systematically studied previously.”
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external input nodes. The external nodes are ordered counter-clock wise on the ex-
ternal face. � is called an odd (resp. even) matchgate if it has an odd (resp. even)
number of nodes.

Each matchgate is assigned a signature tensor. A generator � with n output nodes
is assigned a contravariant tensor G ∈ V n

0 of type
(
n
0

)
. This tensor under the standard

basis b has the form
∑

Gi1i2...inbi1 ⊗ bi2 ⊗ · · · ⊗ bin ,

Gi1i2...in = PerfMatch(G − Z),

where PerfMatch(G − Z) = ∑
M

∏
(i,j)∈M wij , is a sum over all perfect matchings

M in G − Z, and where Z is the subset of the output nodes having the characteristic
sequence χZ = i1i2 . . . in. Similarly a recognizer �′ with n input nodes is assigned a
covariant tensor R ∈ V 0

n of type
(0
n

)
. This tensor under the standard (dual) basis b∗

has the form
∑

Ri1i2...inbi1 ⊗ bi2 ⊗ · · · ⊗ bin ,

where

Ri1i2...in = PerfMatch(G′ − Z),

where Z is the subset of the input nodes having χZ = i1i2 . . . in. These values
(Gi1i2...in ) and (Ri1i2...in ) form the standard signatures.

According to general principle [10], G transforms contravariantly under a basis
transformation βj = ∑

i bi t
i
j ,

(G′)i′1i′2...i′n =
∑

Gi1i2...in t̃
i′1
i1

t̃
i′2
i2

· · · t̃ i′nin ,

where (t̃
j
i ) is the inverse matrix of (t ij ). Similarly, R transforms as a covariant tensor,

namely

(R′)i′1i′2...i′n =
∑

Ri1i2...in t
i1
i′1

t
i2
i′2

· · · t in
i′n

.

A signature is called symmetric if its values only depend on the Hamming weight
of its indices. This notion is invariant under a basis transformation.

A matchgrid � = (A,B,C) is a weighted planar graph consisting of a dis-
joint union of: a set of g generators A = (A1, . . . ,Ag), a set of r recognizers
B = (B1, . . . ,Br), and a set of f connecting edges C = (C1, . . . ,Cf ), where each
Ci edge has weight 1 and joins an output node of a generator with an input node of
a recognizer, so that every input and output node in every constituent matchgate has
exactly one such incident connecting edge.

Let G = ⊗g

i=1 G(Ai) be the tensor product of all the generator signatures, and
let R = ⊗r

j=1 R(Bj ) be the tensor product of all the recognizer signatures. Then
Holant(�) is defined to be the contraction of the two product tensors, under some
basis β , where the corresponding indices match up according to the f connecting
edges Ck .

The remarkable Holant Theorem is
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Theorem 2.1 Valiant For any matchgrid � over any basis β , let G be its underlying
weighted graph, then

Holant(�) = PerfMatch(G).

The FKT algorithm can compute the perfect matching polynomial PerfMatch(G)

for a planar graph in polynomial time.
We illustrate these concepts by the following example. The problem can be solved

by a holographic algorithm in polynomial time [21].

#PL-3-NAE-ICE
INPUT: A planar regular graph G = (V ,E) of degree 3.
OUTPUT: The number of orientations such that no node has all the edges directed
towards it or all the edges directed away from it.

To solve this problem by a holographic algorithm, we design a matchgrid as fol-
lows: We represent each node of degree 3 in V by a recognizer matchgate with
signature (Gb1b2b3) = (0,1,1,1,1,1,1,0). This represents a NOT-ALL-EQUAL or
NAE gate on 3 bits. For each edge in E we use a generator matchgate with signature
(0,1,1,0)T, which stands for an orientation from either one of the two nodes to the
other one. Note that (Gb1b2b3) = (0,1,1,1,1,1,1,0) has non-zero entries G001 as
well as G011, where the index bit patterns 001 and 011 are odd and even respectively.
This implies that there is no matchgate that has this G as its standard signature. This is
a property implied by perfect matching. However, under the basis transformation by[( 1

1

)
,
( 1

−1

)]
, both generator and recognizer signatures can be transformed to standard

signatures realizable by suitable planar matchgates.
To complete the construction of the matchgrid, we connect the external nodes of

these matchgates by an edge of weight 1, in a one-to-one fashion according to the
given planar graph G.

Now consider the exponential sum evaluated in the definition of Holant under this
basis. Each term in the sum is a product of 0’s and 1’s which are appropriate entries of
the signatures of the matchgates in the matchgrid. Each term is indexed by a 0-1 as-
signment on all connecting edges between external nodes of these matchgates. Then
it is not hard to see, when this exponential sum is evaluated, each term is 0 or 1, and it
is 1 iff it corresponds to an orientation of every edge such that at each vertex the local
NOT-ALL-EQUAL constraint is satisfied. Thus, the value of Holant is precisely the
number of valid orientations required by #PL-3-NAE-ICE. While Holant expresses
the solution for #PL-3-NAE-ICE, by the Holant Theorem, we compute this sum by
the FKT algorithm in polynomial time.

The following simple Proposition 4.3 of [21] is due to Valiant.

Proposition 2.1 (Valiant [21]) If there is a generator (recognizer) with certain
signature for size one basis {(n0, n1), (p0,p1)} then there is a generator (recog-
nizer) with the same signature for size one basis {(xn0, yn1), (xp0, yp1)} or
{(xn1, yn0), (xp1, yp0)} for any x, y ∈ F and xy �= 0.

This leads to the following definition of an equivalence relation:
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Definition 2.1 Two bases β = [n,p] = [( n0
n1

)
,
( p0

p1

)]
and β ′ = [n′,p′] = [( n′

0
n′

1

)
,
( p′

0
p′

1

)]

are equivalent, denoted by β ∼ β ′, iff there exist x, y ∈ F∗ such that n′
0 = xn0,p

′
0 =

xp0, n
′
1 = yn1,p

′
1 = yp1 or n′

0 = xn1,p
′
0 = xp1, n

′
1 = yn0,p

′
1 = yp0.

Theorem 2.2 GL2(F)/ ∼ is a two dimensional manifold (for F = C or R).

We call this the basis manifold M. For F = R, it can be shown that topologically
M is a Möbius strip. From now on we identify a basis β with its equivalence class
containing it. When it is permissible, we use the dehomogenized coordinates

( 1 x
1 y

)
to

represent a point (i.e., a basis class) in M.
Under a basis transformation G′ = ( 1 x

1 y

)⊗n
G, the entry indexed by T

G′T =
〈

n⊗

σ=1

[1, x[σ∈T ]],G
〉

=
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyj
∑

A ⊂ T c, |A| = i
B ⊂ T , |B| = j

GA∪B, (1)

where T is a subset of [n], and used as an index in G′T , i.e., T is identified with a 0-1
bit pattern of length n, and where we write x0 = x and x1 = y.

In this paper we will assume the field F = C and develop the theory exclusively
on the complex numbers.

Standard signatures (of either generators or recognizers) are characterized by the
following two sets of conditions. (1) The parity requirements: either all even weight
entries are 0 or all odd weight entries are 0. This is due to perfect matchings. (2) A set
of Matchgate Identities (MGI) [1, 3, 20]: Let G be a standard signature of arity n (we
use G here, it is the same for R). A pattern α is an n-bit string, i.e., α ∈ {0,1}n.
A position vector P = {pi}, i ∈ [l], is a subsequence of {1,2, . . . , n}, i.e., pi ∈ [n]
and p1 < p2 < · · · < pl . We also use p to denote the pattern, whose (p1,p2, . . . , pl)-
th bits are 1 and others are 0. Let ei ∈ {0,1}n be the pattern with 1 in the i-th bit and
0 elsewhere. Let α + β be the pattern obtained from bitwise XOR of the patterns α

and β . Then for any pattern α ∈ {0,1}n and any position vector P = {pi}, i ∈ [l], we
have the following identity:

l∑

i=1

(−1)iGα+epi Gα+p+epi = 0. (2)

More symmetrically, let α,β ∈ {0,1}m be any patterns, and let P = {pi} = α + β ,
i ∈ [l], be their bitwise XOR as a position vector. Then

l∑

i=1

(−1)iGα+epi Gβ+epi = 0. (3)

We note that for each MGI, the sum of the weights of indices for every term in
Gα+epi Gβ+epi is the same.

By the FKT algorithm, perfect matchings for a planar graph (and its subgraphs
with some external nodes removed) can be expressed as the Pfaffian (and sub-
Pfaffians) of a skew symmetric matrix. The MGI being necessary conditions for the
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standard signatures is due to the algebraic identities called Grassmann-Plücker Iden-
tities that the sub-Pfaffians of any skew symmetric matrix must satisfy. The fact that
together with the parity requirements they are also sufficient is derived from a non-
trivial sequence of steps and constructions. See [1, 3, 20] for more details.

In view of these conditions, we have the following definitions:

Definition 2.2 A tensor G is admissible as a generator on a basis β iff G′ = β⊗nG

satisfies the parity requirements. It is called realizable as a generator on a basis β iff
G′ = β⊗nG satisfies both the parity requirements and all the MGI. This is equiva-
lent to G′ being the standard signature of some planar matchgate (see [1, 3] for this
equivalence).

Definition 2.3 Let Bgen(G) (resp. B
p
gen(G)) be the set of all possible bases in M for

which a generator G is realizable (resp. admissible).

Definition 2.4 A generator G is called d-realizable (resp. d-admissible) for an inte-
ger d ≥ 0 iff Bgen(G) ⊂ M (resp. B

p
gen(G) ⊂ M) is a (non-empty) algebraic subset

of dimension at least d .

To be d-admissible is to have a d-dimensional solution subvariety in M, satis-
fying all the parity requirements. This is part of the requirements in order to be
realizable. To be d-realizable is to have a d-dimensional solution subvariety in M
for all realizability requirements, which include the parity requirements as well as
the requirements of MGI. To have 0-realizability is a necessary condition. But to
get holographic algorithms one needs simultaneous realizability of both generators
and recognizers. This is accomplished by having a non-empty intersection of the
respective subvarieties for the realizability of generators and recognizers. And this
tends to be accomplished by having d-realizability (which implies d-admissibility),
for d ≥ 1, on at least one side. Therefore it is important to investigate d-realizability
and d-admissibility for d ≥ 1.

3 Preliminary Results on Realizability

We recall and state some preliminary results on realizability and admissibility. In our
STOC 07 paper [4], only Theorem 3.1 was proved in the proceedings. Some other
results were briefly stated without proof. Here we include some other proofs.

The first theorem is a complete characterization of 2-admissibility.

Theorem 3.1 G is 2-admissible iff (1) n = 2k is even; (2) all GS = 0 except for
|S| = k; and (3) for all T ⊂ [n] with |T | = k + 1,

∑

S⊂T ,|S|=k

GS = 0. (4)

The solution space is a linear subspace of dimension 1
k+1

(2k
k

)
.
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The theorem still holds when we replace condition (3) with the following condi-
tion:

(3)′ for all T ⊂ [n] with |T | = k − 1,

∑

S⊃T ,|S|=k

GS = 0. (5)

We will use both versions in this paper.
We have some more results on 2-admissibility. Most of the proofs and some the-

orem statements were not included in [4] due to space limit. So we include both
theorems and proofs here.

The next theorem shows that any basis transformation on a 2-admissible G is just
a scaling.

Theorem 3.2 If G is 2-admissible with arity 2k, then ∀β = ( n0 p0
n1 p1

) ∈ M, β⊗2kG =
(n0p1 − n1p0)

kG.

In order to prove this theorem, we first prove the following lemma:

Lemma 3.1 Let G be 2-admissible with arity 2k, S ⊂ [2k] with |S| = k, and A ⊂ Sc.
Then

∑

B⊂S and |B|=k−|A|
GA∪B = (−1)|A|GS

Proof We prove it by induction on |A| ≥ 0.
The case |A| = 0 is obvious.
Inductively we assume the lemma has been proved for all |A| ≤ i − 1, for some

i ≥ 1. Let |A| = i > 0. Since G is 2-admissible, we have

∑

C⊂A∪S and |C|=k

GC = 0.

Then

0 =
∑

C⊂A∪S and |C|=k

GC

=
∑

B⊂S and |B|=k−|A|
GA∪B +

|A|−1∑

t=0

∑

A1⊂A,|A1|=t

∑

B⊂S,|B|=k−|A1|
GA1∪B,

according to t = |A ∩ C| = 0,1, . . . , |A|. Since |A1| = t ≤ |A| − 1, by induction we
have:

∑

B⊂S,|B|=k−|A1|
GA1∪B = (−1)|A1|GS = (−1)tGS.
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So

0 =
∑

B⊂S and |B|=k−|A|
GA∪B + GS

|A|−1∑

t=0

(−1)t
(|A|

t

)

=
∑

B⊂S and |B|=k−|A|
GA∪B − (−1)|A|GS.

From the last equation, we have

∑

B⊂S and |B|=k−|A|
GA∪B = (−1)|A|GS

This completes the proof. �

From this lemma, we have the following corollary which is also useful.

Corollary 3.1 If G is any 2-admissible signature, then ∀S ⊂ [2k],GS = (−1)kGSc
.

Now we can prove Theorem 3.2.

Proof To simplify notations, we use the dehomogenized coordinates β = ( 1 x
1 y

) =
( 1 x0

1 x1

)
. Some exceptional cases can be proved directly.

First it is obvious that β⊗2kG is also 2-admissible. So for any S ⊂ [2k] and
|S| �= k,

〈
n⊗

σ=1

[1, x[σ∈S]],G
〉

≡ 0.

Now let S ⊂ [2k] and |S| = k,
〈

n⊗

σ=1

[1, x[σ∈S]],G
〉

=
∑

0≤i≤k

xiyk−i
∑

A⊂Sc,|A|=i

∑

B⊂S,|B|=k−i

GA∪B.

By Lemma 3.1 and for A ⊂ Sc, |A| = i, we have

∑

B⊂S,|B|=k−i

GA∪B = (−1)iGS.

So
〈

n⊗

σ=1

[1, x[σ∈S]],G
〉

=
∑

0≤i≤k

xiyk−i
∑

A⊂Sc,|A|=i

(−1)iGS

= GS
∑

0≤i≤k

xiyk−i (−1)i
(

k

i

)

= (y − x)kGS.
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This completes the proof. �

Since a scaling preserves realizability, the theorem gives:

Corollary 3.2 If a 2-admissible G is realizable on some basis (e.g., on the standard
basis), then it is realizable on any basis, which means it is 2-realizable.

We also have the following operator, which is a useful language in the characteri-
zation of 2-realizability.

Definition 3.1 Let Rotr (G) be the tensor obtained by circularly rotating clockwise
the coordinates of G by r bit positions, i.e., [Rotr (G)]i1,i2,...,in = Gir+1,ir+2,...,in,i1,...,ir ,
where n is the arity of G. Let G ⊗ G′ be the tensor product with all indices of G be-
fore all indices of G′. A planar tensor product is a finite sequence of operations of
Rotr (G) and G ⊗ G′.

This operator has the following nice property.

Theorem 3.3 Bgen(Rotr (G)) = Bgen(G) and, for G1 and G2 not identically zero,
Bgen(G1 ⊗ G2) = Bgen(G1) ∩ Bgen(G2). Thus a planar tensor product preserves
Bgen. In particular, any planar tensor product of 2-realizable signatures is also 2-
realizable.

Proof We first prove Bgen(Rotr (G)) = Bgen(G). Let G be a signature of arity n and
let T ∈ Bgen(G), then G = T ⊗nG is realized as the standard signature of a match-
gate �. Rotr (G) is realized by the same matchgate, but with the labels of its external
nodes circularly rotated by r bit positions from �. By definition, T ⊗nRotr (G) =
Rotr (T ⊗nG), since cyclically rotating the n copies of T in the tensor product T ⊗n

keeps it invariant. Hence Bgen(G) ⊆ Bgen(Rotr (G)). The reverse direction also fol-
lows since Rotr (·) has an inverse Rot−r (·).

Next we prove Bgen(G1 ⊗ G2) = Bgen(G1) ∩ Bgen(G2). Suppose T ∈ Bgen(G1) ∩
Bgen(G2), where G1 and G2 have arities n1 and n2 respectively. Then both T ⊗n1G1
and T ⊗n2G2 are realizable by matchgates �1 and �2 respectively. It follows that
T ⊗(n1+n2)(G1 ⊗ G2) = T ⊗n1G1 ⊗ T ⊗n2G2 is realizable by a matchgate which is
just putting �1 and �2 together as a disjoint union. Therefore T ∈ Bgen(G1 ⊗ G2).

For the other direction, let T ∈ Bgen(G1 ⊗ G2). Then T ⊗(n1+n2)(G1 ⊗ G2) =
T ⊗n1G1 ⊗ T ⊗n2G2 is realizable by some matchgate � of arity n1 + n2. Since G2 is
not identically zero, and T is invertible, there exists a bit pattern i1i2 . . . in2 such that
c = (T ⊗n2G2)

i1i2...in2 �= 0. Now we modify � to �′ as follows: We view the first n1
external nodes of � as external nodes in �′. All other nodes of � are now considered
internal nodes of �′. For any 1 ≤ j ≤ n2, if ij = 1 in the bit pattern, then append
an extra new edge to the (n1 + j)-th external node of �. This new edge has weight
1 and the newly added vertex is also considered an internal node of �′. Finally add
an isolated extra new edge with weight 1/c. Then clearly the standard signature of
�′ is �′j1j2...jn1 = 1

c
�j1j2...jn1 i1i2...in2 = (T ⊗n1G1)

j1j2...jn1 . Therefore T ∈ Bgen(G1).
Similarly we can prove T ∈ Bgen(G2) as well. So T ∈ Bgen(G1) ∩ Bgen(G2). �
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Fig. 1 A 2-realizable signature

4 Characterization of 2-Realizability

In [4] we have developed an algebraic framework for the signature theory. In
Sect. 3 we give a summary of these results. The theory is developed in terms of
d-admissibility and d-realizability. The key to the success of a holographic algorithm
is to find generators and recognizers whose signatures we desire and whose real-
izability varieties intersect. This typically happens with at least one side having a
d-realizability for d ≥ 1. Of course 2-realizability is the most desirable. The central
results from [4] in this regard are characterizations of 2-admissible signatures. The
arity of any 2-admissible signature must be an even number n = 2k. The 2-admissible
signatures are the solutions to a homogeneous linear equation system. The dimension
of the solution space is 1

k+1

(2k
k

)
, the Catalan number. In this section, n = 2k will

always refer to the arity.
It turns out that there is a particular set of solutions with a clear combinatorial

meaning. These are signatures of planar matchgates with k pairs of points on the
circumference of a unit disk D, constructed by planar tensor product.

Let P be the basic matchgate consisting of a path of length 2, where we place
the two end points on the circumference of D, and the two edges are weighted +1
and −1 respectively. This gives a planar matchgate of arity 2 with the (standard)
signature (0,+1,−1,0). It is easy to verify that this signature is indeed 2-realizable.
Now we can form planar tensor product recursively using disjoint copies of P as the
basic building block. Theorem 3.3 tells us that the planar matchgate formed is also
2-realizable. Combinatorially this process is very simple: We end up with 2k vertices
on the circumference of D, which are pair-wise matched up by k disjoint paths each
with weights +1 and −1 on its two edges, respectively. The union of these k disjoint
paths form a planar graph with a total of 3k vertices (planar tensor product preserves
planarity, and these k paths do not cross each other). This family of matchgates with
2k external nodes is denoted by D2k . See Fig. 1.

Let G ∈ D2k , and let (GS)S⊂[2k] be its signature. We show that (GS) satisfies The-
orem 3.1 to be 2-admissible. First note that each entry GS is 0, except when S con-
tains exactly one end point from each P . This follows from the definition of perfect
matching. In particular GS �= 0 only for |S| = k. Now we show that

∑
S⊂T GS = 0,

for any subset T ⊂ [2k] of cardinality k + 1. Since |T | = k + 1, there must be at least
one pair {i, j} ⊂ T , where i and j are connected by some P of length 3 in G. Then the
only possible non-zero terms in

∑
S⊂T GS come from S = T − {i} and S = T − {j}.
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In order to be actually non-zero, the set T − {i, j} must contain exactly one vertex
from each pair of the other k − 1 pairs of external nodes connected by length-3 paths.
Thus either every term in

∑
S⊂T GS is zero, or there are exactly two non-zero terms

of opposite values ±1. Thus,
∑

S⊂T GS = 0 for all |T | = k + 1.
This proof gives an explicit set of solutions to the system in Theorem 3.1. The

cardinality of this set is the Catalan number 1
k+1

(2k
k

)
, which is the dimension of the

solution subspace, a fact we know separately from the exact knowledge of the rank
of the system (rank estimates related to the Kneser Graph KG2k+1,k [8, 9, 11, 12,
15–17]). If we order the entries of the signature GS lexicographically by its index
S ⊂ [2k], the first non-zero entry (with value +1) occurs at the location where for
each matched pair i < j by a path P we assign 0 to the i-th bit and 1 to the j -th bit.
This corresponds to a balanced parenthesized expression (BPE), i.e., a sequence of
length 2k consisting of k 0’s and k 1’s, and any prefix has at least as many 0’s as 1’s
(write 0 for “(” and 1 for “)”). This mapping from D2k to BPE of length 2k is also
reversible. By considering the submatrix whose rows are these 1

k+1

(2k
k

)
signatures

from D2k and whose columns are indexed by BPE, it follows that these signatures are
linearly independent. At this point the class of 2-admissible signatures is completely
understood. They form the linear span of the signatures from D2k .

Theorem 4.1 The set of 1
k+1

(2k
k

)
signatures from D2k are 2-realizable, and forms a

basis of the solution space of the set of all 2-admissible signatures of arity 2k.

Our main theorem in this section is to prove that the signatures from D2k are
precisely the class of 2-realizable signatures of arity 2k (over char. 0), after a scaling
factor.

Theorem 4.2 Up to a scalar factor, every 2-realizable signature is obtainable as
a planar tensor product from (0,1,−1,0). For arity 2k, this is precisely the set of

1
k+1

(2k
k

)
signatures from D2k .

Proof Outline: Since the proof of Theorem 4.2 is quite involved, we first give an
outline. At the top level, the theorem is proved by an induction on the arity. Given a
2-realizable signature, we show that in a certain planar matchgate of this signature,
there exist two contiguous nodes (i, i + 1), which are isolated from the rest. The part
on (i, i + 1) makes one copy of (0,1,−1,0). Then we can apply induction on the
remaining part.

However the proof for the existence of such two contiguous nodes is complicated.
We first prove this under the condition that G0101···01 �= 0. If this is true, by flipping all
odd bits, we can define a new signature GA which has the property that G1111···11

A �= 0.
Then, from the general theory [1, 3], we know that GA can be realized by Pfaffians of
a (weighted, but not necessarily planar) graph � without internal nodes. This trans-
formation is a key idea of this proof and through which we bypass the difficulty of
having to deal with exponentially many MGI explicitly. After that we deal with edge
weights of the graph � rather than the entries of G. This reduces the number of vari-
ables from 2n to

(
n
2

)
, and the explicit form of Pfaffian satisfies all MGI implicitly. We

translate the conditions of G being 2-admissible to conditions on GA. Then we apply
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Fig. 2 This is a proof by
picture: ∂jG is realizable. The
new node is an internal node

these conditions on the edge weights in � and prove that there is one isolated edge
connecting two contiguous nodes. These are proved in Lemmas 4.4 and 4.5.

Then all we need to prove is that G0101···01 �= 0 (Lemma 4.3). This turns out to
be at least as difficult as Lemmas 4.4 and 4.5. We prove Lemma 4.3 by an induction
(a nested induction on k and then on i). First we introduce derivative operators ∂j

which construct 2-realizable signatures of arity n− 2 from a 2-realizable signature of
arity n. After a normalization, we use the operator and the inductive hypothesis (of the
outer induction on k) to prove that at least one of the two values G0101···01,G1001···01

is non-zero. Then we prove (by the inner induction on i) that the case G0101···01 =
0,G1001···01 �= 0 leads to a contradiction. This proof also uses the method of explicit
Pfaffian representation.

Now we proceed to the proof, which is presented in the reverse order of the above
outline.

Lemma 4.1 Let G be a 2-realizable signature with arity n = 2k and j ∈ [n]. We
define a tensor ∂jG with arity n − 2 as follows:

(∂jG)i1i2···in−2 = Gi1i2···ij−101ij ij+1···in−2 − Gi1i2···ij−110ij ij+1···in−2 . (6)

Then ∂jG is also 2-realizable.

The above expression technically assumes 1 ≤ j ≤ n − 1. For j = n, the two bits
with 01 and 10 should occur at bit positions n and 1 respectively. In general realizable
signatures should be viewed as having been realized by a planar matchgate whose
indices are viewed cyclically.

Proof If G is 2-realizable, then it is realizable as a standard signature. By Fig. 2,
it is clear that ∂jG is also realizable as a standard signature, for all j ∈ [n]. Then,
according to Corollary 3.2, we only need to prove that ∂jG is 2-admissible.

For notational convenience, we assume j = n−1. If wt(i1i2 · · · in−2) �= k−1, then
wt(i1i2 · · · in−201)=wt(i1i2 · · · in−210) �=k. So by (6), we have (∂n−1G)i1i2···in−2 =0.
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Now for any T ⊂ [n − 2] and |T | = k, we have

∑

S⊂T ,|S|=k−1

(∂n−1G)S =
∑

S⊂T ,|S|=k−1

(GS∪{n} − GS∪{n−1})

=
(

GT +
∑

S⊂T ,|S|=k−1

GS∪{n}
)

−
(

GT +
∑

S⊂T ,|S|=k−1

GS∪{n−1}
)

=
∑

S′⊂T ∪{n},|S′|=k

GS′ −
∑

S′⊂T ∪{n−1},|S′|=k

GS′

= 0 − 0 = 0.

Therefore we know that ∂n−1G is 2-admissible by Theorem 3.1. The same proof
works for all ∂jG. �

Let G be a non-trivial 2-realizable signature. Consider any A ⊂ [n] where |A| =
n/2. We can define a new signature GA by GS

A = GA⊕S , for all S ⊂ [n], where
A ⊕ S denotes the symmetric difference. The conditions in Theorem 3.1 for G to be
2-admissible translate to the following conditions for GA:

Lemma 4.2 G is 2-admissible if and only if the following conditions are satisfied:
(1) All GS

A = 0 except for those S which satisfy |S ∩ A| = |S ∩ Ac|. (2) For all T1 ⊂
Ac,T2 ⊂ A with |T1| = |T2| + 1,

∑

S⊂T1,|S|=|T1|−1

G
S∪T2
A +

∑

T2⊂S⊂A,|S|=|T2|+1

G
T1∪S
A = 0. (7)

The second condition, as stated in (7), but for all T1 ⊂ A,T2 ⊂ Ac with |T1| = |T2| +
1, together with the first condition, also remain necessary and sufficient for G being
2-admissible.

This equation (7) should be remembered as follows: Start with any two sets
T1 ⊂ Ac and T2 ⊂ A, (or respectively any two sets T1 ⊂ A and T2 ⊂ Ac) where the
cardinality differs by exactly one, |T1| = |T2| + 1. Then the sum of GX

A in (7) is over
all subsets X, where X is obtained from T1 ∪ T2 by either “shrinking” from T1 or
“growing” from T2 within A (or respectively within Ac) by one point.

To see that Theorem 3.1 and Lemma 4.2 are equivalent, we observe the following:
as |A| = n/2 and |A| = |A ∩ S| + |A ∩ Sc|, it follows that |A ⊕ S| = |Ac ∩ S| + |A ∩
Sc| = n/2 iff |A∩S| = |Ac ∩S|. For (7), write a general T of cardinality |T | = k + 1
as T = (T ∩ Ac) ∪ (T ∩ A), and let T1 = T ∩ Ac, T2 = T c ∩ A = A − (T ∩ A). Then
|T1| = |T2| + 1. So the sum

∑
S⊂T ,|S|=k GS in Theorem 3.1 is precisely over those S

obtained from T by taking one point off from T1 or from T ∩ A. In terms of
∑

S GS
A,
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this is precisely over those obtained from T by taking one point off from T1 or adding
one point of A to T2.

The statement when A is exchanged with Ac , i.e., T1 ⊂ A and T2 ⊂ Ac, |T1| =
|T2| + 1, is proved equivalent to 2-admissibility of G by invoking Theorem 3.1 with
(5) in its condition (3)′.

Now suppose we have some A, where |A| = n/2, and G11···1
A = 1. From (a) the

equivalence theorem between planar matchgate signatures and general matchgate
characters and (b) the realizability theorem of general matchgate characters [1, 3],
a planar matchgate signature can be realized by the Pfaffians of various submatrices
of the skew-symmetric matrix of a weighted graph �. This graph � is not necessarily
planar, but under the condition that G11···1

A = 1, the graph � can be chosen to contain
no internal nodes, and for every S ⊂ [n], the entry GS

A is equal to the Pfaffian of
the skew-symmetric matrix of � after removing all rows and columns corresponding
to S. In our case, � has 2k nodes {1,2, . . . ,2k}, and we use xi,j to denote the weight
of the edge {i, j} for all i, j ∈ [2k]. We also write xj,i = xi,j . (In the skew-symmetric
matrix, for i < j , the entry at (i, j) is xi,j and at (j, i) is −xi,j .)

Assuming G11···1
A = 1, from Lemma 4.2 we have xi,j = 0 when i, j are both in A

or both in Ac . Now we use (7) to obtain more conditions on xi,j ’s.
For any i ∈ A, using T1 = Ac and T2 = A − {i} in Lemma 4.2 we get,

∑

j∈Ac

xi,j = −1. (8)

Here the term −1 comes from −G11···1
A , obtained from “growing” T2 at i, and the

term xi,j = G
[n]−{i,j}
A is obtained from “shrinking” T1 at j .

Similarly, by taking T1 = A and T2 = Ac − {i}, we have for any i ∈ Ac,
∑

j∈A

xi,j = −1. (9)

Lemma 4.3 Let G be a non-trivial 2-realizable signature. Then G0101···01 �= 0.

Proof Let n = 2k be the arity of a non-trivial 2-realizable signature. We will prove
this lemma by a double induction. The outer induction is on k.

The case k = 1 is easy: we have G01 + G10 = ∑
S⊂{1,2},|S|=1 GS = 0. Being

non-trivial, and the only non-zero entries are at half weight, we must have both
G01,G10 �= 0.

Inductively we assume the lemma has been proved for all n′ ≤ 2(k − 1), for some
k ≥ 2. Let G be a 2-realizable signature with arity 2k. From Lemma 4.1, we know
that for all i ∈ [n], ∂iG is a 2-realizable signature with arity 2(k − 1). If all ∂iG

are trivial, for i ∈ [n], then G is symmetric. It follows that for any |S| = k, if we
pick any t �∈ S, and let T = S ∪ {t}, then GS = 1

k+1

∑
S′⊂T ,|S′|=k GS′ = 0. Thus G

is trivial as well. Since we assumed G is non-trivial, we have some j ∈ [n], such
that ∂jG is non-trivial. For notational simplicity we assume j = 1, after a cyclic
permutation of the indices. By induction, we have (∂1G)0101···01 �= 0. By definition,
we have (∂1G)0101···01 = G0101···01 − G1001···01. We assume for a contradiction that
G0101···01 = 0, then G1001···01 = −(∂1G)0101···01 �= 0.
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Let A = {2,3,5, . . . ,2k − 1}, we have G1111···1
A = G1001···01 �= 0. By a scaling we

can assume G1111···1
A = 1. Then we can define xi,j to give a Pfaffian representation to

GS
A as above. Note that G

[n]−{i,j}
A = xi,j . The assumption G0101···01 = 0 means that

x1,2 = G0011···11
A = 0. Now we inductively prove (the inner induction on i):

Claim (Assume G0101···01 = 0 and G1001···01 = 1.) For all i ≥ 3, x1,i = x2,i = 0.

The base case is i = 3. The case x2,3 = 0 is obvious, since both 2,3 ∈ A. Using
T1 = Ac − {1} and T2 = A − {2,3} in Lemma 4.2, we have

0 = x1,2 + x1,3 +
∑

t∈Ac,t �=1

(x1,2xt,3 − x1,3xt,2 + x1,t x2,3) (10)

= x1,3 −
∑

t∈Ac,t �=1

x1,3x2,t (11)

= x1,3 − x1,3(−1 − x1,2) (12)

= 2x1,3. (13)

Here in (10) the first two terms stem from “growing” T2 with 3 and 2 respectively,
and the t-th term in the summation stems from “shrinking” t from T1. This term is a
4 × 4 Pfaffian, where the signs record the parity of crossovers. In (11) we make use
of x1,2 = 0 and x2,3 = 0. In (12) we use (8). It follows that x1,3 = 0.

Inductively (on i) we assume the Claim has been proved for all [3, i −1] for some
i ≥ 4. There are two cases: i is even or odd.

If i is even, then x1,i = 0 is obvious, since both 1, i ∈ Ac. We assume for a con-
tradiction that x2,i �= 0. Let B = {3,5, . . . , i − 1} and C = {4,6, . . . , i − 2} (note that
|B| = |C|+1). For any j ∈ B , using T1 = Ac −{i} and T2 = A−{2, j} in Lemma 4.2,
we have

0 = x2,i + xi,j +
∑

t∈C

(+x2,ixj,t ) +
∑

t∈Ac−(C∪{1,i})
(−x2,ixj,t )

+
∑

t∈Ac−(C∪{1,i})
(+x2,t xj,i) (14)

= x2,i + xi,j + x2,i

(

1 + xi,j + 2
∑

t∈C

xj,t

)

+ xi,j (−1 − x2,i ) (15)

= 2x2,i

(

1 +
∑

t∈C

xj,t

)

. (16)

Here in line (14) the first two terms come from growing T2 with j and 2 respectively.
The first sum comes from shrinking T1 at t ∈ C; here we made use of xt,i = 0 (since
both t, i ∈ Ac), and inductively x2,t = 0. The second and third sums in (14) come
from shrinking T1 at t ∈ Ac where t > i. The signs take into account of crossovers.
Note also that in (14) the Pfaffian term corresponding to shrinking T1 at 1 does not
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appear, because all product terms in this Pfaffian are 0 by inductive hypothesis. From
(14) to (15) we combine the first two sums using (8), and also x1,j = 0 for this j ∈ B

by induction. The third sum of (14) is also handled by (8), and also x2,t = 0 for all
t ∈ C ∪ {1}, by induction.

As x2,i �= 0 by our assumption, we have for any j ∈ B ,
∑

t∈C xj,t = −1. Sum over
all j ∈ B , we have

∑

j∈B

∑

t∈C

xj,t = −|B|. (17)

Now we fix any j ∈ C. Using T1 = A − {2} and T2 = Ac − {i, j} in Lemma 4.2,
we have (with similar justifications, such as x2,j = 0 by induction)

0 = x2,i + x2,j +
∑

t∈B

x2,ixt,j −
∑

t∈A−(B∪{2})
x2,ixt,j

= x2,i + x2,i

(

1 + xj,2 + 2
∑

t∈B

xj,t

)

= 2x2,i

(

1 +
∑

t∈B

xj,t

)

.

Since x2,i �= 0 by assumption, we have for any j ∈ C,
∑

t∈B xj,t = −1. Sum over all
j ∈ C, we have

∑

j∈C

∑

t∈B

xj,t = −|C|. (18)

Together with (17) and (18), we have |B| = |C|. This is a contradiction. As a result,
x2,i = 0, completing the inner induction on i for i even.

If i is odd, then x2,i = 0 is obvious, since both 2, i ∈ A. Using T1 = Ac − {1} and
T2 = A − {2, i} in Lemma 4.2, we have

0 = x1,i +
∑

t∈[4,i−1]∩Ac

x1,ix2,t −
∑

t∈Ac−[1,i−1]
x1,ix2,t (19)

= x1,i + 0 − x1,i (−1) (20)

= 2x1,i . (21)

Here the term 0 in (20) refers to the first summation in (19), since x2,t = 0 for all
t ∈ [4, i − 1] ∩ Ac by induction. This fact together with x2,1 = 0 are also used to
“complete” the second sum in (19), and then we use (8) to get to (20).

So it follows that x1,i = 0. This completes the induction on i and proves the Claim.
However, then the Claim gives −1 = ∑

j∈A x1,j = 0. This contradiction com-
pletes the proof of the induction on k, except the remark about the cyclic permutation
on the index.

To address the cyclic permutation on the index (when we assumed ∂1G is non-
trivial), we use Corollary 3.1 in the Appendix. Note that a cyclic permutation on the
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bit pattern 0101 · · ·01 is either itself or 1010 · · ·10. Thus we have either G0101···01 �= 0
or G1010···10 �= 0. Corollary 3.1 says G0101···01 = (−1)kG1010···10. This completes the
proof of Lemma 4.3. �

From Lemma 4.3, we know G0101···01 �= 0. Now for the remainder of this section
we define A = {1,3,5, . . . ,2k − 1}, we have G11···1

A �= 0. By a scaling factor we can
assume G11···1

A = 1. Similarly based on this A we can define a set of weights xi,j in
a graph �, the Pfaffian minors of its skew-symmetric matrix define GA, as explained
earlier.

From Lemma 4.2, we have xi,j = G
[n]−{i,j}
A = 0 when i, j have the same parity.

Now we use (7) to obtain more information on xi,j .
For any odd i ∈ [2k], we can take T1 = Ac and T2 = A − {i} in Lemma 4.2 and

get,
∑

j∈Ac

xi,j = −1. (22)

Similarly we have for any even i ∈ [2k],
∑

j∈A

xi,j = −1. (23)

Lemma 4.4 If G is non-trivial, then there exists i ∈ [n − 1] such that xi,i+1 �= 0.

Proof We assume for a contradiction that for all i ∈ [n − 1], xi,i+1 = 0. Under this
assumption we prove that for all i, j ∈ [n], i �= j , xi,j = 0. (This would imply that
GA, and therefore G, is trivial, arriving at a contradiction.) If i, j have the same
parity, we already know that this is true. Now we prove xi,j = 0 by induction on
|i − j | and |i − j | is odd.

The case |i − j | = 1 is the assumption.
Inductively we assume xi,j = 0 has been proved for all |i − j | ≤ 2h − 1, for some

h ≥ 1. Now |i − j | = 2h + 1. We assume i < j , i is odd and j is even, (so in fact
j ≥ i + 3). Other cases can be proved similarly. Using T1 = A − {i} and T2 = Ac −
{i + 1, j} in Lemma 4.2, we have

0 = xi,i+1 +xi,j +
∑

t∈A,t �=i

xi,i+1xt,j +
∑

t∈[i+2,j−1]∩A

xi,j xt,i+1 −
∑

t∈A−[i,j−1]
xi,j xt,i+1.

(24)
In this expression, the first two terms come from growing Ac at j and i +1. The other
three sums account for the Pfaffian term by shrinking t from A. The signs take into
account of the parity of crossovers.

By assumption xi,i+1 = 0, the first sum is zero.
When t ∈ [i + 2, j − 1], we have |t − (i + 1)| ≤ j − 1 − (i + 1) = 2h − 1. So by

induction the second sum is also zero.
We can use these two observations to “complete” the third sum, and then from

(23) we get
∑

t∈A−[i,j−1]
xi,j xi+1,t = xi,j

∑

t∈A−[i,j−1]
xi+1,t = xi,j

∑

t∈A

xi+1,t = −xi,j .
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Back to (24), we have

0 = xi,j − (−xi,j ) = 2xi,j .

This completes the induction and also completes the proof. �

By this Lemma 4.4, after a cyclic permutation, we may assume x1,2 �= 0, for nota-
tional simplicity. Under this notation, we have the statements Lemma 4.5.

Lemma 4.5 After a cyclic permutation, we may assume x1,2 �= 0. Then, for all i ≥ 3,
x1,i = x2,i = 0.

Proof We prove this by induction on i. For the case i = 3, x1,3 = 0 is obvious since
they both belong to A. Using T1 = Ac − {2} and T2 = A − {1,3} in Lemma 4.2, we
have

0 = x1,2 + x2,3 +
∑

t∈Ac,t �=2

x1,2x3,t +
∑

t∈Ac,t �=2

x1,t x3,2

= x1,2 + x2,3 + x1,2(−1 − x3,2) + x3,2(−1 − x1,2)

= −2x1,2x3,2.

Since x1,2 �= 0, we have x2,3 = 0.
Inductively we assume the lemma has been proved for all j ∈ [3, i − 1] for some

i ≥ 4, i.e., x1,j = x2,j = 0. There are two cases: i is even or odd.
If i is even, then x2,i = 0 is obvious. Using T1 = A − {1} and T2 = Ac − {2, i} in

Lemma 4.2, we have

0 = x1,2 + x1,i +
∑

t∈A,t �=1

x1,2xt,i +
∑

t∈[3,i−1]∩A

x1,ixt,2 −
∑

t∈A−[1,i−1]
x1,ixt,2

= x1,2 + x1,i + x1,2(−1 − x1,i ) + 0 − x1,i (−1 − x1,2)

= 2x1,i ,

where we used inductive hypothesis x2,t = 0 for all t ∈ [3, i − 1] ∩ A to handle both
the second and third sum. It follows that x1,i = 0.

If i is odd, then x1,i = 0 is obvious. Using T1 = Ac − {2} and T2 = A − {1, i} in
Lemma 4.2, by a similar argument we have

0 = x1,2 + x2,i +
∑

t∈Ac,t �=2

x1,2xi,t −
∑

t∈[4,i−1]∩Ac

x2,ix1,t +
∑

t∈Ac−[2,i−1]
x2,ix1,t

= x1,2 + x2,i + x1,2(−1 − x2,i ) − 0 + x2,i (−1 − x1,2)

= −2x1,2x2,i .

Since x1,2 �= 0, we have x2,i = 0.
This completes the proof. �
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Proof of Theorem 4.2 We prove this theorem by induction on k.
The case k = 1 is obvious.
Inductively we assume the theorem has been proved for signatures with arity

2k − 2 for some k ≥ 2. Now G is a non-trivial 2-realizable signature with arity 2k;
by Lemma 4.3 we can define GA as above, where A = {1,3, . . . ,2k − 1}. After a
cyclic permutation we may assume the statement of Lemma 4.5 holds. Then by (22),
we know x1,2 = −1. The edge (1,2) has no crossover with any other edge. We may
apply the general method to transform characters (Pfaffians) to signatures of planar
matchgates [1, 3]; but in this case, the two vertices 1 and 2 are isolated from the rest.
We can then extend every odd node by a new edge of weight 1 to come from GA

back to G. The part of the two vertices 1 and 2, now consists of a path P of length
three, remains isolated. P has three nodes 1′,1,2, and two edges (1′,1), (1,2), with
weights +1 and −1 respectively. This part is exactly one copy of (0,1,−1,0), and
has no crossovers with the rest. It follows that G is a tensor product of (0,1,−1,0)

with some G′ of arity n − 2 which is also 2-realizable. Induction now completes the
proof. �

5 1-Realizability

Section 4 gives a complete characterization of 2-realizable signatures. In this section,
we study 1-realizable signatures. As discussed in Sect. 2, d-realizability for d > 0
is key to finding interesting holographic algorithms, since they result from a non-
empty intersection of the signature varieties of both recognizers and generators. We
present a structural characterization theorem for 1-realizable signatures. They are also
restrictive, but they are much richer than 2-realizable signatures, and we will use them
in the Sect. 7 to give polynomial time algorithms for some interesting new problems.

First we prove the following key lemma. This lemma plays an important role in
the proof of Theorem 5.1. Moreover, this lemma reveals a key property of the set
B

p
gen(G), which is useful not only for the study of 1-realizable signatures, but also for

the study of signatures in general.

Lemma 5.1 For any G, if T1 = ( 1 α
1 y1

) ∈ B
p
gen(G) and T2 = ( 1 α

1 y2

) ∈ B
p
gen(G) (for

y1 �= y2), then for all y ∈ C − {α}, ( 1 α
1 y

) ∈ B
p
gen(G).

Proof If G is trivial, then the lemma is obvious. Now we assume G is non-trivial.
Let B

p
gen(G) = V0 ∪V1 ⊂ M, and V0 (resp. V1) be the set defined by all the parity

requirements for being an odd (resp. even) matchgate. Since G is non-trivial, we have
V0 ∩ V1 = ∅. Then there are four cases, depending on whether T1 and T2 are in V0 or
V1. Here we will present the proof for the case where both T1, T2 ∈ V0 and the case
for T1 ∈ V0 and T2 ∈ V1. The other two cases are similar to these two cases.

Let T1, T2 ∈ V0. We recall the parity polynomial equation (1) for V0 (for |T | even):
〈

n⊗

σ=1

[1, x[σ∈T ]],G
〉

=
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyj
∑

A ⊂ T c, |A| = i
B ⊂ T , |B| = j

GA∪B = 0. (25)
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For any T ⊂ [n] and |T | even, let

fT (y) =
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

αiyj
∑

A ⊂ T c, |A| = i
B ⊂ T , |B| = j

GA∪B.

Then for all even T , deg(fT ) ≤ |T | and fT (y1) = fT (y2) = 0. We note that y1 �= α

and y2 �= α. We want to prove that fT is identically 0 for all even T .
We prove this by induction on |T | ≥ 0 and |T | is even. The case |T | = 0 is obvious.
Inductively we assume this has been proved for all |T | ≤ 2(k −1), for some k ≥ 1.

Now |T | = 2k. First we prove that α is a root of fT (y) with multiplicity at least
2k − 1. We prove this by showing that f

[r]
T (α) = 0 for 0 ≤ r ≤ 2(k − 1), where

f [0] = fT and f
[r]
T = d

dy
(f

[r−1]
T ) is the r-th derivative. We have

f
[r]
T (α) =

∑

0≤i≤n−|T |
r ≤ j ≤ |T |

r!
(

j

r

)

αiαj−r
∑

A ⊂ T c, |A| = i
B ⊂ T , |B| = j

GA∪B = r!
n−r∑


=0

α

∑

|S|=
+r

(|T ∩ S|
r

)

GS.

(26)
Note that the second equality follows from considering each GS , where |S ∩ T | =
j ≥ r and |S ∩ T c| = i.

If r is even, we consider any T ′ where |T ′| = r . Since r ≤ 2(k − 1), by induction,
we have fT ′ ≡ 0. Then f

[r]
T ′ ≡ 0 and f

[r]
T ′ (α) = 0. On the other hand, just as in (26),

we have

f
[r]
T ′ (α) = r!

n−r∑

i=0

αi
∑

|S|=i+r

(|T ′ ∩ S|
r

)

GS = r!
n−r∑

i=0

αi
∑

|S|=i+r,S⊃T ′
GS,

where the second equality is due to |T ′| = r , which implies that in the inner sum over
S, the only non-zero terms are those S ⊃ T ′.

Summing over all T ′ ⊂ T where |T ′| = r , we get:

0 =
∑

T ′⊂T ,|T ′|=r

f
[r]
T ′ (α)

= r!
n−r∑

i=0

αi
∑

T ′⊂T ,|T ′|=r

∑

|S|=i+r,S⊃T ′
GS

= r!
n−r∑

i=0

αi
∑

|S|=i+r

(|T ∩ S|
r

)

GS = f
[r]
T (α).

The third equality is by considering how many times each GS appears, where |S ∩
T | ≥ r and |S| = i + r .

If r is odd, we consider any T ′ where |T ′| = r + 1. Since r + 1 ≤ 2(k − 1), by
induction, we have fT ′ ≡ 0. Then f

[r]
T ′ (α) = 0. On the other hand, similarly with (26),
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we have

f
[r]
T ′ (α) = r!

n−r∑

i=0

αi
∑

|S|=i+r

(|T ′ ∩ S|
r

)

GS

= r!
n−r∑

i=0

αi

⎛

⎝
∑

|S|=i+r,T ′⊂S

(r + 1)GS +
∑

t∈T ′

∑

|S|=i+r,T ′\S={t}
GS

⎞

⎠ .

Summing over all T ′ ⊂ T where |T ′| = r + 1, we can show that the following
quadruple sum, which is 0 to start with, finally simplifies to (|T | − r)f

[r]
T (α).

0 =
∑

T ′⊂T ,|T ′|=r+1

f
[r]
T ′ (α)

= r!
∑

T ′⊂T ,|T ′|=r+1

n−r∑

i=0

αi

(
∑

|S|=i+r,T ′⊂S

(r + 1)GS +
∑

t∈T ′

∑

|S|=i+r,T ′\S={t}
GS

)

= r!
n−r∑

i=0

αi
∑

T ′⊂T ,|T ′|=r+1

(
∑

|S|=i+r,T ′⊂S

(r + 1)GS +
∑

t∈T ′

∑

|S|=i+r,T ′\S={t}
GS

)

= r!
n−r∑

i=0

αi
∑

|S|=i+r

GS

((|T ∩ S|
r + 1

)

(r + 1) +
(|T ∩ S|

r

)(|T \ S|
1

))

= r!
n−r∑

i=0

αi
∑

|S|=i+r

GS

(|T ∩ S|
r

)

(|T ∩ S| − r + |T \ S|)

= (|T | − r)f
[r]
T (α).

Since |T | − r > 0, we have f
[r]
T (α) = 0.

To sum up, we proved that f
[r]
T (α) = 0 for r = 0,1, . . . ,2(k − 1). So α is a root of

multiplicity at least 2k − 1. The degree of fT is at most 2k, and we know fT has at
least two more roots y1 and y2. Therefore fT must be identically 0. This completes
the proof of case 1.

For case 2, we can extend our definition of fT (y) for odd T . Then fT (y1) = 0 for
even T ; fT (y2) = 0 for odd T . Similarly we prove all the fT (y) are trivial. We also
prove this by induction on |T | but for all |T |. The case |T | = 0 is obvious. Inductively
we assume this has been proved for all |T | ≤ k − 1, for some k ≥ 1. Now |T | = k.
First we prove that α is at least a k-th order multiple root of fT (y). We prove this by
showing that f

[r]
T (α) = 0 for r = 0,1, . . . , k − 1. The proof is similar with the above

proof when r is even. On the other hand, deg(fT (y)) = k, so fT (y) can not have any
other root if it is non-trivial. But we know fT (y) has at least one more root y1 or y2

depending on the parity of |T |. This contradiction completes the proof. �
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This lemma says that, for any fixed x ∈ C, either for all y or for at most one
y ∈ C − {x}, we have

( 1 x
1 y

) ∈ B
p
gen(G).

In the following we give some characterization theorems for 1-admissibility and 1-
realizability of signatures. It turns out that, for a general 1-admissible signature, after
omitting isolated points in B

p
gen(G), one can show that B

p
gen(G) is the solution for a

single polynomial F(x, y) on M. Using Lemma 5.1, we can show that this F(x, y)

must be multilinear. More precisely we have the following characterization theorem
of 1-admissibility. (Since we are talking about 1-admissibility or 1-realizability, in
this section we will omit isolated points for both B

p
gen(G) or Bgen(G).)

Theorem 5.1 If G is 1-admissible, then there exist three constants a, b, c such that

Bp
gen(G) =

{[(
n0
n1

)

,

(
p0
p1

)]

∈ M
∣
∣
∣
∣an0n1 + b(n0p1 + n1p0) + cp0p1 = 0

}

.

Also for any three constants a, b, c, there exists a signature G such that the above
equation holds.

Proof We first note that for any given a, b, c, the existence of G can be fulfilled by the
symmetric signature (G00,G01,G10,G11)T = (a, b, b, c)T of arity 2. This is called
a symmetric signature since the entries only depend on the Hamming weight of the
index. In symmetric signature notation the signature is written as [a, b, c], which is
the form they are stated in [4].

If a = b = c = 0, then clearly the signature [a, b, c] is 2-admissible, and
B

p
gen(G) = M. Suppose the given a, b, c are not all 0. In the paper [4] the following

lemma was proved

Lemma

Bgen([x0, x1, x2])

=
{[(

n0
n1

)

,

(
p0
p1

)]

∈ M
∣
∣
∣
∣
x0n2

0 + 2x1n0p0 + x2p2
0 = 0, x0n2

1 + 2x1n1p1 + x2p2
1 = 0

or x0n0n1 + x1(n0p1 + n1p0) + x2p0p1 = 0

}

.

The equations simply express the following: After the basis transformation the
signature is the standard signature �b1b2 of a planar matchgate, and thus either its
even-indexed entries �00 = �11 = 0, or its odd-indexed entries �01 = �10 = 0. This
is exactly the parity requirement; for standard signatures of arity 2, the matchgate
identities are trivially satisfied. Note that the equation x0n0n1 + x1(n0p1 + n1p0) +
x2p0p1 = 0 is exactly the one given here for [a, b, c]. The other alternative is a pair
of non-trivial equations on (n0,p0) and on (n1,p1) separately. They are non-trivial
because a, b, c are not all 0. Considering the equivalence relation defining M this
alternative gives only isolated points, and thus can be omitted. The displayed equation
for Bgen([x0, x1, x2]) indicates that the signature is 1-admissible.

Now assume we are given a 1-admissible signature G. If G is in fact 2-admissible,
we take a = b = c = 0, then there is no constraint on the bases. Now we assume G

is not 2-admissible. In the following proof, we use the dehomogenized coordinates
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( 1 x
1 y

) ∈ M. The exceptional cases are similar. If there are two bases
( 1 α

1 y1

) ∈ B
p
gen(G)

and
( 1 α

1 y2

) ∈ B
p
gen(G) (y1 �= y2), by Lemma 5.1, we have

{(
1 α

1 y

)

∈ M
∣
∣
∣
∣y ∈ C − {α}

}

⊂ Bp
gen(G). (27)

Now we prove that

Bp
gen(G) =

{(
1 α

1 y

)

∈ M
∣
∣
∣
∣y ∈ C − {α}

}

.

If not, we assume for a contradiction that
( 1 u

1 v

) ∈ B
p
gen(G) and u,v �= α (recall the

equivalence relation on M). Under this assumption, we prove that G is 2-admissible.
For any basis T = ( 1 x0

1 y0

) ∈ M, if x0 = α or y0 = α then we know T ∈ B
p
gen(G). Now

we assume x0, y0 �= α. Since
( 1 u

1 v

) ∈ B
p
gen(G) and

( 1 u
1 α

) ∈ B
p
gen(G) by (27), it follows

from Lemma 5.1 that for any t �= u, we have
(

1 u

1 t

)

∈ Bp
gen(G). (28)

So if x0 = u or y0 = u, we have T ∈ B
p
gen(G). Similarly if x0 = v or y0 = v,

we also have T ∈ B
p
gen(G). Now we further assume x0, y0 �∈ {u,v}. Then we have

( 1 u
1 y0

) ∈ B
p
gen(G) by (28) and

( 1 α
1 y0

) ∈ B
p
gen(G) by (27). By Lemma 5.1, we have

( 1 x0
1 y0

) ∈ B
p
gen(G). Since this is true for any T = ( 1 x0

1 y0

) ∈ M, we conclude that G is
2-admissible, which we assumed not to be. Therefore if G is not 2-admissible and if( 1 α

1 y1

) ∈ B
p
gen(G) and

( 1 α
1 y2

) ∈ B
p
gen(G) (for y1 �= y2), then

Bp
gen(G) =

{(
1 α

1 y

)

∈ M
∣
∣
∣
∣y ∈ C − {α}

}

.

We can set a = α2, b = −α, c = 1 in the theorem.
Now we can assume B

p
gen(G) does not contain two bases of the above form. More

precisely, for a basis
( 1 x

1 y

) ∈ M, whenever we fix an x, there exists at most one y,

such that
( 1 x

1 y

) ∈ B
p
gen(G). This is also true for any fixed y. On the other hand, if we

disregard at most finitely many points, it can be shown that, to be 1-admissible, there
exists a single polynomial F(x, y) ∈ C[x, y] such that

Bp
gen =

{(
1 x

1 y

)

∈ M
∣
∣
∣
∣F(x, y) = 0

}

.

Furthermore we will assume F(x, y) is of minimal degree. In particular, we may
assume F(x, y) is square-free.

W.o.l.o.g., assume d = degy F ≥ degx F . Clearly d ≥ 1. Otherwise, F(x, y) is a
constant, which is absurd. Write

F(x, y) = fd(x)yd + fd−1(x)yd−1 + · · · + f0(x), (29)
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where fi(x) ∈ C[x], degfi ≤ d , for all 0 ≤ i ≤ d , and fd is not identically zero.
For any x0 such that fd(x0) �= 0, we can write

F(x0, y) = fd(x0)

(

yd + fd−1(x0)

fd(x0)
yd−1 + · · · + f0(x0)

fd(x0)

)

. (30)

This polynomial in y has d roots in C counting multiplicity, but does not have two
distinct roots. Therefore, there exists α ∈ C such that

F(x0, y) = fd(x0)(y + α)d . (31)

If we compare the expressions in (30) and (31), we get for all 1 ≤ k ≤ d ,
(

d

k

)

αk = fd−k(x0)

fd(x0)
.

It follows that
(

d

k

)(
fd−1(x0)
(
d
1

)
fd(x0)

)k

= fd−k(x0)

fd(x0)
,

for 1 ≤ k ≤ d .
Writing in terms of polynomials, for all 1 ≤ k ≤ d ,

(
d

k

)
f k

d−1(x)

dk
= fd−k(x)f k−1

d (x), (32)

holds for infinitely many x ∈ C, and therefore holds identically, as polynomials in
C[x].

It follows that

f d−1
d (x) · F(x, y) =

(

fd(x)y + fd−1(x)

d

)d

, (33)

in C[x, y].
Assume for a contradiction that d ≥ 2. Take k = 2 in (32), we get fd(x)|fd−1(x)

in C[x]. Also for all k ≥ 1, fd−k(x) = (d
k)
dk fd−1(x)

( fd−1(x)

fd (x)

)k−1, and therefore
fd−1(x)|fd−k(x) in C[x]. In particular fd(x)|fd−k(x) for all k ≥ 1, which implies
that fd(x)|F(x, y) in C[x, y]. If degfd(x) ≥ 1, then for a root x of fd , there would
have been infinitely many zero of F(x, y). Since this is not the case, we must have
degfd(x) = 0, i.e., fd(x) is a non-zero constant c ∈ C.

It follows that

F(x, y) = c

(

y + fd−1(x)

cd

)d

.

But F(x, y) is square-free in C[x, y], it follows that d = 1 after all.
So back to (33) we obtain

F(x, y) = f1(x)y + f0(x),
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and degf1,degf0 ≤ 1. Therefore F(x, y) is of the form a + bx + b′y + cxy. By
symmetry on x and y in M, we get b = b′. �

Now we can prove the characterization theorem for 1-realizability.

Theorem 5.2 If G is 1-realizable, then there exist three constants a, b, c such that

Bgen(G) =
{[(

n0
n1

)

,

(
p0
p1

)]

∈ M
∣
∣
∣
∣an0n1 + b(n0p1 + n1p0) + cp0p1 = 0

}

.

Also for any three constants a, b, c, there exists a signature G such that the above
equation holds.

Proof Again, we first remark that for a given a, b, c, the existence of G can be ful-
filled by symmetric signatures, by the same proof in Theorem 5.1.

Since G is 1-realizable, G is also 1-admissible. There are two cases: if G is in fact
2-admissible, then as a 1-realizable signature, G is at least realizable on some bases.
It follows from Corollary 3.2, G is indeed a 2-realizable signature. In this case we
take a = b = c = 0.

If G is 1-admissible but not 2-admissible, then in Theorem 5.1 we must have
a non-zero triple (a, b, c), defining B

p
gen(G) as a 1-dimensional variety. We claim

that, for any T ∈ B
p
gen(G), all the MGI of T ⊗nG must vanish. Otherwise Bgen(G)

cannot have dimension 1. Since all MGI are satisfied for any T ∈ B
p
gen(G), we get

Bgen(G) = B
p
gen(G). Theorem 5.2 now follows from Theorem 5.1. �

6 Some Families of 1-Realizable Signatures

We have now developed the theory sufficiently to the point where we can say the
main problem of 1-realizability is that given a, b, c, find all the signatures G such
that

Bgen(G) =
{[(

n0
n1

)

,

(
p0
p1

)]

∈ M
∣
∣
∣
∣an0n1 + b(n0p1 + n1p0) + cp0p1 = 0

}

.

For convenience, we introduce a new notation:

Definition 6.1 For a set of bases B ⊂ M, we define Gen(B) (resp. Genp(B)) as the
set of generators, which are realizable (resp. admissible) on the set of bases in B .

If a = b = c = 0, then this is Gen(M), which means that G is 2-realizable. In
Sect. 4, we have given a complete characterization in this case.

In this section, we study this problem for some other families of a, b and c. We
define sets of bases B2 and B1 corresponding to the basis b2 and b1 in Valiant’s
paper [21]. It’s not only because b2 ∈ B2 and b1 ∈ B1(0), but they are also similar
in spirit.
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6.1 The Bases Set B2

First we consider the case a = c = 0 and b �= 0. In terms of homogenized coordinates,
we consider

B2 =
{[(

n0
n1

)

,

(
p0
p1

)]

∈ M
∣
∣
∣
∣n0p1 + n1p0 = 0

}

,

and try to characterize the set Gen(B2). For an arbitrary basis in B2, we will use
dehomogenized coordinates

( 1 x
1 −x

)
for notational simplicity. (If there are exceptional

cases (“at infinity”), they can be verified directly; or one can invoke general theorems
in algebraic geometry.)

The plan is to first give a characterization of Genp(B2). Then we apply the set of
all MGI to them to get Gen(B2). The proof will be quite involved.

Consider an arbitrary
( 1 x

1 −x

) ∈ B2, where non-singularity implies that x �= 0.
When we replace y with −x in (1), all the polynomials should be identically zero.
This is the iff condition for G ∈ Genp(B2). The coefficient of xi is

∑

|S|=i

(−1)|S∩T |GS = 0. (34)

When T ranges over all even subsets or all odd subsets according to the parity of
matchgate, we have a linear system for GS . (The even (resp. odd) sets correspond
to admissibility as odd (resp. even) matchgate signatures.) Thus we get n + 1 linear
equation systems according to the weight of S; the i-th linear system, 0 ≤ i ≤ n, is
over the set of variables GS with |S| = i, where the equations are indexed by subsets
T with even cardinality. (The alternative case with all odd subsets is similar.) We
define the coefficient matrix of the system as M , which is indexed by T and S. Then
we have the following calculation of MTM :

(MTM)S1,S2 =
∑

|T | is even

(−1)|S1∩T |(−1)|S2∩T | =
∑

|T | is even

(−1)|(S1⊕S2)∩T |.

There are three cases: If S1 ⊕ S2 = ∅, we have
∑

|T | is even

(−1)|(S1⊕S2)∩T | = 2n−1. (35)

If S1 ⊕ S2 = [n], we have also
∑

|T | is even

(−1)|(S1⊕S2)∩T | = 2n−1. (36)

If S1 ⊕S2 �= ∅ and S1 ⊕S2 �= [n], we can take two elements a, b such that a ∈ S1 ⊕S2
and b �∈ S1 ⊕ S2. Then we can give a perfect matching of all the even subsets T by
matching T and T ⊕{a, b} together. For each pair of T and T ⊕{a, b}, one contributes
a +1 and the other contributes a −1. They cancel out by each other, so overall we
have

∑

|T | is even

(−1)|(S1⊕S2)∩T | = 0. (37)
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Now for the i-th system, for i = |S| �= n/2, the case S1 ⊕ S2 = [n] does not occur.
So the matrix MTM is 2n−1I , which means that GS = 0, for all |S| �= n/2.

If |S| = n/2, the n/2-th linear system gives GS = −GSc
. For the even matchgate

case (|T | is odd), it gives GS = GSc
. This is also sufficient. So we have the following

theorem, which completely solves the problem of 1-admissibility for B2:

Theorem 6.1 For a signature G with arity n, G ∈ Genp(B2) iff there exists ε = ±1
such that GS = 0 for all |S| �= n/2 and GS = εGSc

for all |S| = n/2.

Now we move on to the more difficult question of realizability. Realizability is
more difficult than admissibility because it is controlled by the set of Matchgate Iden-
tities (MGI). These MGI are not only exponential in size, but also non-linear. We will
apply all the MGI to Genp(B2) to get a characterization for Gen(B2).

For a
( 1 x

1 −x

) ∈ B
p
gen(G), let G = β⊗nG. The problem is to characterize when G is

realizable by an even matchgate as a standard signature. (The case for odd matchgate
is similar.) From Theorem 6.1, we know that GS = 0 for all |S| �= n/2, and GS = GSc

for all |S| = n/2. (For odd matchgates it would be GS = −GSc
; we omit it here.) By

the basis transformation G = β⊗nG, we have (T is even):

GT = xn/2
∑

|S|=n/2

(−1)|T ∩S|GS.

In the above equation, when substituted in any MGI, xn/2 is just a global scaling
factor. So we can just let x = 1, without changing its realizability. This gives us

GT =
∑

|S|=n/2

(−1)|T ∩S|GS. (38)

(Note that this is just Valiant’s basis b2; however the results we derive here hold for
1-realizability.)

We consider an arbitrary MGI of G: for a pattern set A (|A| is odd), position set
P (|P | is even), we have

0 =
|P |∑

i=1

(−1)iGA⊕{pi }GA⊕P⊕{pi }

=
|P |∑

i=1

(−1)i
∑

|S1|=n/2

(−1)|(A⊕{pi })∩S1|GS1
∑

|S2|=n/2

(−1)(|A⊕P⊕{pi })∩S2|GS2

=
∑

|S1|=|S2|=n/2

GS1GS2

|P |∑

i=1

(−1)i(−1)|(A⊕{pi })∩S1|(−1)(|A⊕P⊕{pi })∩S2|.

Over all odd A and even P these are also sufficient conditions. Note that for even
matchgates, both A and A ⊕ P must be odd (so that the single bit flips A ⊕ {pi} and
A ⊕ P ⊕ {pi} are even).
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Because the sets A ⊕ {pi} and A ⊕ P ⊕ {pi} are both even, the coefficients of the
four terms GS1GS2 , GS1GSc

2 , GSc
1 GS2 and GSc

1 GSc
2 are all equal. Therefore we can

combine these four terms (and divide by 4) and have

0 =
∑

|S1|=|S2|=n/2,1∈S1∩S2

GS1GS2

|P |∑

i=1

(−1)i (−1)|(A⊕{pi })∩S1|(−1)(|A⊕P⊕{pi })∩S2|

=
∑

|S1|=|S2|=n/2,1∈S1∩S2

GS1GS2 (−1)|A∩(S1⊕S2)|(−1)|P∩S2|
|P |∑

i=1

(−1)i(−1)|{pi }∩(S1⊕S2)|.

Here we identify a set X ⊂ [n] with its characteristic vector in our notation. We
call an X a single run iff it is empty or it consists of a contiguous segment of 0’s and
then 1’s, in a circular fashion. We have the following theorem.

Theorem 6.2 For a signature G with arity n, G ∈ Gen(B2) iff there exists ε = ±1
such that

1. GS = 0 for all |S| �= n/2;
2. GS = εGSc

for all |S| = n/2; and
3. for any pair (S1, S2), if GS1GS2 �= 0, then S1 ⊕ S2 is a single run.

Proof First we denote X = S1 ⊕ S2 and use S instead of S2 in the above MGI (we
note that X is an even set and 1 �∈ X):

∑

|X| is even ,1�∈X

(−1)|A∩X| ∑

|S|=|S⊕X|=n/2,1∈S

GSGS⊕X(−1)|P∩S|
|P |∑

i=1

(−1)i(−1)|{pi }∩X|

= 0. (39)

The above equation is valid for all odd sets A and even sets P . We define a set of
valuables Y(X,P ) as

Y(X,P ) =
∑

|S|=|S⊕X|=n/2,1∈S

GSGS⊕X(−1)|P∩S|
|P |∑

i=1

(−1)i(−1)|{pi }∩X|.

We fix an arbitrary even P . Then let A go through all the odd sets, we have a linear
system for the valuables Y(X,P ) from (39), where the variables are indexed by even
X not containing 1, and the equations are indexed by odd A. The coefficient matrix of
this system is ((−1)|A∩X|). This matrix has full rank, which can be proved similarly
as in (35) and (37). Note that for two X1 and X2, we have X1 ⊕ X2 �= [n], because
1 �∈ X1 ⊕ X2.

Therefore we have for any even P and any even X with 1 �∈ X,

∑

|S|=|S⊕X|=n/2,1∈S

GSGS⊕X(−1)|P∩S|
|P |∑

i=1

(−1)i(−1)|{pi }∩X| = 0. (40)
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Now we will fix an X with 1 �∈ X, and view (40) as a linear system on the variables
GSGS⊕X , where the equations are indexed by all even P .

First we show that if X is a single run, then (40) always holds. If P ∩ X is even,
X being a single run and is even, it follows that there are an even number of elements
in both P ∩ X and P ∩ Xc. A moment reflection shows that

|P |∑

i=1

(−1)i(−1)|{pi }∩X| = 0.

If P ∩ X is odd, then by symmetry of S to S ⊕ X, the combined coefficient of
GSGS⊕X = GS⊕XGS is (−1)|P∩S| + (−1)|P∩(S⊕X)| = (−1)|P∩S|[1 + (−1)|P∩X|].
When P ∩ X is odd, this is 0. So we proved “if” part of this theorem.

Now we prove that the conditions in Theorem 6.2 are also necessary. We will show
that in order to satisfy all the MGI, for any even X with 1 �∈ X, if X is not a single
run, then for all S, GSGS⊕X = 0. This is more difficult. In the end we will show that
a certain exponential sized matrix has mutually orthogonal columns, a matrix which
we can’t even give an explicit formula for its dimension.

Fix an even X with 1 �∈ X. We assume X is not a single run. Then we can pick
a particular P with 4 elements, such that p1 < p2 < p3 < p4, and p2,p4 ∈ X and
p1,p3 �∈ X. This can be done greedily, e.g., pick p1 = 1 (we know that 1 �∈ X). Then
run from 1,2,3, . . . till the first i ∈ X. That is our p2. Since X is not a single run, by
our definition X �= ∅ in particular. So p2 exists. Then the first one after that which
is not in X is p3. Being not a single run, such a p3 must exist. Then there must be
another one after p3, which belongs to X, again by X being not a single run. This is
our p4 ∈ X.

Now for this particular P , we can see that

|P |∑

i=1

(−1)i(−1)|{pi }∩X| �= 0.

For a fixed X, which is an even subset not containing 1, and is not a single run,
consider the following linear equation system:

For all even P such that
∑|P |

i=1(−1)i(−1)|{pi }∩X| �= 0, and P ∩ X is also even,

∑

|S|=|S⊕X|=n/2,1∈S

(−1)|P∩S|GSGS⊕X = 0. (41)

Here the variables are all “GSGS⊕X”, where |S| = |S ⊕ X| = n/2,1 ∈ S. Note that,
as shown above, if P ∩ X is odd, then the combined coefficients of GSGS⊕X =
GS⊕XGS is zero. (That proof does not depend on X being a single run or not.)
For P ∩ X is even, the coefficients of GSGS⊕X = GS⊕XGS are the same, which
can be combined. Consequently in (41) we combine the coefficients of GSGS⊕X =
GS⊕XGS , but only consider for P ∩ X even. After this identification, the equation
system in (41) (for a fixed X satisfying the conditions) has equations indexed by the
P ’s satisfying its stated conditions, has variables GSGS⊕X after the identification S

with S ⊕ X. They range over unordered pairs {S,S ⊕ X} obtained by taking 1, and
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exactly half the elements of X and exactly n
2 − |X|

2 − 1 elements of [n]− {1}−X. We
will not bother with a closed-form formula for the number of equations indexed by
the P ’s; nevertheless, we will show that columns of the matrix of the linear system
(41) are mutually orthogonal!

In the following, when we say, consider two distinct S and S′ in this equation sys-
tem, we have the following property: S ⊕ S′ is not any of the four sets: ∅, [n],X,Xc.
(Not equal to ∅ because they are distinct; not equal to [n] because both contain 1; not
equal to X because of the above identification; and finally not equal to Xc because
1 �∈ S ⊕ S′ and yet 1 ∈ Xc.)

Now for the linear equation system (41), we want to show the columns of distinct
S and S′ are orthogonal.

Note: we will not use explicitly below the fact that X is not a single run to show
orthogonality. Not being a single run was used to show that the column coefficient
vectors in (40) are non-zero (for these vectors the entries are indexed by P as P runs
through all the appropriate sets, the set of vectors are indexed by various S). In going
from (40) to (41), we have already taken that into account.

We had proved earlier that for X not a single run, there is some P which makes
the sum

|P |∑

i=1

(−1)i(−1)|{pi }∩X| �= 0.

For a fixed X, in the linear equation system (40) the above quantity does not depend
on variables GSGS⊕X indexed by S. We can collect those equations (a non-empty
subset of equations indexed by P ) in (40) where the above quantity is non-zero, and
factor out this sum from each such equation. This gives us (41). Of course in (40)
those equations (indexed by P ) where the above sum is zero is trivially satisfied.
This means that the orthogonality of the coefficient vectors in (41) implies that all
GSGS⊕X = 0 in (41) and therefore in (40).

(For notational simplicity, we may consider the equality GSGS⊕X = 0 above re-
ally for all S, and not worry about S being half weight or S ⊕ X being half weight.
As otherwise they are obvious.)

Now we wish to prove any two “distinct” column vectors for S and S′ are or-
thogonal. Let’s consider the condition

∑|P |
i=1(−1)i(−1)|{pi }∩X| �= 0 more carefully.

Lay out the elements 1,2,3, . . . , n, and lay out the elements of X in that order from
left to right. It breaks [n] into runs. Say 1,2, . . . , a �∈ X, a + 1, a + 2, . . . , b ∈ X,
b + 1, b + 2, . . . , c �∈ X, etc. We call these “in” segments or “out” segments. Now
consider going through elements of P , also from 1 to n. Put down − and + alter-
nately under each such element of P , from p1 to the last P -element. These record
the factor (−1)i in the sum. In each “in” and “out” segment of X, P will have either
an even or an odd number of elements. Since |P | is even, there must be an even num-
ber of segments (“in” or “out”) which have an odd number of P -elements. A moment
reflection will convince us that whenever we have a segment which contains an even
number of P -elements, we can ignore that segment. It does not affect the subsequent
± labelling. And for either an “in” segment or an “out” segment of X, the contribution
of these even number of P -elements to the sum

∑|P |
i=1(−1)i(−1)|{pi }∩X| is 0. So we

can imagine a sequence of “even-segment removal” operations as follows: Whenever
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we see an “even segment” (either an “in” or an “out” segment of X which contains
an even number of elements of P ), we can remove it, and then merge the neighboring
segments. We can continue this process until no more “even segment” is left. When
this process ends, we have an even number of “odd segments” left. Now the key ob-
servation is that: There is nothing left (that even number = 0) iff that original sum
∑|P |

i=1(−1)i(−1)|{pi }∩X| = 0. This is because every “odd segment” that is left at the
end contributes exactly −1 to the sum.

Now consider two “distinct” S and S′, and consider the inner product of their
column vectors. Denote by D = S ⊕ S′. Then D �= ∅, [n],X,Xc. The inner product
is

∑

P

(−1)P∩S(−1)P∩S′ =
∑

P

(−1)P∩D,

where P runs over all even subsets of [n] with P ∩ X even, and satisfying
∑|P |

i=1(−1)i(−1)|{pi }∩X| �= 0.
Now we design an involution (order 2 permutation) with no fixed point on the

set of all such P ’s: Since D �= ∅, [n],X,Xc, as we examine all elements from 1
to n, there must be two elements next to each other, both in X or both out of X,
and one is in D and the other one is out of D. (This is because: as D �= ∅, [n],
there must be “changes” in membership of D as we go from 1 to n. And if all such
changes coincide with boundaries of “segments” (these are the change boundaries) of
X, then either D = X or D = Xc, but both are ruled out.) Thus there are i and i + 1
which are in the same segment of X (either “in” segment or “out” segment) such that
|D ∩ {i, i + 1}| = 1. We use this {i, i + 1} to define our involution on the set of P ’s:
P �→ P ′ = P ⊕ {i, i + 1}.

Note that P is even iff P ′ is even, and also, P ∩ X is even iff P ′ ∩ X is even.
Moreover, in the “eliminating the even segment” process described above both P and
P ′ will yield the same answer as to 0 or non-zero. Thus the involution is an involution
on the set of even P , with P ∩ X even, and such that

∑|P |
i=1(−1)i(−1)|{pi }∩X| �= 0.

Finally in the sum
∑

P (−1)|P∩D|, the term (−1)|P∩D| and (−1)|P ′∩D| cancel,
since

(−1)|P ′∩D| = (−1)|P∩D|(−1)|{i,i+1}∩D| = −(−1)|P∩D|.

This completes the proof. �

When n = 4, the theorem gives Corollary 6.1, which is used in Sect. 7.

Corollary 6.1 For any a, b ∈ C, the following generator

Gα =
⎧
⎨

⎩

a, α ∈ {0101,1010},
b, α ∈ {0011,1100},
0, otherwise.

is realizable on bases
( 1 x

1 −x

)
for all x �= 0.
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6.2 The Bases Set B1

This time we consider the case b2 = ac. In the dehomogenized coordinates, the equa-
tion

a + √
ac(x + y) + cxy,

factors into (
√

a + √
cx)(

√
a + √

cy). After taking into account of symmetry of the
equivalence relation on M, we have the following set:

B1(α) =
{[(

1
n1

)

,

(
α

p1

)]

∈ M
∣
∣
∣
∣n1,p1 ∈ F

}

.

We will try to characterize the set Gen(B1(α)).
The treatment here is different from that of B2. We do not go through

Genp(B1(α)) but deal with Gen(B1(α)) directly. Our presentation here will be
sketchy; more results will be presented in the future. The main purpose here is to
present an alternative family from B2.

We take b1 = ( 1 α
1 α+1

) ∈ B1(α). If G ∈ Gen(B1(α)), then by definition G =
b1⊗nG is realizable as a standard signature. Since b1 is invertible, this transformation
is a bijection. Our characterization theorem will be described by G rather than G.

Take any basis β = ( 1 α
n1 p1

) ∈ B1(α). By definition, β⊗nG is realizable. If we

replace G by (b1−1)⊗nG, then we have

β⊗nG =
(

1 α

n1 p1

)⊗n (
α + 1 −α

−1 1

)⊗n

G =
(

1 0
n1(1 + α) − p1 p1 − αn1

)⊗n

G.

Note that the pair (n1(1 +α)−p1,p1 −αn1) can be arbitrary. The above calculation
shows that G ∈ Gen(B1(α)) iff G ∈ Gen(B1(0)). As a result, we only need to study
Gen(B1(0)), and to simplify notations, we use G instead of G.

Now take an arbitrary basis β = ( 1 0
1 y

) ∈ B1(0). Substituting x by 0 in (1), we have

∑

S⊂T ,|S|=j

GS = 0, (42)

where T ranges over all even sets or all odd sets depending on the parity of the
matchgate. Similar to the proof of 2-admissible signatures [4], this implies that GS =
0 for all |S| < n/2.

To sum up, we have the following theorem:

Theorem 6.3 For a generator G with arity n, G ∈ Gen(B1(0)) iff the following three
conditions are satisfied:

1. G is realizable as a standard signature.
2. For all odd (or even) sets T ,

∑
S⊂T ,|S|=j GS = 0.

3. GS = 0 for all |S| < n/2.

(Actually condition 3 is implied by condition 2. We list it here to be explicit.) In
future work we plan to present explicit constructions of generators of this family.
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7 Some Holographic Algorithms

Problem 1
INPUT: Given a set S of n points on a plane, where no three points are colinear. Also
given a set of edges (straight line segments) between some pairs of points in S. We
assume no 3 edges intersect at a point ( �∈ S). Every point is incident to either 2 or 3
edges.
OUTPUT: The number of 2-colorings for the edges which satisfy the following con-
ditions: (1) for every point, the incident edges are not monochromatic; (2) when two
edges cross over each other, they have different colors.
SOLUTION: For every point with 2 incident edges, we use a generator for (0,1,1,0)T

(for Not-Equal); for every point with 3 incident edges, we use a generator for
(0,1,1,1,1,1,1,0)T (for Not-All-Equal); for every point (not from S) where two
edges intersect, we use a generator with arity 4 and the following signature

Gα =
{

1, α ∈ {0101,1010},
0, otherwise;

and for every segment of an edge separated by points which are either the end points
of the edge (i.e., from S) or the intersection points of edges, we use a recognizer for
(1,0,0,1)T (for Equality). Then it can be seen that the Holant is exactly the number
of valid colorings. The unsymmetric generator of arity 4 makes sure that the color
of the edge is transmitted at intersection points while only allowing different colored
edges to meet at these intersection points.

Because all the signatures involved are realizable (on b2 which belongs to B2 by
setting x = 1 [21]; see Sect. 6 for details), we have a polynomial time algorithm for
this problem. We give a formal description of the holographic algorithm here.
Algorithm:
STEP 1: Construct a bipartite graph G(V1,V2) from the input as follows:

• V1 contains all the points in S and all the points where two lines intersect;
• V2 contains every segment of a line segment separated by points which are either

the end points of the edge (i.e., from S) or the intersection points of line segments;
• there is an edge between a point in V1 (either points from S or intersection points of

lines) and a line segment in V2 iff this point is one of the ends of the line segment.

(Note that G is a planar bipartite graph.)

STEP 2: Construct a graph G′ by replacing each vertex in G by a corresponding
matchgate as follows:

• each degree 2 vertex in V1 is replaced by a generator matchgate G2 with arity 2
(see Fig. 5);

• each degree 3 vertex in V1 is replaced by a generator matchgate G3 with arity 3
(see Fig. 3);

• each degree 4 vertex in V1 (intersection point) is replaced by a generator matchgate
G4 with arity 4 (see Fig. 4);

• each vertex in V2 is replaced by a recognizer matchgate R with arity 2 (see Fig. 6)
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Fig. 3 Under basis b2, this
generator matchgate has the
signature (0,1,1,1,1,1,1,0)T .
It makes sure that the three
incident edges of every degree 3
point in S are not
monochromatic

Fig. 4 Under the basis b2, this
generator matchgate has the
signature G, where
G0101 = G1010 = 1 and Gα = 0
for other α. It makes sure that
the color of the edge is
transmitted at intersection points
while only allowing different
colored edges to meet at these
intersection points

Fig. 5 Under the basis b2, this
generator matchgate has the
signature (0,1,1,0)T . It makes
sure that the two incident edges
of every degree 2 point in S

have different colors

(Note that G′ is a still a planar graph.)
STEP 3: Use the FKT algorithm to compute PerfMatch(G′) and output the result.

Problem 2
We extend Problem 1 by allowing curves (not necessarily line segments) between two
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Fig. 6 Under the basis b2, this
recognizer matchgate has the
signature (1,0,0,1). It makes
sure that each segment has a
consist coloring

points of S. We assume that every such curve between two points of S does not go
through additional points of S. Also any two curves can share at most a polynomial
number (in n) of points not in S, and no three curves share such a point. Here “sharing
a point” means that they may cross each other or be tangent at the point.
SOLUTION: We use the same signatures as in Problem 1. The additional situation is
that two curves may be tangent with each other rather than cross over at a point. (Note
that just pulling the tangent curves apart does not guarantee that they are of different
colors.) At such a point, we use a generator with arity 4 and the following signature

Gα =
{

1, α ∈ {0110,1001},
0, otherwise.

Since this signature is also realizable on b2, we have a polynomial time algorithms
for this problem.

Problem 3
Some graphs may not have any valid colorings satisfying all the requirements. Now
we allow edges to change colors on different segments. More precisely, for each
curve, we have a orientation. And at any point where two curves meet (either transver-
sal or tangent to each other), we still require them to have different colors, but now
we allow them to either both keep their colors or both change their colors. Other re-
quirements are the same as above. However, we still want as few such changes as
possible, and the problem is to find the minimal number of changes such that at least
one valid coloring exists.
SOLUTION: Signatures for original points and segments of curves remain the same.
For every cross point, we use a generator with arity 4 and the following signature

Gα =
⎧
⎨

⎩

1, α ∈ {0101,1010},
x, α ∈ {0110,1001},
0, otherwise.
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And for every tangent point, we use a generator with arity 4 and the following signa-
ture

Gα =
⎧
⎨

⎩

x, α ∈ {0101,1010},
1, α ∈ {0110,1001},
0, otherwise.

Since they are all realizable on b2, we have a polynomial time algorithm to com-
pute the Holant. The Holant is a polynomial of x. The degree of this polynomial is
bounded by nO(1), and the coefficients are at most nO(1) bits. The coefficient of xk

is the number of valid colorings with exactly k changes of color. By the interpolation
method, we can evaluate the Holant a polynomial number of times with different val-
ues of x, and compute the polynomial, and therefore get the degree of the smallest
non-zero term.

We note that these problems are not a priori about planar graphs due to inter-
secting edges. The unsymmetric signatures (and their planar matchgates) created the
necessary planarity.
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