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ABSTRACT

This paper considers two canonical Bayesian mechanism design

settings. In the single-item setting, the tight approximation ratio of

Anonymous Pricing is obtained: (1) compared to Myerson Auction,

Anonymous Pricing always generates at least a
1

2.62
-fraction of the

revenue; (2) there is a matching lower-bound instance.

In the unit-demand single-buyer setting, the tight approxima-

tion ratio between the simplest deterministic mechanism and the

optimal deterministic mechanism is attained: in terms of revenue,

(1) Uniform Pricing admits a 2.62-approximation to Item Pricing;

(2) a matching lower-bound instance is presented also.

These results answer two open questions asked by Alaei et al.

(FOCS’15) and Cai and Daskalakis (GEB’15). As an implication, in

the single-item setting: the approximation ratio of Second-Price

Auction with Anonymous Reserve (Hartline and Roughgarden

EC’09) is improved to 2.62, which breaks the best known upper

bound of e ≈ 2.72.

CCS CONCEPTS

• Theory of computation→Mathematical optimization; Al-

gorithmic game theory and mechanism design.
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1 INTRODUCTION

Consider two typical revenue-maximization scenarios: (i) a seller

has n ∈ N≥1 items for selling to a unit-demand buyer; and (ii) a

seller has a single item for selling ton ∈ N≥1 potential buyers. In the

both scenarios, the seller only knows the buyers’ value distributions

F = {Fi }ni=1
for the item(s) instead of their exact values, and wants

to maximize his expected revenue.

The simplest mechanisms are to sell the item(s) at a fixed price.

In scenario (i), the seller can choose a uniform price for all items,

and then allows the unit-demand buyer to purchase his favorite

item (as long as the value of this item is at least the price). In

scenario (ii), the seller can select an anonymous price for the item;

the first coming buyer (in any order), whose value for the item is at

least the price, will take the item.

In practice, the both simple pricing schemes are widely used. In

terms of revenue, however, theymay not be optimal. In scenario (i),

the seller can increase his expected revenue by posting item-wise

prices, i.e., the Item Pricing mechanisms in the literature [e.g., see

9, 10, 13–15, 17], which include all deterministic mechanisms
1
. In

scenario (ii), the seller can even organize an auction, and thus

gains more revenue by leveraging the buyer competition. Among

these auction schemes, the remarkable Myerson Auction gives the

best revenue [see 33].

Compared to the optimal yet complicated mechanisms, how

much revenues can the simple and practical pricing schemes guar-

antee? This is a central question in the theory of Bayesian mecha-

nism design, or more precisely, the “simple versus optimal” research

program. E.g., as we quote from the survey of Lucier [31]: “an inter-

esting question is how well one can approximate the optimal revenue

using an anonymous price, rather than personalized prices.”

1
If randomness is allowed, the seller may further increase his revenue by using the

Lottery Pricing mechanisms [see 10, 15, 16].

https://doi.org/10.1145/3313276.3316331
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For both of Anonymous Pricing and Uniform Pricing, we settle

their approximability in this work.

Theorem 1 (Myerson Auction vs. Anonymous Pricing). To sell

a single item to multiple buyers with independent regular distribu-

tions, the supremum ratio of the Myerson Auction revenue to the

Anonymous Pricing revenue equals to the constant

C∗
def

= 2 +

∫ ∞
1

(
1 − e−Q(x )

)
· dx ≈ 2.6202,

where function Q(p)
def

= − ln(1 − p−2) − 1

2
·
∑∞
k=1

k−2 · p−2k
.

Theorem 2 (Item Pricing vs. Uniform Pricing). To sell multiple

items to a unit-demand buyer with independent regular distributions,

the supremum ratio of the Item Pricing revenue to theUniform Pricing

revenue equals to the constant C∗ ≈ 2.6202.

Notably, the imposed regularity assumption (see Section 2 for its

definition) of distributions is very standard in microeconomics, and

was used in a large volume of previous work. When we allow arbi-

trarily weird distributions, the both supremum ratios increases to n
[see 3, Section 5]. Because those weird distributions are uncommon

in practice, the bound of n might not be that informative.

The main body of this work is devoted to establishing the upper-

bound part of Theorem 1. For the lower-bound part, Jin et al. [30,

Appendix A.4] gave a matching instance.

Chawla et al. [13, 14, 15] proposed the single-dimensional rep-

resentative method
2
, bridging scenarios (i) and (ii). As a result,

Theorem 1 implies the upper-bound part of Theorem 2. In addition,

after reinterpretation and fine-tuning, the lower-bound instance

of Theorem 1 also applies to Theorem 2. (All discussions about

Theorem 2 will be presented in the full version of this work.) To

the best of our knowledge, Theorem 2 gives the first tight constant

approximation ratio in any multi-dimensional setting.

As another implication of Theorem 1, the approximation ratio

of Second-Price Auction with Anonymous Reserve [e.g., see 2, 12,

29, 30, 32] against Myerson Auction is improved to C∗ ≈ 2.62.

This comparison is a main open problem asked by Hartline and

Roughgarden [29], who proved that the tight ratio is between 2 and

4. This range later shrank to

[
2.15, 2.72

]
due to Alaei et al. [3] and

Jin et al. [30]. Whether our upper bound of C∗ ≈ 2.62 is tight is

unknown.

1.1 Our Technique

To prove Theorem 1, like [3, 30], we interpret the ratio as the ob-

jective function of a math program, and then manually solve the

optimal solution. The variables of this math program are an instance

F of the mechanism design problem, i.e., n ∈ N≥1 regular distri-

butions {Fi }
n
i=1

and the number of n itself. Given such a regular

instance F: the objective function is the Myerson Auction revenue;

the constraint is that the optimal Anonymous Pricing revenue is at

most 1.

Formulation. Regarded as functions of the regular instance, the

Anonymous Pricing revenue is easy to formulate, whereas the My-

erson Auction revenue is quite complex. Given this, Alaei et al. [3]

2
The name “single-dimensional representative method” is due to Hartline [28, Chap-

ter 8.5].

replacedMyerson Auction with Ex-Ante Relaxation (see [14]), i.e.,

a “handy” and relaxed objective function. However, the consequent

ratio of e ≈ 2.72 is no longer tight for the Myerson Auction vs.

Anonymous Pricing problem.

Conceivably, investigatingMyerson Auction itself is necessary

for acquiring the exact revenue formula. For this, the main obstacle

is thatMyerson Auction is clarified based on the virtual values [33].

We introduce the virtual value CDF in Section 2, resulting in the

desired revenue formula.

We need three different representations of a distribution: (1) the

CDF Fi is used to formulate the Anonymous Pricing revenue, (2) the

virtual value CDF Di is used to formulate the Myerson Auction

revenue, and (3) the revenue-quantile curve ri is more convenient

to decide whether a distribution is regular. In different parts of the

proof, we will choose the most suitable representation. This incurs

another task – how to bridge these representations. Actually, we

observe several one-to-one identities among these representations,

which may be of independent interest (cf. the similar structural

result in [20, Lemma 5]) and find their applications in the future.

Similar to [3, 30], the proof in this work can be organized into

the Reduction Part and the Optimization Part.

Reduction Part. To solve the Ex-Ante Relaxation vs. Anonymous

Pricing problem, Alaei et al. [3] first showed that the worst case is

reached by the triangular distributions, i.e., a subset of regular distri-

butions. A regular distribution has a concave-shape revenue-quantile

curve. By contrast, a triangular distribution has a triangle-shape

revenue-quantile curve, which lies on the boundary of the concave

curve family. I.e., a triangular distribution is on the boundary of

the regular distribution family. Notably, describing a triangular

distribution requires merely two parameters. Thus, the reduction

to the triangular distributions greatly simplifies the math program

in [3].

Actually, given any regular instance F = {Fi }ni=1
, the Ex-Ante Re-

laxation revenue only depends on a specific set of value-probability

pairs

{(
bi , Fi (bi )

)}n
i=1

. Among all regular instances with the same

value-probability pairs, there exists a certain instance being stochas-

tically dominated by the others and thus giving the smallest Anony-

mous Pricing revenue (for any posted price p ∈ R≥0). This special

instance is exactly a triangular instance.

In comparison, the Myerson Auction revenue depends on the

whole instance F = {Fi }ni=1
rather than any set of value-probability

pairs. Hence, the mentioned reduction seems inapplicable to the

math program in this work. We instead adopt several more compli-

cated reductions, thus to some extent characterizing the worst-case

instance of our math program.

More concretely, we observe that a (worst-case) revenue-quantile

curve ri is a triangle or quadrangle with a curved edge. Since such a

revenue-quantile curve ri is a concave function (as the distribution

Fi is regular), the curved edge is upper-bounded by each tangent

line of it; thus, the distribution that corresponds to this tangent line

stochastically dominates distribution Fi . Also, the curved edge is

lower-bounded by the line connecting its two ends, which corre-

sponds to another distribution that is stochastically dominated by

distribution Fi . Each of our reductions never decreases theMyer-

son Auction revenue. Moreover, with the help of the two auxiliary

distributions, we also prove that, after each reduction, the optimal
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Anonymous Pricing revenue is at most 1. I.e., the feasibility of the

instance is always guaranteed.

To the best of our knowledge, no reductions tailored specifically

to asymmetric regular distributions are previously known. Because

many other single-dimensional or multi-dimensional mechanisms

in the literature are built on Anonymous Pricing, the techniques in

the Reduction Part might enlighten the future work on proving

tight or tighter approximation ratios of these mechanisms.

Optimization Part. For each math program in [3, 30] and this

work, the worst-case instance falls in the family of what we call

continuous instances. A continuous instance is comprised of infinite

buyers, each of which has an infinitesimal buying-probability. Con-

ceivably, the Myerson Auction revenue or the Ex-Ante Relaxation

revenue from a continuous instance is captured by an integral. In

addition, we will see that the ratio C∗ ≈ 2.62 is exactly the best

Myerson Auction revenue achievable by any continuous instance.

To settle Theorem 1, it suffices to prove that any feasible instance

of our math program can be transformed into another continuous

instance, without hurting the Myerson Auction revenue. Such idea

was also employed in [3] to obtain the tight ratio of e ≈ 2.72 for

the Ex-Ante Relaxation vs. Anonymous Pricing problem.

As mentioned, the first step in [3] is a reduction from any regular

instance to another triangular instance. Actually, any set of trian-

gular distributions intrinsically admits a total order. Also, because

of the special structure of Ex-Ante Relaxation, these triangular dis-

tributions can be transformed (into a target continuous instance)

one by one in the total order. This fact greatly simplifies the proof

in [3].

However, a set of regular distributions in general does not admit

the mentioned total order. For this reason, in this work: (locally)

each distribution has to be transformed piece by piece; (globally)

all distributions have to be transformed simultaneously. Besides,

Myerson Auction has a more complicated structure than Ex-Ante

Relaxation. These issues together incur many technical challenges

to implementing the transformation and verifying that theMyerson

Auction revenue never decreases.

To enable the proof, potential function comes to the rescue: we

find a natural potential to indicate the status of an instance. (In

some sense, this potential function is a new representation of a

distribution.) Given this, we can implement the transformation

as an iterative algorithm, during which the potential declines by

a fixed amount per iteration. After sufficiently many iterations,

the potential ultimately declines to zero, and a desired continuous

instance is achieved.

Such transformation is applicable to any instance whose optimal

Anonymous Pricing revenue is at most (1 − ε), i.e., any instance

locating in the interior of the feasible space of our math program.

For any instance locating on the boundary of the feasible space, we

still need to convert it into another “interior” instance. This modifi-

cation may incur a revenue loss ofMyerson Auction. However, once

the modification is small enough (under some measurement), the

revenue loss can be arbitrarily small, which is sufficient to establish

Theorem 1.

Even though the ideas of modifying the input instance are widely

used in other subareas within TCS (e.g., the smoothed analysis litera-

ture), this is the first time that they are used to prove approximation

ratio of simple mechanism. In return, the techniques involved in

theOptimization Partmay even be of interest to the optimization

community and the approximation algorithms community.

1.2 Further Related Work

Both of Anonymous Pricing andUniform Pricing are widely studied

in the literature [3, 7–9, 22–24, 28, 30]. In the single-item setting,

another important family of pricing schemes is Sequential Posted-

Pricing [1, 4, 19, 25, 30, 31]. Such a mechanism allows buyer-wise

pricing strategies, and therefore dominates Anonymous Pricing

in revenue. Under the regularity assumption, the tight ratio of

Sequential Posted-Pricing to Anonymous Pricing also equals to

C∗ ≈ 2.62 [30].

In the single-buyer unit-demand setting, the family of Item Pric-

ing mechanisms includes all deterministic mechanisms, among

which finding the optimum is NP-hard [17]. If randomness is al-

lowed, the seller can gain more revenue by employing lottery [10,

15, 16, 27]. Chen et al. [16] settled the complexities of finding and

describing the optimal randomized mechanism.

Other more general multi-item settings involve single or multi-

ple buyers with unit-demand or other utility functions, in which

optimal mechanisms can be much more complex. For this reason,

the last two decades have seen a great deal of work on proving the

intractability of optimal mechanisms, and an richer literature on

proving that simple mechanisms approximate optimal mechanisms

by constant factors. In this amount of space, evaluating so extensive

a literature is impossible. As a guideline, the reader can refer to the

hardness results in [5, 16–18, 21, 26, 34], the approximation results

in [6, 9–11, 13–15, 35], and the references therein.

2 NOTATION AND PRELIMINARIES

Below, we formally define in the mathematical notions to be used

in the paper.

• Function (·)+ maps any real number z ∈ R to max{0, z}.
• Function 1{·} denotes the indicator function.

• д(z−)
def

= lim

w→z−
д(w) and д(z+)

def

= lim

w→z+
д(w) respectively

denote the left and the right limitations (if exist) of a function

д in the neighborhood ofw = z.

• ∂−д(z)
def

= lim

w→z−
д(w )−д(z)

w−z and ∂+д(z)
def

= lim

w→z+
д(w )−д(z)

w−z re-

spectively denote the left derivative and the right derivative

(if exist) of a function д atw = z.
• For any increasing functionд (may not be strictly increasing),

define its inverse function as д−1(z)
def

= max{w ∈ R | д(w) ≤
z}. Similarly, for any decreasing function д, define its inverse

function as д−1(z)
def

= min{w ∈ R | д(w) ≥ z}.

Probability Distribution. We use three mathematically equiva-

lent representations to describe a regular distribution: cumulative

distribution function, revenue-quantile curve, and virtual value

cumulative distribution function. Actually, the first and the second

representations (to be introduced in Section 2.1) are applicable to

more general distributions.
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2.1 Cumulative Distribution Function and

Revenue-Quantile Curve

The most natural way to describe a distribution is the cumula-

tive distribution function (CDF) Fi , which is assumed to be a left-

continuous function for convenience. I.e., letbi be a random variable

drawn from this distribution, then Fi (x) = Pr{bi < x} for all x ∈ R.
When there is no ambiguity, we also denote by Fi the distribution.

Fi (p)

p
vi

1

0

1 − qi

(a) CDF

ri (q)

q
0 1qi

ri (qi ) = viqi

ri (0)

(b) Revenue-quantile curve

Figure 1: Demonstration for the CDF and the revenue-

quantile curve.

Revenue-Quantile Curve. If distribution Fi has a non-negative
support supp(Fi ) ⊆ R≥0, the revenue-quantile curve ri defined
below also records all details, thus being a new representation.

The both representations are respectively illustrated in Figures 1(a)

and 1(b).

Fact 1. For any distribution, its CDF Fi and revenue-quantile

curve ri admit the reductions below:

(1) ri (q) = q · F−1

i (1 − q) for all q ∈ (0, 1]. In addition, ri (0) =

lim

q→0
+
ri (q) = lim

p→∞
p ·

(
1 − Fi (p)

)
if this limitation exists. (ri

is a left-continuous function à la Fi )
(2) Fi (p) = minq∈[0,1]{1 − q | ri (q)/q ≥ p} for all p ∈ R≥0.

Extra Notation. We now define several useful quantities based

on the CDF Fi :

• The support-supremum ui
def

= max

{
supp(Fi )

}
∈ R≥0.

• Themonopoly pricevi ∈ argmaxp∈R≥0

{
p ·(1−Fi (p))

}
. When

there are multiple alternative monopoly prices, we break ties

by choosing the largest one.

• The monopoly quantile qi
def

=
(
1 − Fi (vi )

)
∈ [0, 1].

Alternatively, we can defined these quantities based on the revenue-

quantile curve ri as well:

• The support-supremum ui = lim

q→0
+
ri (q)/q.

• The monopoly quantile qi ∈ argmaxq∈[0,1]
{
ri (q)

}
. When

there are multiple alternative monopoly quantiles, we break

ties by choosing the smallest one.

• The monopoly price vi = ri (qi )/qi .

Note that vi ≤ ui and possibly vi = ui = ∞. To comprehend these

notions intuitively, consider this pricing scenario: a seller wants

to sell a single item by posting a price of p ∈ R≥0; a single buyer

draws his value of bi ∈ R≥0 from a distribution Fi , and takes the

item iff his value is at least the posted price of pi . Clearly, the value
of bi is capped to the support-supremum ui . Also, the seller can
maximize his expected revenue by posting the monopoly price

p = vi , resulting in a selling probability (i.e., the quantile) of the

monopoly quantile qi .

2.2 Regular Distribution and Virtual Value

We denote by Reg the set of regular distributions. It is well known

[e.g., see 33] that there are several equivalent ways to describe such

a distribution. Among these equivalent definitions, we will choose

the most convenient one in different parts of this work.

Definition 1 (Regular Distribution). The following condi-

tions for the regularity are equivalent.

(1) The virtual value CDF Di is well defined, and has a finite

expectation

∫
R
z · dDi (z).

(2) The revenue-quantile curve ri is a continuous and concave

function on interval q ∈ [0, 1].

(3) The virtual value function φi (p) = p−
1−Fi (p)
fi (p)

is an increasing

function on interval p ∈ R≥0 (with the conventions that
0

0
= 0,

z
0
= ∞ and

z
∞ = 0 when z ∈ R≥0), where fi (p)

def

= ∂−Fi (p) is
the probability density function (PDF).

Together with a positive constant ri (0) ≥
(
−
∫
R
z · dDi (z)

)
+, we

can reconstruct the CDF Fi and the revenue-quantile curve ri from
the virtual value CDF Di and vice versa.

Fact 2. For any regular distribution Fi ∈ Reg, its virtual value

CDF Di (well defined) and revenue-quantile curve ri (continuous and
concave) admit the reductions below:

(1) ri (q) = ri (0) +

∫ q

0

D−1

i (1 − z) · dz for all q ∈ [0, 1].

(2) Di (x) = minq∈[0,1]{1 − q | ∂−ri (q) ≥ x} for all x ∈ R, with
the convention ∂−ri (0) = ∞.

Fact 3. For any regular distribution Fi ∈ Reg, its virtual value

CDF Di (well defined) and CDF Fi (with an increasing virtual value

function φi ) admit the reductions below:

(1) φi
(
F−1

i (1 − q)
)
= D−1

i (1 − q) for all q ∈ [0, 1].

(2) Di (x) = Fi
(
φ−1

i (x
−)
)
for all x ∈ R.

By the above discussions, we can infer the next Corollary 1.

Corollary 1. For any regular distribution Fi ∈ Reg, the following
holds.

(1) In interval q ∈ [0, 1], the revenue-quantile curve ri is left- and
right-differentiable everywhere. At any quantile q ∈ [0, 1], the
left derivative equals to the corresponding virtual value, i.e.,

∂−ri (q) = D−1

i (1 − q) = φi
(
F−1

i (1 − q)
)
.

(2) Only at the support-supremum ui = max{supp(Fi )} ∈ R≥0

the distribution Fi may have a probability mass; the CDF Fi is
left- and right-differentiable anywhere else. W.l.o.g., the PDF

fi exists and is left-continuous.
(3) The CDF stochastically dominates the virtual value CDF, i.e.,

Fi (x) ≤ Di (x) for all x ∈ R.

As the next Figure 2 shows, the quantities defined before also

have geometric meanings w.r.t. the virtual value CDF:

• The support-supremum ui = max

{
supp(Di )

}
= φi (u

+
i )

when the constant ri (0) = 0 and ui = ∞ when the constant

ri (0) > 0.

• The monopoly quantile qi = 1 − Di (0).
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• The monopoly pricevi = q
−1

i ·
(
ri (0)+

∫
R≥0

x ·dDi (x)
)
, giving

a virtual value of φi (v
+
i ) = min

{
supp(Di ) ∩ R≥0

}
.

Di (p)

p
φi (v+i ) supp(Di )

1

0

1 − qi

Figure 2: Demonstration for the virtual value CDF of a regu-

lar distribution.

Triangular Distribution. This family of distributions [denoted

by Tri; introduced by 3] is a subset of the regular distribution

family Reg. Such a distribution has the same support-supremum

and monopoly price ui = vi ∈ R≥0. Given the monopoly quantile

qi ∈ [0, 1], a triangular distribution Tri(vi ,qi ) can be represented

as follows. As Figure 3(b) below shows, the triangular distribution

Tri(vi ,qi ) has a triangle-shape revenue-quantile curve ri .

• The CDF Fi (p) =
p ·(1−qi )

p ·(1−qi )+viqi
for all p ∈ [0,vi ] and Fi (p) =

1 for all p ∈ (vi ,∞).
• The revenue-quantile curve ri (q) = vi · q for all q ∈ [0,qi )
and ri (q) =

viqi
1−qi · (1 − q) for all q ∈ [qi , 1].

• The virtual value CDF Di (x) = (1 − qi ) · 1{x >
viqi
1−qi } + qi ·

1{x > vi } for all x ∈ R.

Fi (p)

p
vi

1

0

1 − qi

(a) CDF

ri (q)

q
1qi

viqi

0

(b) Revenue-quantile curve

Figure 3: Demonstration for distribution Tri(vi ,qi )

Particularly, we denote by Tri(∞) the limitation distribution

lim

N→∞
Tri(N , 1/N ), which has a CDF of F (p) =

p
p+1

for all p ∈ R≥0

and a revenue-quantile curve of r (q) = 1 − q for all q ∈ [0, 1]. We

will see that the worst-case instance of the Myerson Auction vs.

Anonymous Pricing problem involves this distribution Tri(∞).

2.3 Myerson Auction and Anonymous Pricing

In the single-itemBayesianmechanism design setting, a seller wants

to sell an indivisible item to n ∈ N≥1 potential buyers. The buyers

independently draw their values {bi }
n
i=1
∈ Rn
≥0

from the distribu-

tions {Fi }
n
i=1

.

Myerson Auction. For any regular
3
instance F = {Fi }ni=1

∈ Regn ,

upon receiving the values {bi }
n
i=1

from the buyers, the seller per-

formsMyerson Auction as follows:

(1) For some permutation {σi }
n
i=1
∈ Π, the virtual values

φσ1
(bσ1
) ≥ φσ2

(bσ2
) ≥ · · · ≥ φσn−1

(bσn−1
) ≥ φσn (bσn )

(2) If the highest virtual valueφσ1
(bσ1
) ≥ 0, then buyer σ1 wins

the item, with a payment of φ−1

σ1

(
max{0,φσ2

(bσ2
)}
)

We denote by OPT(F) or simply OPT (if the instance F = {Fi }ni=1
is

understood) the Myerson Auction revenue, which is formulated as

Fact 4 in the below.

Fact 4 (Myerson Auction Revenue Formula). For any regular

instance F = {Fi }ni=1
∈ Regn ,

OPT(F) =
n∑
i=1

ri (0) +

∫ ∞
0

(
1 −

n∏
i=1

Di (x)
)
· dx .

Anonymous Pricing. In such a mechanism, the seller posts a price

of p ∈ R≥0 to the item. The item is sold out iff at least one buyer

i ∈ [n] has a value of bi ≥ p. Obviously, the selling probability

equals to

(
1 −

∏n
i=1

Fi (p)
)
, resulting in an expected revenue of

AP(p, F) def

= p ·
(
1 −

n∏
i=1

Fi (p)
)
.

Again, we write AP(p) instead of AP(p, F) when the instance F =
{Fi }

n
i=1

is understood. The seller will choose an optimal posted

price, hence a revenue of AP

def

= maxp∈R≥0

{
AP(p)

}
.

The Myerson Auction vs. Anonymous Pricing problem can be

formulated the following Program (P0). Notice that constraint (C0)

trivially holds when p ∈ (0, 1).

max

F∈Regn
OPT =

n∑
i=1

ri (0) +

∫ ∞
0

(
1 −

n∏
i=1

Di (x)
)
· dx (P0)

s.t. AP(p) = p ·
(
1 −

n∏
i=1

Fi (p)
)
≤ 1,∀p ∈ [1,∞] (C0)

3 PROOF OVERVIEW

The proof of Theorem 1 is enabled by finding the worst-case in-

stance of Program (P0). We will outline the approach in this section

(with more details postponed to the full version of this work), which

can be divided into the following two parts.

Reduction Part. In Sections 3.1 to 3.3, we will present several

reductions among the feasible instances of Program (P0), with the

purpose of characterizing the worst case. As a result, the optimal

objective value of Program (P0) is upper-bounded by that of the

following Program (P1).

3
For an irregular instance,Myerson Auction is more complex and may be randomized.

Also, the revenue formula in Fact 4 should take into account the virtual value CDF’s

after the ironing process [33].
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max

F∈Regn
OPT = 2 +

∫ ∞
1

(
1 −

n∏
i=1

Di (x)
)
· dx (P1)

s.t.

n∑
i=1

ln

(
1 + p ·

1 − Fi (p)

Fi (p)

)
≤ −p · ln(1 − p−2),

∀p ∈ [1,∞] (C1)

ri (q) =
ri (qi )

1 − qi
· (1 − q) for all q ∈ [qi , 1],

∀i ∈ [n] (C2)

vi > 1, φi (v
+
i ) ≥ 1, 0 < qi < ri (qi ) ≤ 1, ri (0) = 0,

∀i ∈ [n] (C3)

Optimization Part. We will define a special feasible instance of

Program (P1) in Section 3.4, and then prove that this instance is

actually a worst-case instance (see Sections 3.5 to 3.7). To convey

the main ideas behind the proof, a “proof plan” is provided at the

end of Section 3.4.

3.1 A Special Buyer Tri(1, 1)

Given any feasible instance F = {Fi }ni=1
of Program (P0), we in-

vestigate the composition of it with the special triangular dis-

tribution Tri(1, 1). By definition (see Section 2.1), the triangular

distribution Tri(1, 1) has the same CDF and virtual value CDF

F0(p) = D0(p) = 1{p > 1}.

First, the composition instance is feasible to Program (P0) as well.

I.e., for any posted price of p ∈ [1,∞], since F0(p) = 1, the compo-

sition instance gives the same Anonymous Pricing revenue as the

given instance F. Second, compared to the given instance F, the
composition instance Tri(1, 1) ∪ F gives a higherMyerson Auction

revenue. In that D0(p) = 1{p > 1},

OPT

(
Tri(1, 1) ∪ F

)
= 1 +

n∑
i=1

ri (0) +

∫ ∞
1

(
1 −

n∏
i=1

Di (x)
)
· dx .

This modified objective function indicates that any other buyer

now contributes to theMyerson Auction revenue only when his vir-

tual value is higher than 1. This observation enables the next Main

Lemma 1. To establish this main lemma, we employ the ideas in-

volved in [3, Lemma 3.1].

Main Lemma 1. For any worst-case instance {Tri(1, 1)} ∪ F of

Program (P0), w.l.o.g. the following holds for each i ∈ [n]:

(1) The revenue-quantile curve ri (q) =
ri (qi )
1−qi · (1 − q) for all

q ∈ [qi , 1].
(2) If the monopoly quantile qi > 0, then ∂−ri (q) > 1 for all

q ∈ [0,qi ].

We transform Program (P0) into the next Program (P0
′
). Clearly,

constraint (C1
′
) is due to Main Lemma 1.1. For constraint (C2

′
),

the first and the second inequalities are due to Main Lemma 1.2:

the monopoly price vi =
ri (qi )
qi > 1 (with the convention that

z
0
= ∞ when z > 0) and the monopoly virtual value φi (v

+
i ) =

lim

q→q−i
∂−ri (q) ≥ 1. Sincevi > 1, the revenue-quantile curve ri (qi ) =

viqi > qi ≥ 0. In addition, 1 ≥ AP(vi ) ≥ vi ·
(
1 − Fi (vi )

)
=

ri (qi ), where the first inequality is due to constraint (C0
′
). For

ease of notation, we never explicitly mention the special triangular

distribution Tri(1, 1) elsewhere.

max

F∈Regn
OPT = 1 +

n∑
i=1

ri (0) +

∫ ∞
1

(
1 −

n∏
i=1

Di (x)
)
· dx (P0

′
)

s.t. AP(p) = p ·
(
1 −

n∏
i=1

Fi (p)
)
≤ 1, ∀p ∈ [1,∞] (C0

′
)

ri (q) =
ri (qi )

1 − qi
· (1 − q) for all q ∈ [qi , 1],

∀i ∈ [n] (C1
′
)

vi > 1, φi (v
+
i ) ≥ 1, 0 ≤ qi < ri (qi ) ≤ 1,

∀i ∈ [n] (C2
′
)

3.2 A Special Buyer Tri(∞)

We further analyze the worst-case instance of Program (P0
′
), re-

sulting in the next Main Lemma 2.

Main Lemma 2 (A Special Buyer Tri(∞)). For any worst-case

instance F = {Fi }ni=0
of Program (P0

′
), w.l.o.g. the following holds:

(1) r0(q) = 1−q for all q ∈ [0, 1], i.e., F0(p) =
p

p+1
for allp ∈ R≥0.

(2) qi > 0 and ri (0) = 0 for each i ∈ [n].

Based on Main Lemma 2, we can transform Program (P0
′
) into

the next Program (P0
′′
). Concretely, objective (P0

′′
) is due to objec-

tive (P0
′
), by taking into account Main Lemma 2 as (in a worst case)∑n

i=0
ri (0) = 1 +

∑n
i=1

ri (0) = 1. Besides, constraint (C2
′′
) is due

to constraint (C2
′
) and Main Lemma 2.2. For simplicity, we never

explicitly mention the special distribution Tri(∞) elsewhere.

max

F∈Regn
OPT = 2 +

∫ ∞
1

(
1 −

n∏
i=1

Di (x)
)
· dx (P0

′′
)

s.t. AP(p) = p ·
(
1 −

p

p + 1

·

n∏
i=1

Fi (p)
)
≤ 1,

∀p ∈ [1,∞] (C0
′′
)

ri (q) =
ri (qi )

1 − qi
· (1 − q) for all q ∈ [qi , 1],

∀i ∈ [n] (C1
′′
)

vi > 1, φi (v
+
i ) ≥ 1, 0 < qi < ri (qi ) ≤ 1, ri (0) = 0,

∀i ∈ [n] (C2
′′
)

3.3 A Simple Relaxation

Comparing Program (P0
′′
) to the desired Program (P1), we notice

that only constraint (C0
′′
) differs from constraint (C1). To complete

the transformation, we rearrange constraint (C0
′′
), hence another

mathematically equivalent constraint (C0
′′′
).

n∑
i=1

ln

(
1 +

1 − Fi (p)

Fi (p)

)
≤ − ln(1 − p−2); (C0

′′′
)

n∑
i=1

ln

(
1 + p ·

1 − Fi (p)

Fi (p)

)
≤ −p · ln(1 − p−2). (C1)



Tight Approximation Ratio of Anonymous Pricing STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Clearly, constraint (C1) can be derived from constraint (C0
′′′
) via a

standard trick [e.g., see 3, Lemma 3.4], i.e., ln(1+z) ≥ p−1 ·ln(1+p ·z)
when p > 1 and z ≥ 0.

This accomplishes the Reduction Part of Section 3. To see The-

orem 1, it suffices to prove that the optimal objective value of Pro-

gram (P1) is upper-bounded by the constant C∗ ≈ 2.62.

3.4 Continuous Instance

In the reminder of Section 3 (i.e., the Optimization Part), we

will grasp a specific worst-case instance of Program (P1). This

instance lies in the family of what we call continuous instances.

Parameterized by γ ∈ [1,∞], a continuous instance Cont(γ ) is
comprised of a spectrum of “small” triangular distributions, making

constraint (C1) tight everywhere in interval p ∈ [γ ,∞]. Denote by

function R(p)
def

= −p · ln(1 − p−2) the RHS of constraint (C1). Based

on function R, we provide a formal definition of the continuous

instance Cont(γ ) below.

Definition 2. Given any parameter γ ∈ [1,∞], for any posi-

tive integer m ∈ N≥1, consider the following triangular instance

{Tri(vi ,qi )}
m2

i=1
:

• Let vi
def

= γ +m − i−1

m for each i ∈ [m2]. For ease of notation,

let v0

def

= ∞.

• Let

∑i
j=1

ln

(
1 +

viqi
1−qi

)
= R(vi ), i.e., qi

def

= eR(vi )−R(vi−1
)−1

vi+eR(vi )−R(vi−1
)−1

for each i ∈ [m2].

Then, the continuous instance Cont(γ ) is defined as the limitation

instance lim

m→∞
{Tri(vi ,qi )}

m2

i=1
. By construction, each triangular in-

stance {Tri(vi ,qi )}
m2

i=1
and the continuous instance Cont(γ ) are fea-

sible to Program (P1).

Recall function Q(p) = − ln(1 − p−2) − 1

2
·
∑∞
k=1

k−2 · p−2k
in-

volved in Theorem 1. In the next Fact 5, we get a Myerson Auction

revenue formula tailored specifically to continuous instances. The

subsequent Figure 4 is offered for demonstration.

Fact 5 (Myerson Auction Revenue Formula for Continu-

ous Instance). Given any continuous instance Cont(γ ), where γ ∈
[1,∞], the Myerson Auction revenue equals to

OPT

(
Cont(γ )

)
= 2 +

∫ ∞
1

(
1 − e−Q(max{x,γ })

)
· dx ,

which is a decreasing function on interval γ ∈ [1,∞].

The reader may wonder how to get Fact 5 from Definition 2:

the revenue formula involves function Q, whereas a continuous

instance Cont(γ ) is defined based on function R. Actually, there is

a differential equation bridging the both functions and thus enabling

Fact 5. (We defer such technical details to the full version.) It is

noteworthy that, among all continuous instances, Cont(1) gives

the best Myerson Auction revenue, i.e.,

OPT

(
Cont(1)

)
= C∗ = 2 +

∫ ∞
1

(
1 − e−Q(x )

)
· dx ≈ 2.62.

Proof Plan and Organization. In Sections 3.5 to 3.7, we will prove

that the special continuous instance Cont(1) is a worst-case instance

of Program (P1).

y

p

1

0−1 1 2 3 4 5γ

y = e−Q(p)

e−Q(γ )

Figure 4: Demonstration for function y = e−Q (p); the shadow
area equals to the Myerson Auction revenue OPT

(
Cont(γ )

)
,

which is a decreasing function.

To this end, we will covert any feasible instance F = {Fi }ni=1
of

Program (P1) to a targeted continuous instance Cont(γ ∗), without
hurting theMyerson Auction revenue. More concretely:

• We construct a finite-length LIST of instances, beginning

with the discrete instance F (also denoted by GIVEN), and
ending up with the targeted continuous instance Cont(γ ∗)
(also denoted by TAIL). In the interior of the LIST, any other
instance is composed of a discrete component and a contin-

uous component.

• Consider a pair of consecutive instances PREV and NEXT
in the LIST. The instance NEXT is constructed from the

instance PREV in a consistent pattern: we always “dimin-

ish” the discrete component and “augment” the continuous

component.

• The construction of the whole LIST will be implemented as

an iterative algorithm.

The remainder of Section 3 is organized as follows:

• In Section 3.5, we first clarify how to construct a single distri-

bution in each iteration, and then prove that this construction

preserves the feasibility to constraints (C2) and (C3).

• In Section 3.6, we will elaborate on the construction in each

iteration (i.e., how to obtain an instance NEXT from an in-

stance PREV), and afterward validate the feasibility to con-

straints (C1) under this construction.

• In Section 3.7, we will implement the iterative algorithm

based on the proposed constructions, showing that the tar-

geted continuous instance TAIL = Cont(γ ∗) brings a higher
Myerson Auction revenue than the discrete instance F =
GIVEN. As mentioned in Section 3.4, among all continuous

instances, Cont(1) gives the best Myerson Auction revenue

of the constant C∗ ≈ 2.62. Combining everything together

accomplishes the proof of Theorem 1.

3.5 Construction of a New Distribution Fk
To describe our construction of a new distribution Fk from a given

feasible distribution Fk of Program (P1), we need the following

requisite notions about potential.

Definition 3 (Potential of a Distribution). For any regular

distribution Fk ∈ Reg:
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• Define the potential function Ψk (p)
def

= ln

(
1 + p ·

1−Fk (p)
Fk (p)

)
on

interval p ∈ R≥0.

• Define the gross potential Ψk
def

= Ψk (vk ) = ln

(
1 +

vkqk
1−qk

)
.

It is noteworthy that the potential function Ψk (p) is exactly the

k-th summand on the LHS of constraint (C1). Clearly, this function

records all details about distribution Fk , thus serving as a new

representation of distribution Fk . In the next Fact 6, we study the

monotonicity of the potential function Ψk (p), which is useful for

our later proofs.

Fact 6 (Potential of a Distribution). For any feasible distri-

bution Fk of Program (P1):

(1) The potential function Ψk (p) is a decreasing function on inter-

val p ∈ R≥0.

(2) Ψk (p) = Ψk when p ∈ [0,vk ].
(3) Ψk (p) = 0 when p ∈ (uk ,∞).

3.5.1 The Potential-Based Construction DIMINISH. Given any dis-

tribution Fk feasible to Program (P1), our construction of a new

distribution Fk is controlled by a pointwise potential-decrease of

∆k ∈ [0,Ψk ]. As the following Figure 5 shows, let Ψk (p)
def

= ln

(
1 +

p ·
1−F k (p)
F k (p)

)
denote the new potential function,

Ψk (p) =
(
Ψk (p) − ∆k

)
+, ∀p ∈ R≥0,

where function (·)+ maps a real number z ∈ R to max{z, 0}. The
potential-decrease ∆k is capped to the gross potential Ψk = ln

(
1 +

vkqk
1−qk

)
. Particularly, if ∆k = Ψk , then Fk (p) = 1 for all p ∈ R≥0.

We call the construction “DIMINISH the given distribution Fk by a

factor of ∆k ” or simply Fk ← DIMINISH(Fk ,∆k ) .
We now review several notions tailored specifically to the new

distribution Fk .

• The monopoly price vk = vk , which can be inferred from

Fact 6 and Figure 5. To emphasize that the monopoly price

is invariant, we mark it with an asterisk
∗
.

• The monopoly quantile qk ≤ qk . By construction, we have

ln

(
1 +

v∗kqk
1−qk

)
= ln

(
1 +

v∗kqk
1−qk

)
− ∆k .

• The support-supremum uk = Ψ−1

k (∆k ) ∈ [v
∗
k ,uk ], as Fig-

ure 5 suggests.

• W.l.o.g., both of the new CDF Fk and the new PDF f k are

left-continuous.

Later, we will prove that the new distribution Fk is regular (see

Main Lemma 3 in Section 3.5.2), which implies the following:

• The virtual value function φk (p)
def

= p −
1−F k (p)
f k (p)

is an increas-

ing function on interval p ∈ R≥0.

• The revenue-quantile curve rk is a concave function on in-

terval q ∈ [0, 1]. By construction, we also have rk (q) ≤ rk (q)
for all q ∈ [0, 1].

• The virtual value CDF Dk is well defined.

3.5.2 Properties of the Construction DIMINISH. In this part, we

present several properties of the construction DIMINISH, which
are cornerstones of our later proofs. First, as Figure 5(b) shows,

Fact 6 also holds for the new distribution Fk :

Ψk (p)

p
ukukv∗k0

Ψk

∆k

(a) Potential function of distribution Fk

Ψk (p)

p
ukv∗k0

Ψk = Ψk − ∆k

(b) Potential function of distribution F k

Figure 5: Demonstration for the construction of Fk .

(1) Ψk (p)
def

= ln

(
1+p ·

1−F k (p)
F k (p)

)
is a decreasing function on interval

p ∈ [v∗k ,uk ].

(2) Ψk (p) = Ψk = ln

(
1 +

v∗kqk
1−qk

)
when p ∈ (0,v∗k ).

(3) Ψk (p) = 0 when p ∈ (uk ,∞).

The next Main Lemma 3 gives two important observations.

Main Lemma 3 (Virtual Value). For any feasible distribution

Fk of Program (P1) and any potential-decrease ∆k ∈ [0,Ψk ], under

the construction Fk ← DIMINISH(Fk ,∆k ) :

(1) The new distribution Fk is regular, i.e., Fk ∈ Reg.
(2) The virtual value function φk (p) ≥ φk (p) for all p ∈ R≥0.

3.5.3 Feasibility Analysis: Constraints (C2) and (C3). We next jus-

tify the feasibility to constraints (C2) and (C3) under the construc-

tion DIMINISH. For ease of reference, the both constraints are

reformulated in the below.

ri (q) =
ri (qi )

1 − qi
· (1 − q) for all q ∈ [qi , 1]; (C2)

v∗i > 1, φi (v
∗+
i ) ≥ 1, 0 < qi < ri (qi ) ≤ 1, ri (0) = 0. (C3)

[Constraint (C2)]. As mentioned in Section 3.5.2, the new distri-

bution F i satisfies Fact 6.2: ln
(
1+

v∗i qi
1−qi

)
= Ψi (p) = ln

(
1+p ·

1−F i (p)
F i (p)

)
for all p ∈ [0,v∗i ]. In terms of the revenue-quantile curve (see Sec-

tion 2.1), we have ln

(
1 +

r i (q)
1−q

)
= ln

(
1 +

r i (qi )
1−qi

)
for all q ∈ [qi , 1].

Then, elementary calculations indicate that constraint (C2) holds

for the new distribution Fk .
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[Constraint (C3)]. We verify all inequalities involved in con-

straint (C3) one by one.

(1) As mentioned in Section 3.5.1, the monopoly price v∗i is

invariant under the construction DIMINISH. Thus, the first
inequality v∗i > 1 trivially holds.

(2) It follows from Main Lemma 3.2 that the monopoly virtual

value φi (v
∗+
i ) ≥ φi (v

∗+
i )

(C3)

≥ 1.

(3) Asmentioned in Section 3.5.1, themonopoly quantileqi ≤ qi .
When qi > 0, the revenue-quantile curve r i (qi ) = v

∗
i qi > qi

and r i (qi ) = v∗i qi ≤ v∗i qi = ri (qi )
(C3)

≤ 1. When qi = 0, the

new CDF F i (p) = 1 for all p ∈ R≥0, i.e., the new distribution

F i is negligible.
(4) As mentioned in Section 3.5.1, r i (q) ≤ ri (q) for all q ∈ [0, 1],

hence the last inequality.

For simplicity, we never explicitly mention constraints (C2) and

(C3) hereafter.

3.6 Construction of a New Instance F ∪Cont(γ )
To clarify the construction of a new instance (which is built on

the construction DIMINISH), we shall generalize the notions about
potential from a distribution to an instance:

Definition 4 (Potential of an Instance). For any regular

instance F = {Fi }ni=1
∈ Regn :

• Define the potential function Ψ(p)
def

=
∑n
i=1

ln

(
1 + p ·

1−Fi (p)
Fi (p)

)
on interval p ∈ R≥0.

• Define the gross potential Ψ
def

=
∑n
i=1

ln

(
1 +

viqi
1−qi

)
.

As an implication of Fact 6, the next Fact 7 is tailored to the feasible

instances of Program (P1).

Fact 7 (Potential of an Instance). For any feasible instance

F = {Fi }ni=1
of Program (P1):

(1) The potential function Ψ(p) is a decreasing function on interval
p ∈ R≥0.

(2) Ψ(p) = Ψ when 0 ≤ p ≤ V
∗ def

= mini ∈[n]{v
∗
i }.

(3) Ψ(p) = 0 when∞ > p > U

def

= maxi ∈[n]{ui }.

3.6.1 Construction of {F i }
n
i=1

: DIMINISH. Given any feasible in-

stance F = {Fi }ni=1
of Program (P1), the construction of a new

instance F = {F i }ni=1
is controlled by a potential-decrease of ∆ ∈

[0,Ψ], where Ψ =
∑n
i=1

ln

(
1 +

viqi
1−qi

)
is the gross potential of the

given instance F. More concretely:

• We partition the potential-decrease of ∆ into sub-potential-

decreases {∆i }
n
i=1

. Recall Fact 7.1 that the potential function

Ψ(p) =
∑n
i=1

Ψi (p) is a decreasing function. Parameterized

by U

def

= Ψ−1(∆) ∈ [V∗,U], we simply choose ∆i ← Ψi (U)
for each i ∈ [n]. Hence, (i) each sub-potential-decrease ∆i
is capped to the gross potential Ψi = ln

(
1 +

viqi
1−qi

)
of that

distribution Fi ; and (ii) the potential-decrease of ∆ entirely

gets allocated.

• With the sub-potential-decreases {∆i }
n
i=1

, we obtain the

new instance F via (for all k ∈ [n]) the sub-constructions

Fk ← DIMINISH(Fk ,∆k ) . The parameter U is exactly the

support-supremum of the new instance F.
Formally, the partition scheme {∆i }

n
i=1

and the construction are

implemented as Algorithm 1 (which is also named after “DIMINISH”
for simplicity) in the below. To make things mimic, we offer the

subsequent Figure 6 for demonstration.

Algorithmus 1 DIMINISH(F,∆)

Input: instance F = {Fi }ni=1
; potential-decrease ∆

Output: instance F = {F i }ni=1

1: Define the new support-supremum U ← Ψ−1(∆)
2: for all k = 1, 2, · · · ,n do

3: ∆k ← min

{
Ψk (U),∆

}
, then ∆ ← (∆ − ∆k )

4: Fk ← DIMINISH(Fk ,∆k )
5: end for

6: return the new instance F

Ψi (p)

p
u1U

v∗
10

Ψ1

∆1

∆2

u2U
v∗

2

Ψ2

(a) The potential functions Ψ1(p) and Ψ2(p)

Ψi (p)

p
U

v∗
10

Ψ1 = Ψ1 − ∆1

U
v∗

2

Ψ2 = Ψ2 − ∆2

(b) The potential functions Ψ1(p) and Ψ2(p)

Figure 6: Demonstration for the construction DIMINISH.

Recall Main Lemma 3.2: under the construction DIMINISH, the
virtual value function φi (of each new distribution F i ) maps any

value p ∈ R≥0 to a higher virtual value than the virtual value

function φi (of each given distribution Fi ).
Conceivably, higher virtual values shall lead to a higherMyer-

son Auction revenue. However, the construction DIMINISH makes

each new distribution F i stochastically dominated by the given

distribution Fi , which incurs a revenue loss of Myerson Auction.

To deal with this issue, the key idea is to add a continuous instance

(see Definition 2) as compensation. In the subsequent Section 3.6.2,

we will explain how to construct this continuous instance.
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3.6.2 Construction of Cont(γ ): AUGMENT. Composing any in-

stance F = {Fi }ni=1
with a “fake” continuous instance Cont(∞)

preserves the feasibility to Program (P1) and the Myerson Auc-

tion revenue. Consequently, any feasible instance F ∪ Cont(γ ) of
Program (P1) w.l.o.g. contains a continuous component, for some

parameter γ ∈ [1,∞]. For any parameter ∆ ∈ R≥0, we construct the

new continuous component Cont(γ ) from the given continuous

component Cont(γ ) as follows:

γ
def

= R−1
(
R(γ ) + ∆

)
,

which is demonstrated in the following Figure 7. Actually, function

R is a strictly decreasing function on its support p ∈ [1,∞] and
has a range of R[1,∞] = R≥0. Thus, the new continuous com-

ponent Cont(γ ) is always well defined. We call the construction

“AUGMENT the continuous component Cont(γ ) by a factor of ∆”

or simply Cont(γ ) ← AUGMENT
(
Cont(γ ),∆

)
.

p
0

R(p)

1 γγ

∆

(a) The given continuous component Cont(γ )

p
0

R(p)

1

R(γ )

γ

(b) The new continuous component Cont(γ )

Figure 7: Demonstration for the construction AUGMENT.

3.6.3 Feasibility Analysis: Constraint (C1). For ease of reference,

constraint (C1) is reformulated below, in terms of the potential

function Ψ(p) =
∑n
i=1

ln

(
1 + p ·

1−Fi (p)
Fi (p)

)
and function R(p) = −p ·

ln(1−p−2). Notably, for any composition instance F∪Cont(γ ), the
potential function Ψ(p) only refers to the discrete component F =
{Fi }

n
i=1

. Moreover, we slightly modify the LHS of constraint (C1)

by taking into account the continuous component Cont(γ ).

Ψ(p) + R
(
max{p,γ }

)
≤ R(p), ∀p ∈ [1,∞] (C1)

On the one hand, the construction Fk ← DIMINISH(Fk ,∆k )
slackens constraint (C1) by a factor of ∆. On the other hand, the

construction Cont(γ ) ← AUGMENT
(
Cont(γ ),∆

)
tightens con-

straint (C1) by a factor of ∆. Thus, we can easily infer the feasibility.

3.6.4 Main Lemmas about DIMINISH and AUGMENT. We next

offer two technical lemmas about the constructions DIMINISH and

AUGMENT, which are the cornerstones of the proof of Theorem 1.

The next Main Lemma 4 suggests that, under certain conditions,

the constructions DIMINISH and AUGMENT as a whole lead to a

higherMyerson Auction revenue.

Main Lemma 4 (Construction). For any feasible instance F ∪
Cont(γ ) of Program (P1) and any constant ε∗ ∈ (0, 1/2), denote by

U

def

= maxi ∈[n]{ui } the support-supremum (of the discrete component

F = {Fi }ni=1
) and byV

∗ def

= mini ∈[n]{v
∗
i } > 1 theminimummonopoly

price. Suppose that the following holds:

• Ψ(p) + R
(
max{p,γ }

)
≤ R(p) − ε∗ for all p ∈ [1,U].

• R(γ ) ≥ ε∗.

Then, for any potential-decrease
4 ∆ ≤ 1

12
· e−

2

V
∗−1 · ε∗3, consider the

new instance F∪Cont(γ ) obtained via F ← DIMINISH(F,∆) and

Cont(γ ) ← AUGMENT(Cont(γ ),∆) :

(1) OPT

(
F ∪ Cont(γ )

)
≥ OPT

(
F ∪ Cont(γ )

)
.

(2) Ψ(p) + R
(
max{p,γ }

)
≤ R(p) − ε∗ for all p ∈ (1,U].

(3) R(γ ) = R(γ ) + ∆ ≥ ε∗.

Remark 1. Recall Section 3.6.1: to implement the construction

F ← DIMINISH(F,∆) , we first partition the potential-decrease ∆

into sub-potential-decreases {∆i }
n
i=1

, and then obtain the new in-

stance F via the sub-constructions Fk ← DIMINISH(Fk ,∆k ) for

each k ∈ [n].
Naturally, the construction in Main Lemma 4 can be implemented

as an n-round iterative algorithm: in each k-th round, we invoke

the sub-constructions Cont(γ ) ← AUGMENT(Cont(γ ),∆k ) and

Fk ← DIMINISH(Fk ,∆k ) . It is not hard to see that each k-th

round preserves Points 2 to 4 (under minor modifications of the

statements) in Main Lemma 4.

In fact, the Myerson Auction revenue increases in each k-th round.

This task is much easier than proving Point 1 directly: because only

the k-th distribution and the continuous component change, we only

need to reason about them. After settling this simplified task, we infer

Point 1 by induction.

Main Lemma 4 naturally leads to an induction-based proof of

Theorem 1, since Points 3 and 4 respectively preserve Condi-

tions (a) and (b). More concretely, once modifying the given in-

stance F ∪ Cont(∞) so as to achieve the both conditions, we can

contruct the targeted continuous instance Cont(γ ∗) via an iterative
algorithm:

(1) Modify the given instance F ∪ Cont(∞) to achieve Condi-

tions (a) and (b).

(2) Select a suitable step-size ∆ > 0 to make Main Lemma 4

applicable.

(3) Invoke the constructions in Main Lemma 4 repeatedly.

4
Also, ∆ is capped to Ψ =

∑n
i=1

ln

(
1 +

v∗i qi
1−qi

)
, i.e., the gross potential of the discrete

component F.
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ByMain Lemma 4.1 and induction, theMyerson Auction revenue in-

creases during Step 3 of the iterative algorithm. Thus, to prove The-

orem 1, the only issue left is whether the modification in Step 1 in-

curs a large revenue loss ofMyerson Auction. With a small enough

constant ε∗ in Main Lemma 4, we actually find a modification

scheme so that the revenue loss is arbitrarily small, which is suffi-

cient to establish Theorem 1:

(1) DIMINISH the given discrete component F by a factor of

2 · ε∗.
(2) AUGMENT the “fake” continuous component Cont(∞) by

a factor of ε∗.

Main Lemma 5 (Modification). For any feasible instance F =
{Fi }

n
i=1

of Program (P1) and any constant
5 ε∗ ∈ (0, 1/2), consider the

instance F∪Cont(γ ) obtained via the constructions γ ← R−1(ε∗)

and F ← DIMINISH(F, 2 · ε∗) :

(1) OPT

(
F ∪ Cont(γ )

)
≥ OPT

(
F ∪ Cont(∞)

)
− 8 · ε∗.

(2) Ψ(p) + R
(
max{p,γ }

)
≤ R(p) − ε∗ for all p ∈ (1,U].

(3) R(γ ) = ε∗.

3.7 Construction of the Targeted Continuous

Instance Cont(γ ∗)
Based on the former discussions, we now construct the targeted

continuous instance Cont(γ ∗) from the given instance F = {Fi }ni=1
.

The whole construction is implemented as Algorithm 2 (named as

MAIN), which is composed of two subroutines:

(1) PREPROCESS, i.e., the modification of the given instance

based on Main Lemma 5.

(2) FOR-LOOP, i.e., the repeat invocation of the construction

from Main Lemma 4.

We adopt the following notations in MAIN. Particularly, any quan-

tity marked with an asterisk
∗
is invariant (e.g., each monopoly

price v∗i > 1, as mentioned in Section 3.5.1).

• Ψ∗
def

=
∑n
i=1

ln(1 +
v∗i qi
1−qi ) is the gross potential of the input

instance.

• ε∗ < min{1/2,Ψ∗/2} is an arbitrarily small constant.

• V
∗ def

= mini ∈[n]{v
∗
i } > 1 is the minimum monopoly price.

• T
∗ def

=
⌈

12

ε∗3 ·Ψ
∗ · e2/(V∗−1)

⌉
is the time horizon of FOR-LOOP.

• ∆∗
def

= (Ψ∗ − 2 · ε∗)/T∗ is the step size of FOR-LOOP.
• γ ∗

def

= R−1(Ψ∗ − 2 · ε∗) ∈ [1,∞] is well defined.

Finally, we can establish Theorem 1 by applying Algorithm 2

and Main Lemmas 4 and 5. During PREPROCESS (see Step 1),

the gross potential of the discrete component decreases from Ψ∗

to (Ψ∗ − 2 · ε∗). Since the constant ε∗ < min{1/2,Ψ∗/2}, Main

Lemma 5 is applicable, i.e., the revenue loss of Myerson Auction

during PREPROCESS is at most 8 · ε∗.
Now, we can infer Conditions (a) and (b) in Main Lemma 4

respectively from Points 3 and 4 in Main Lemma 5. By definition,

T
∗ ·∆∗ = Ψ∗−2 ·ε∗, i.e., the remaining gross potential of (Ψ∗−2 ·ε∗)

5
Also, ε∗ is capped to

1

2
·
∑n
i=1

ln

(
1 +

v∗i qi
1−qi

)
, i.e., half of the gross potential of the

given discrete component F.

Algorithmus 2MAIN(F∗ ∪ Cont(∞), ε∗)

Input: instance F∗ ∪ Cont(∞); constant ε∗ ∈ (0, 1/2)
Output: continuous instance Cont(γ ∗)

1: F ← DIMINISH(F, 2 · ε∗) ▷ PREPROCESS

2: Cont(γ ) ← AUGMENT
(
Cont(∞), ε∗

)
3: Update: F ∪ Cont(γ ) ← F ∪ Cont(γ )
4: for all t = 1, 2, · · · ,T∗ do ▷ FOR-LOOP

5: F ← DIMINISH(F,∆∗)

6: Cont(γ ) ← AUGMENT
(
Cont(γ ),∆∗

)
7: Update: F ∪ Cont(γ ) ← F ∪ Cont(γ )
8: end for

9: return the continuous instance Cont(γ ∗) ← Cont(γ )

is comprised of T
∗
units, with a potential of ∆∗ each. In FOR-LOOP

(see Step 5), each iteration t ∈ [T∗] incurs a unit of potential

decrease, i.e.,

∆∗ =
Ψ∗ − 2 · ε∗

T
∗

=
Ψ∗ − 2 · ε∗

⌈12 · Ψ∗ · e2/(V∗−1)/ε∗3⌉
<

1

12

·e−2/(V∗−1) ·ε∗3.

Thus, Main Lemma 4 is applicable to each of the T
∗
iterations, i.e.,

the Myerson Auction revenue never decreases during FOR-LOOP.
By Fact 5, this targeted continuous instance Cont(γ ∗) gives

a smaller Myerson Auction revenue than the special continuous

instance Cont(1), i.e., OPT
(
Cont(γ ∗)

)
≤ OPT

(
Cont(1)

)
= C∗ ≈

2.62. Put everything together:

OPT(F∗) − 8 · ε∗ ≤ OPT

(
Cont(γ ∗)

)
≤ C∗ ≈ 2.62.

As the constant ε∗ ∈ (0, 1

2
) can be arbitrarily small, OPT(F∗) ≤

C∗ ≈ 2.62 for any feasible instance F∗ of Program (P1).
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