
Holant Problems and Counting CSP

Jin-Yi Cai
∗

Computer Sciences
Department

University of Wisconsin
Madison, WI 53706. USA

jyc@cs.wisc.edu

Pinyan Lu
†

Microsoft Research Asia
Beijing, 100190, P.R. China
lupinyan@gmail.com

Mingji Xia
‡

University of Wisconsin
Madison, WI 53706. USA

and Institute of Software, CAS
Beijing, 100190, P. R. China

xmjljx@gmail.com

ABSTRACT
We propose and explore a novel alternative framework to
study the complexity of counting problems, called Holant
Problems. Compared to counting Constrained Satisfaction
Problems (#CSP), it is a refinement with a more explicit
role for the function constraints. Both graph homomor-
phism and #CSP can be viewed as special cases of Holant
Problems. We prove complexity dichotomy theorems in this
framework. Because the framework is more stringent, previ-
ous dichotomy theorems for #CSP problems no longer ap-
ply. Indeed, we discover surprising tractable subclasses of
counting problems, which could not have been easily spec-
ified in the #CSP framework. The main technical tool we
use and develop is holographic reductions. Another techni-
cal tool used in combination with holographic reductions is
polynomial interpolations. The study of Holant Problems
led us to discover and prove a complexity dichotomy theo-
rem for the most general form of Boolean #CSP where every
constraint function takes values in the complex number field
C.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory

Keywords
Holant problem, #CSP, holographic reduction, polynomial
interpolation

∗Supported by NSF CCF-0830488 and CCF-0511679.
†Work done in part while the author was a graduate student
at Tsinghua University.
‡Supported by Hundred Talent Program of Chinese
Academy of Sciences under Angsheng Li.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09, May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

1. INTRODUCTION
In order to study the complexity of counting problems,

several interesting frameworks have been proposed. One is
called counting Constrained Satisfaction Problems (#CSP) [1,
2, 3, 13, 18]. Another well studied framework is called
Graph Homomorphisms or H-coloring problems, which can
be viewed as a special case of #CSP problems [4, 5, 6, 14,
15, 16, 17, 20, 21]. One reason such frameworks are inter-
esting is because the language is expressive enough so that
they can express many natural counting problems, while
specific enough so that we can prove complete complexity
classifications for them [10]. The natural counting problems
which can be expressed as graph homomorphism problems
include counting the number of vertex covers, the number
of k-colorings in a graph, and many others. However, there
are some natural and important counting problems, which
can not be expressed as a graph homomorphism problem.
In [19], it is proved that counting the number of perfect
matchings in a graph cannot be expressed as a graph homo-
morphism function. Additionally, sometimes a problem can
be expressed in the existing framework, such as #CSP, but
only with some contrived restrictions.

In this paper, we propose and explore an alternative frame-
work to study the complexity of counting problems, called
Holant Problems. This notion is motivated by holographic
reductions proposed by Valiant [27, 28]. Compared to #CSP,
it is a refinement with a more explicit role for the function
constraints. Both graph homomorphism and #CSP can be
viewed as special cases of Holant Problems. We give a brief
description here and a more formal definition is given in
Section 2. A signature grid Ω = (G,F , π) is a tuple, where
G = (V, E) is a graph, and π maps each v ∈ V (G) to a func-
tion fv ∈ F . We consider all edge assignments. An assign-
ment σ for every e ∈ E gives an evaluation

Q
v∈V fv(σ |E(v)),

where E(v) denotes the incident edges of v. The counting
problem on the instance Ω is to compute

HolantΩ =
X

σ

Y
v∈V

fv(σ |E(v)).

We use the notation Holant(F) to denote the class of Holant
problems where all functions are given by F . For exam-
ple, consider the Perfect Matching problem on G. This
problem corresponds to attaching the Exact-One function
at every vertex of G, and then consider all 0-1 edge assign-
ments. In this case, HolantΩ counts the number of perfect
matchings. If we use the At-Most-One function at every
vertex, then we are counting all (not necessarily perfect)
matchings. So this new framework can express some nat-

715

ural counting problems which are not expressible as graph
homomorphisms.

To see that Holant is a more expressive framework, we
show that every #CSP problem can be simulated by a Holant
problem. Represent an instance of a #CSP problem by a
bipartite graph where LHS are labeled by variables and RHS
are labeled by constraints. Now the signature grid Ω on this
bipartite graph is as follows: Every variable node on LHS
is attached an Equality function, every constraint node on
RHS has the given constraint function. Then HolantΩ is
exactly the answer to the counting CSP problem. In effect,
the Equality function on each variable node forces the in-
cident edges to take the same value; this effectively reduces
to assigning values to each variable on LHS as in #CSP. It
follows that #CSP problems are precisely the special case
of Holant problems on bipartite graphs where every node on
LHS is attached an Equality function. We can show that
the class of #CSP problems is equivalent to Holant prob-
lems where all Equality functions are always assumed to
be freely available, and implicitly so. Graph homomorphism
is a further special case where not only all Equality func-
tions are freely (and implicitly) available, but the function
set F in our signature grid Ω contains exactly one binary
function (other than these Equality functions). It turns
out that allowing Equality functions has a major influence
on the computational complexity of the problems. By mak-
ing the presence of these Equality functions explicit, the
Holant framework of counting problems can make a finer
complexity classification, which is difficult to do in #CSP.

Our Holant Problem framework is strongly influenced by
the development of holographic algorithms and holographic
reductions [27, 28, 7, 9]. Indeed, we will use and develop
holographic reductions here as a primary technique. One
advantage of our new framework is that one can naturally
consider new subclasses of counting problems as special cases
of Holant problems other than #CSP problems. For in-
stance, by assuming all unary functions are freely available,
we propose an interesting counting problem family called
Holant∗ Problems. Our first main result is a complexity
dichotomy theorem for all Holant∗ Problems for arbitrary
complex valued symmetric functions over Boolean variables:
Each problem in the class is either #P-hard or solvable in P.
In this dichotomy theorem, most tractable cases are accom-
plished by holographic algorithms with Fibonacci gates [9].
And what is more interesting and surprising is that the key
technique used in the hardness proof is also holographic re-
ductions. Furthermore, we prove that the theorem holds for
planar graphs.

Our second main result is a dichotomy theorem for an even
more appealing family of counting problems, called Holantc

Problems, where we only assume two special unary functions
∆0 and ∆1 are available. These two unary functions simply
set a particular edge (variable) to a constant value 0 and
1. We can prove again that every problem in the class is
either #P-hard or solvable in P. However here we can only
prove it for all real valued symmetric functions over Boolean
variables. (We conjecture that it is still true over C.) Note
that when we assume fewer functions are freely available in
the framework it makes the specification of the family more
stringent. It delineates more precisely what functions and
in what combinations lead to #P-hardness, or to tractabil-
ity, respectively. The fewer functions are assumed free, the
more tractable cases there might be. It turns out that this

is indeed the case. In addition to the tractable cases as in
Holant∗ Problems, we discover that the following three fam-
ilies of functions are tractable. (We list the functions by
their truth tables, and where i =

√−1, λ ∈ C, k = 1, 2, . . .,
and r = 0, 1, 2, 3.)

F1 = {λ([1, 0]⊗k + ir[0, 1]⊗k)};
F2 = {λ([1, 1]⊗k + ir[1,−1]⊗k)};
F3 = {λ([1, i]⊗k + ir[1,−i]⊗k)}.

We prove that Holantc(F1 ∪ F2 ∪ F3) is polynomial time
computable. The tractability crucially depends on algebraic
cancelations.

However, the fewer functions are assumed free, the more
challenging it is to prove #P-hardness. The main technique
for the proof of the second dichotomy theorem is polyno-
mial interpolations. We make essential use of the dichotomy
theorem just proved for Holant∗ Problems, as a launching
station to prove our dichotomy theorem for Holantc Prob-
lems. Once we can interpolate all the unary functions, we
can apply the result for Holant∗ Problems.

The Holantc Problems are basically generic Holant Prob-
lems with the ability to fix the assignments of some edges.
In many natural counting problems, this is indeed the case,
such as counting problems for perfect matchings. By the
Pinning Lemma in [13], in any #CSP problem, ∆0, ∆1 can
be simulated, and as a result can be viewed as freely avail-
able. In other words Equality functions are stronger than
∆0 and ∆1. Therefore Holantc Problems already subsume
#CSP, and in the meanwhile provide a way for a more ex-
acting account of what makes a problem tractable or #P-
hard. Our dichotomy theorems have already paid dividend
in the study of classifications of #CSP problems. Since
#CSP can be viewed as a special case of Holantc Problems,
the dichotomy theorem for Holantc Problems automatically
implies a dichotomy theorem for Boolean #CSP problems
with real symmetric constraints. Motivated by this, we
investigated how one might generalize the tractable cases
(F1 ∪ F2 ∪ F3) to unsymmetric ones. Surprisingly it turns
out that the symmetric tractable cases already supplied the
essential ingredients for all possible (including unsymmetric)
tractable ones. This led us to a dichotomy theorem for the
whole family of complex weighted Boolean #CSP.

This is our third main result. We prove a complexity di-
chotomy theorem for complex valued Boolean #CSP. This
generalizes a theorem by Dyer, Goldberg and Jerrum [13]
where each constraint function takes non-negative values.
We remark that this third result is incomparable with our
dichotomy theorem for Holantc Problems because it works
for all the complex valued functions (not only real symmetric
ones). We have to rule out all other manners of fortuitous
cancelations similar to that of F1 ∪ F2 ∪ F3, this part of
the proof is delicate. Due to space limit, many details are
omitted. We isolate a property we call Congruity and Semi-
congruity, which provides a key insight and plays a decisive
role in both the tractability and hardness proofs. We also
give a refinement of this result, by restricting the maximum
occurrence of each variable to 3 times. In our holant frame-
work, this means that not all the Equality function but
these with arity less or equal to 3 are freely available. This
part of the proof is more demanding and proof techniques
are also interesting.

716

2. DEFINITIONS AND BACKGROUND
Our functions take values in C by default. We will mostly

be concerned with symmetric functions on Boolean vari-
ables, however the framework of Holant Problems is defined
for functions mapping any [q]k → C for a finite q. Our
results in this paper are for the Boolean case q = 2.

As stated, a signature grid Ω = (H,F , π) consists of a
graph H = (V, E) with each vertex labeled by a function
fv ∈ F . We use Fq when variables range over [q]. The
Holant problem on instance Ω is to compute HolantΩ =P

σ

Q
v∈V fv(σ |E(v)), a sum over all edge assignments. A

function fv can be represented as a truth table, or a tensor
in (Cq)⊗ deg(v). This is called a signature. We denote by =k

the Equality signature of arity k. For q = 2, let ∆0 (resp.
∆1) denote the unary signature which takes value 1 on input
0 (resp. 1), and 0 otherwise. A symmetric function f on k
Boolean variables can be expressed by [f0, f1, . . . , fk], where
fj is the value of f on inputs of Hamming weight j. Thus,
(=k) = [1, 0, . . . , 0, 1], ∆0 = [1, 0] and ∆1 = [0, 1]. A Holant
problem is parameterized by a set of signatures.

Definition 2.1. Given a set of signatures F , we define
a counting problem Holant(F):

Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

We would like to characterize the complexity of Holant
problems in terms of its signature sets. Some special families
of Holant problems have already been widely studied under
other names. For example, if Fq contains all Equality sig-
natures {=1, =2, =3, · · · }, then this is exactly the weighted
#CSP problem. Graph homomorphism is a further special
case, where we only allow a single binary function in Fq

other than all the Equality functions.
We now define two more special families of Holant prob-

lems by assuming some signatures are freely available. We
define them for q = 2; they can be easily extended to arbi-
trary [q].

Definition 2.2. let U denote the set of all unary signa-
tures. Given a set of signatures F , we use Holant∗(F) to
denote Holant(F ∪ U).

Definition 2.3. Given a set of signatures F , we use
Holantc(F) to denote Holant(F ∪ {∆0, ∆1}).

Replacing a signature f ∈ F by a constant multiple cf ,
where c 6= 0, does not change the complexity of Holant(F).
So we view f and cf as the same signature. An important
property of a signature is whether it is degenerate.

Definition 2.4. A signature is degenerate iff it is a ten-
sor product of unary signatures.

In particular, a symmetric signature in F is degenerate iff
it can be expressed as λ[x, y]⊗k. Also a symmetric signature

[x0, x1, . . . , xn] is non-degenerate iff rank
h
x0 . . . xn−1
x1 . . . xn

i
=

2.
To introduce the idea of holographic reductions, it is con-

venient to consider bipartite graphs. This is without loss of
generality. For any general graph, we can make it bipartite
by adding an additional vertex on each edge, and giving each
new vertex the Equality function =2 on 2 inputs.

We use #Gq|Rq to denote all counting problems, expressed
as Holant problems on bipartite graphs H = (U, V, E), where

each signature for a vertex in U or V is from Gq or Rq,
respectively. An input instance for the bipartite Holant
problem is a bipartite signature grid and is denoted as Ω =
(H,Gq|Rq, π). Signatures in Gq are denoted by column vec-
tors (or contravariant tensors); signatures in Rq are denoted
by row vectors (or covariant tensors) [12].

One can perform (contravariant and covariant) tensor trans-
formations on the signatures, which may produce exponen-
tial cancelations in tensor spaces. We will define a simple
version of holographic reductions, which are invertible. Sup-
pose #Gq|Rq and #G′q|R′q are two Holant problems defined
for the same family of graphs, and T ∈ GLq(C) is a basis.
We say that there is a holographic reduction from #Gq|Rq to
#G′q|R′q, if the contravariant transformation G′ = T⊗gG
and the covariant transformation R = R′T⊗r map G ∈ Gq to
G′ ∈ G′q and R ∈ Rq to R′ ∈ R′q, where G and R have arity
g and r respectively. (Notice the reversal of directions when
the transformation T⊗n is applied. This is the meaning of
contravariance and covariance.)

Theorem 2.1 (Valiant’s Holant Theorem). Suppose
there is a holographic reduction from #Gq|Rq to #G′q|R′q
mapping signature grid Ω to Ω′, then HolantΩ = HolantΩ′ .

In particular, for invertible holographic reductions from
#Gq|Rq to #G′q|R′q, one problem is in P iff the other one
is, and similarly one problem is #P-hard iff the other one is
also.

Theorem 2.2. Let Fq be a set of signatures and M be a
q×q orthogonal matrix, i.e., MMT = Iq. For any signature
grid Ω = (G,Fq, π), replacing every signature F ∈ Fq by
M⊗nF , where n is the arity of F , we can get a new signature
grid Ω′. Then HolantΩ = HolantΩ′ .

Proof. First we use a standard technique to reformulate
the signature grid Ω = (G,Fq, π). We insert a new vertex
at each edge of G with signature =2. This will not change
the value of the signature grid. Then for the new bipartite
signature grid (G′,Fq|{=2}, π), we apply a holographic re-
duction with basis M . This will map a signature F ∈ Fq

to M⊗nF , where n is the arity of F . It is an algebraic fact
that =2 will map to itself. Now we can replace each new =2

node back to an edge to revert back to G. This gives the
signature grid Ω′ as required. By the Holant theorem, its
value is the same as Ω.

This theorem is very useful as a way to normalize a given
signature set Fq.

Starting from next section, we will exclusively focus on
Boolean variables. A technical issue is the model of com-
putation for C. Strictly speaking we must only use com-
putable numbers. We will state our results for all C, as-
suming all numbers in a particular instance (signature) are
computable.

3. HOLANT∗ PROBLEMS

Theorem 3.1. Let F be a set of symmetric signatures
over C. Then Holant∗(F) is computable in polynomial time
in the following three Classes. In all other cases, Holant∗(F)
is #P-hard.

1. Every signature in F is of arity no more than two;

717

2. There exist two constants a and b (not both zero, de-
pending only on F), such that for all signatures [x0, x1,
. . . , xn] ∈ F one of the two conditions is satisfied: (1)
for every k = 0, 1, . . . , n − 2, we have axk + bxk+1 −
axk+2 = 0; (2) n = 2 and the signature [x0, x1, x2] is
of the form [2aλ, bλ,−2aλ].

3. For every signature [x0, x1, . . . , xn] ∈ F one of the two
conditions is satisfied: (1) For every k = 0, 1, . . . , n−2,
we have xk + xk+2 = 0; (2) n = 2 and the signature
[x0, x1, x2] is of the form [λ, 0, λ].

The dichotomy is still true even if the inputs are restricted
to planar graphs.

Remark: Since all unary signatures can be used for free,
we always assume the arity of every signature in F is larger
than one. And since all the degenerate signatures can be
decomposed to unary signatures, we also assume that every
signature in F is non-degenerate.
Proof Outline: It is easy to show that the first Class
is computable in P. One can compute the signature of a
path by matrix multiplication. The other two polynomial
time computable Classes follow from our previous work on
Fibonacci gates [9].

Now for the hardness, we first prove in Lemma 3.1 that
the theorem holds if F contains a single symmetric signa-
ture of arity three. The main technique is holographic re-
ductions. We make use of the signature theory developed
in holographic algorithms [8, 7]. This theory gives us three
Categories in a certain parametrization for the signature ac-
cording to some eigenvalues. For each Category, we choose
one #P-hard problem to reduce from, all using holographic
reductions. In Lemma 3.2, we prove that if one signature
has the form in Class 2 of Theorem 3.1, and we combine it
with another signature which is not in this Class, then the
Holant∗ problem is #P-hard. The main idea of the proof
is to reduce it to Lemma 3.1 with holographic reductions.
In Lemma 3.3, we prove the same thing is true for Class 3 .
Finally we extend the above proofs to a set of signatures of
arbitrary arities and finish the whole proof.

The following lemma is the first important step towards
the proof of Theorem 3.1. Holographic reductions play a
decisive role in the proof. This Lemma serves as the foun-
dation for all subsequent lemmas.

Lemma 3.1. Let [x0, x1, x2, x3] be a symmetric signature
with arity 3, then Holant∗([x0, x1, x2, x3]) is #P-hard unless
one of the following two statements is true: (1) there exist
two constants a, b (not both zero) such that ax0+bx1−ax2 =
0 and ax1 + bx2−ax3 = 0; (2) x0 +x2 = 0 and x1 +x3 = 0.

Proof: Assume [x0, x1, x2, x3] does not satisfy either of
the two statements, we prove that Holant∗([x0, x1, x2, x3]) is
#P-hard. Our starting point is that #[0, 1, 1]|[1, 0, 0, 1] and
#[1, 0, 1]|[1, 1, 0, 0] are both #P-Complete [29]. The first
problem is simply counting the number of vertex covers for
3-regular graphs; while the second is to count the number of
(not necessarily perfect) matchings for 3-regular graphs. We
remark that both of them remain #P-Hard even for planar
graphs.

First we use the signature theory from holographic al-
gorithms to give a better parametrization. Given a non-
degenerate signature [x0, x1, x2, x3], there are three Cate-
gories:

• Category 1. xi = α3−i
1 αi

2 + β3−i
1 βi

2, where α1β2 −
α2β1 6= 0;

• Category 2. xi = Aiαi−1 + Bαi, where A 6= 0; or

• Category 3. xi = A(3− i)α2−i + Bα3−i, where A 6= 0.

Category 3 can be viewed as the reversal of Category 2, so
we will omit the proof for Category 3. The choices made here
in this particular parametrization is informed by the “signa-
ture theory” [8, 7] that we have developed in previous work.
(But one can directly check that for any non-degenerate sig-
nature [x0, x1, x2, x3], one of these three parameterizations
is always possible. Note that, if α = 0 then we take the con-
vention that the expression iαi−1 = 0, 1, 0, 0 for i = 0, 1, 2, 3
respectively.)

For Category 1, we have

X = [x0, x1, x2, x3] =

»
α1

α2

–⊗3

+

»
β1

β2

–⊗3

.

We restate our conditions from the Lemma statement in this
new parametrization. The fact that X is non-degenerate
implies that α1β2−α2β1 6= 0. The fact that X is not in the
case indicated in statement (1) implies that α1β1+α2β2 6= 0.
The fact that X is not in the case indicated in statement (2)
implies that α2

1 + α2
2 6= 0 or β2

1 + β2
2 6= 0. By symmetry, we

can assume that α2
1 + α2

2 6= 0.
Under the condition α2

1 +α2
2 6= 0, we can apply an orthog-

onal transformation to map the vector (α1, α2) to be of the
form (α′1, 0), where α′1 6= 0. We may use a (complex orthog-
onal) Householder matrix for this purpose. Then under this
orthogonal basis, the signature becomes

X ′ = [x′0, x
′
1, x

′
2, x

′
3] =

»
α′1
0

–⊗3

+

»
β′1
β′2

–⊗3

.

By Theorem 2.2, this transformation does not change the
complexity of the Holant problem. So it suffices to prove
the #P-hardness result for this signature. By a scalar mul-
tiplication we assume α′1 = 1. So, reuse the notation X, we
can assume the signature is of this form

X = [x0, x1, x2, x3] =

»
1
0

–⊗3

+

»
β1

β2

–⊗3

.

The two conditions from the statement of the Lemma be-
come simply β1β2 6= 0.

Now under the basis T =
h
1 β1
0 β2

i
, signature [1, 0, 0, 1] be-

comes [x0, x1, x2, x3]. This is the result of the contravariant
transformation (on truth tables) (x0, x1, x1, x2, x1, x2, x2, x3)

T

= T⊗3(1, 0, 0, 0, 0, 0, 0, 1)T, namely X = T⊗3

„h
1
0

i⊗3

+
h
0
1

i⊗3
«

.

Under the same basis, [0, 1, 1] undergoes a covariant trans-
formation, we have

(0, 1, 1, 1)(T−1)⊗2 =
1

β2
2

(0, β2, β2, 1− 2β1).

Again, we can ignore the scalar factor 1/β2
2 . So by the holo-

graphic reduction defined by T , the complexity of the prob-
lem #[0, β2, 1− 2β1]|[x0, x1, x2, x3] is the same as #[0, 1, 1]|
[1, 0, 0, 1], which is #P-Hard (vertex cover). In order to
prove that Holant∗([x0, x1, x2, x3]) is #P-Hard, we only need
to show that the signature [0, β2, 1− 2β1] can be realized by
[x0, x1, x2, x3] with some unary signatures.

718

For a binary signature F we can write it in a matrix formh
F (00) F (01)
F (10) F (11)

i
. We use the gadget in Figure 1 to realize

(
t
0
,
 t
1
)
 (
t
0
,
 t
1
)
(
s
0
,
 s
1
)

Figure 1: We use this gadget to realize the signature
[0, β2, 1 − 2β1]. All (three) nodes of degree 3 in this
gadget have the signature [x0, x1, x2, x3].

[0, β2, 1 − 2β1], where the two unary signatures (t0, t1) and
(s0, s1) will be determined later. Let

A =

»
1
0

– ˆ
1 0

˜
=

»
1 0
0 0

–
, B =

»
β1

β2

– ˆ
β1 β2

˜
=

»
β2

1 β1β2

β1β2 β2
2

–
.

In X, if one input is 0, the induced binary signature has
a matrix form A + β1B. If one input is 1, the induced bi-
nary signature has a matrix form β2B. It follows that the
signature of the above gadget is

(t0(A + β1B) + t1β2B)(s0(A + β1B) + s1β2B)

(t0(A + β1B) + t1β2B)

= (t0A + (t0β1 + t1β2)B)(s0A + (s0β1 + s1β2)B)

(t0A + (t0β1 + t1β2)B).

Now we use a new set of variables x = t0, y = t0β1 +
t1β2, z = s0, w = s0β1 + s1β2, and write the above matrix
as (xA + yB)(zA + wB)(xA + yB). We note that for any
given x, y, z, w, we can find t0, t1, s0, s1 to satisfy the above
relationships. Then, to realize [0, β2, 1− 2β1], we just want
to choose some x, y, z, w such that

(xA + yB)(zA + wB)(xA + yB) =

»
0 β2

β2 1− 2β1

–
.

We show that we can find some x, y, z, w to satisfy the above
condition.

Substituting A and B, and denote by γ = β2
1 + β2

2 , we
have the following:

(xA + yB)(zA + wB)(xA + yB)

= w

»
β2

1(x + yγ)2 yβ1β2γ(x + yγ)
yβ1β2γ(x + yγ) y2β2

2γ2

–
+

z

»
(x + yβ2

1)2 yβ1β2(x + yβ2
1)

yβ1β2(x + yβ2
1) y2β2

1β2
2

–

We may choose w = (x + yβ2
1)2 and z = −β2

1(x + yγ)2 to
make the (1, 1) entry zero. The (1, 2) (and (2, 1)) entry is

g1 = xyβ1β
3
2(x + β2

1y)(x + yγ);

and the (2, 2) entry is

g2 = xy2β4
2(x(2β2

1 + β2
2) + 2y(β4

1 + β2
1β2

2)).

We want to choose some x, y such that [g1, g2] = [β2, 1−2β1].
We have β2 6= 0. We will choose xy 6= 0. As both g1 and
g2 are homogenous in x and y, we can ignore the common
factor xyβ3

2 of g1 and g2. It follows that we only have to

satisfy that g2/g1 = (1 − 2β1)/β2 with y = 1. We need the
following

0 = β2g2 − (1− 2β1)g1

= β1(2β1 − 1)x2 + (2β2
1 − β1 + β2

2)(2β2
1 + β2

2)x +

β2
1(β2

1 + β2
2)(2β2

1 − β1 + 2β2
2). (1)

What we have to prove is that at least one of the roots
to the equation in (1) is not a root of g1 = g1(x, 1) = 0.
The roots of g1 = 0 are x = 0, x = −β2

1 and x = −γ.
Firstly we can verify that x = −β2

1 can not be a root of (1).
This is because when x = −β2

1 , the expression in (1) can be
simplified to β2

1β4
2 6= 0. Secondly if x = −γ is a root of (1),

the expression in (1) can be simplified to −β4
2γ, and this

would force γ = 0. So, assuming the expression in (1) as
a polynomial in x is indeed of degree 2, then the only case
we need to worry about is that x = 0 is a double root of
(1). In fact, suppose (1) is indeed quadratic, and x = 0 is
not a double root, then we may let ξ 6= 0 be a root of (1).
This ξ 6= −β2

1 , because −β2
1 is not a root of (1); ξ can’t be

−γ either, for otherwise −γ would be a root of (1) which we
had proved it would force γ = 0, and thus ξ = −γ = 0, a
contradiction. Thus ξ is a root of (1) but not a root of g1,
as is needed.

Now let’s consider the exceptional cases: either x = 0 is a
double root of (1), or (1) has degree less than 2. If x = 0 is
a double root of (1), we have

(2β2
1−β1+β2

2)(2β2
1 +β2

2) = β2
1(β2

1 +β2
2)(2β2

1−β1+2β2
2) = 0.

To satisfy this, there are only four exceptional cases (A1 to
A4): β1 = 1, β2 = ±i or β1 = − 1

2
, β2 = ± i√

2
. On the other

hand, if the polynomial in (1) has degree less than 2, then
β1 = 1

2
. In this case, the polynomial becomes

(1/2 + β2
2)x + (1/4 + β2

2)/2 = 0.

This gives us four additional exceptional cases (B1 to B4):
β1 = 1

2
, β2 = ± i

2
, in which case the polynomial is linear

with root x = 0; or β1 = 1
2
, β2 = ± i√

2
, in which case the

polynomial degenerates to a (non-zero) constant. In all other
cases, there is a root of (1) which is not a root of g1, which
completes the #P-hardness proof.

For the cases A1 and A2, we use a new starting prob-
lem #[1, 1, 0]|[1, 0, 0, 1], which is the reversal of the previous
problem and therefore it is also #P-Hard. Then all previous
part of the proof is still valid, except that the signature of
arity two we would like to realize is

(1, 1, 1, 0)(T−1)⊗2 = (1,
1− β1

β2
,
1− β1

β2
,
β2

1 − 2β1

β2
2

).

Substituting β1 = 1, β2 = ±i, the signature is [1, 0, 1] which
is trivially realizable by one edge. So we have proved that
it is #P-Hard in the cases A1 and A2. Now consider the
cases A3 and A4, β1 = − 1

2
, β2 = ± i√

2
. We will give a differ-

ent parametrization. For case A3, we apply an orthogonal

transformation M =
h−i −√2√

2 −i

i
and a scalar multiplier 2i

on the signature and it becomes
h
1
0

i⊗3

+
h

2

2
√

2i

i⊗3

. This is

not one of the exceptional cases and we have proved that it is
#P-Hard. For case A4, we apply another orthogonal trans-

formation M ′ =
h

i −√2√
2 i

i
and a scalar multiplier −2i on

the signature and it becomes
h
1
0

i⊗3

+
h

2

−2
√

2i

i⊗3

.

719

The cases B3 and B4 can be shown by the same method as
in A4 and A3, using M ′ and M respectively. The only cases
left are B1 and B2. Here we will use another gadget similar
to the one in Figure 1 except we remove the middle edge
(including the node labeled (s0, s1) and the middle node of
degree 3). For B1, the signature of this gadget is

(t0(A + β1B) + t1β2B)2 = (xA + yB)2,

where A and B are as before, and with the specific values

of β1, β2, B = 1
4

h
1 i
i −1

i
. By setting x = i and y = −2i, we

have (xA + yB)2 =
h

0 i/2
i/2 0

i
, which is the matrix form of

the target signature [0, β2, 1− 2β1] = [0, i
2
, 0]. This finishes

case B1. The case B2 can be done with x = 1 and y = −2.

Now we prove for Category 2. In this case xi = Aiαi−1 +
Bαi, the condition that it does not satisfy statement (2)
in Lemma 3.1 implies that α 6= ±i. This is because rank

(
h
x0 − x2 x1
x1 − x3 x2

i
) = 2 and its determinant can be shown to be

−A2(1 + α2). Under this condition, we can choose some
orthogonal transformation to make it in the form [x, y, 0, 0]

where y 6= 0. In fact, if we let T =
h
1 B−1

3
α A + B−1

3 α

i
, then the

signature [x0, x1, x2, x3] can be expressed as

(x0, x1, x1, x2, x1, x2, x2, x3)
T = T⊗3(1, 1, 1, 0, 1, 0, 0, 0)T.

(We chose these basis transformations based on an under-
lying signature theory of holographic algorithms, not “out
of blue”. But for brevity of exposition we state these trans-
formations as is without discussing the background. They
can be directly verified, albeit a bit tedious.) Let T = QR
be its QR factorization, where Q is orthogonal and R is up-

per triangular. In fact if we denote T =
h
1 ∗
α ∗

i
, then we can

choose our Q as the (orthogonal) Householder matrix, which

is a (complex) reflection, Q = QT = 1√
1+α2

h
1 α
α −1

i
. Then

QT = R =
h
u w
0 v

i
is upper triangular, where u =

√
1 + α2.

As det Q = −1, det R = − det T = −A 6= 0, we have uv 6= 0.
This Q is our choice of the orthogonal transformation. It fol-
lows that

Q⊗3(x0, x1, x1, x2, x1, x2, x2, x3)
T

= (QT)⊗3(1, 1, 1, 0, 1, 0, 0, 0)T

= R⊗3(1, 1, 1, 0, 1, 0, 0, 0)T

= R⊗3

(»
1
0

–⊗3

+

»
1
0

–
⊗
»
1
0

–
⊗
»
0
1

–
+

»
1
0

–
⊗
»
0
1

–
⊗
»
1
0

–
+

»
0
1

–
⊗
»
1
0

–
⊗
»
1
0

–ff

=

»
u
0

–⊗3

+

»
u
0

–
⊗
»
u
0

–
⊗
»
w
v

–
+

»
u
0

–
⊗
»
w
v

–
⊗
»
u
0

–
+

»
w
v

–
⊗
»
u
0

–
⊗
»
u
0

–

This can be written as a symmetric signature form [u3 +
3u2w, u2v, 0, 0]. Note that the entry u2v 6= 0.

By a scalar multiplication, we can make the entry u2v
equal to 1. So we only have to deal with a signature of the
form [v, 1, 0, 0] for an arbitrary given v.

For this signature, we can apply a holographic transfor-

mation defined by the matrix T ′ =
h
1 v−1

3
0 1

i
with inverse

T ′−1 =
h
1 − v−1

3
0 1

i
. To prove #P-hardness, we will reduce

from the Matching problem #[1, 0, 1] | [1, 1, 0, 0]. Un-
der a contravariant transformation (v, 1, 1, 0, 1, 0, 0, 0)T =
T ′⊗3(1, 1, 1, 0, 1, 0, 0, 0)T, the signature [1, 1, 0, 0] becomes
[v, 1, 0, 0]. Under the same basis, [1, 0, 1] undergoes the co-
variant transformation to become (1, 0, 0, 1)(T ′−1)⊗2 = (

(1, 0)⊗2 +(0, 1)⊗2)(T ′−1)⊗2 = (1, 1−v
3

, 1−v
3

, 1+ (1−v)2

9
). I.e.,

the signature [1, 0, 1] becomes a new symmetric signature

[1, 1−v
3

, 1+ (1−v)2

9
]. The proof is then to use the same gadget

as in Figure 1 to realize this signature, using unary signa-
tures and [v, 1, 0, 0].

We will rename the values x = t0, y = t1, z = s0 and
w = s1 in Figure 1. The signature of this gadget in matrix

form is (xA + yB)(zA + wB)(xA + yB), where A =
h
v 1
1 0

i

and B =
h
1 0
0 0

i
. After some calculations we found that this

signature in symmetric form is [w · (x2v2 + 2xyv + y2) + z ·
(x2(v3 + 2v) + 2xy(v2 + 1) + y2v) + xyv), w · (x2v + xy) + z ·
(x2(v2 + 1) + xyv), w · x2 + z · x2v]. Our goal is to choose x,

y, z and w such that it is equal to [1, 1−v
3

, 1 + (1−v)2

9
] . We

can write this as a system of three linear equations in z and
w. Then we can complete the proof, if we can choose x and
y such that the following matrix has determinant 0, yet the
first two columns have rank 2.
"

x2v2 + 2xyv + y2 x2(v3 + 2v) + 2xy(v2 + 1) + y2v 1

x2v + xy x2(v2 + 1) + xyv 1−v
3

x2 x2v 1 +
(1−v)2

9

#
.

After some row operations it becomes

"
y2 2xy + y2v f3

xy x2 + xyv f2

x2 x2v f1

#
,

where f1, f2, f3 are polynomials in v, and explicitly, f1 =
(10− 2v + v2)/9 and f2 = (3− 13v + 2v2− v3)/9. Subtract-
ing from the second column the first column multiplied by

v, we get

"
y2 2xy f3

xy x2 f2

x2 0 f1

#
. We will set x = 1; this guaran-

tees that the first two columns have rank 2, and gives the

matrix

"
y2 2y f3
y 1 f2
1 0 f1

#
. Now the determinant is easily calcu-

lated, (subtract the first row by the second row multiplied
by y, and the second from the third multiplied by y). The
determinant is −(f1y

2 − 2f2y + f3). As long as f1 and f2

are not simultaneously 0, we can always choose a y to make
this determinant 0.

However it is easy to show that f1 and f2 have no common
zero in v, as 3(f2 + vf1) = 1 − v and v = 1 is not a zero of
either f1 or f2. This completes the proof.

Lemma 3.1 shows us what happens when there is a single
non-degenerate symmetric signature of arity 3. It explicitly
lists two exceptional cases whose #P-Hardness can not be
deduced from Lemma 3.1. The next Lemma addresses what
happens if one signature of arity 3 happens to be in the first
exceptional case, but some other signature does not quite fit.

Lemma 3.2. Let [x0, x1, x2, x3] and [y0, y1, y2] be non-
degenerate symmetric signatures with arity three and two
respectively. Suppose there exist two constants a, b (not both
zero), such that ax0+bx1−ax2 = 0 and ax1+bx2−ax3 = 0,

720

but ay0 + by1 − ay2 6= 0 and [y0, y1, y2] is not of the form
[2aλ, bλ,−2aλ]. Then Holant∗({[x0, x1, x2, x3], [y0, y1, y2]})
is #P-hard.

Lemma 3.3 does the same thing as Lemma 3.2 for the
other exceptional case of the arity 3 signature.

Lemma 3.3. Let [x, y,−x,−y] be a symmetric signature
with arity three and [y0, y1, y2] be a symmetric signature
with arity two. Suppose they are both non-degenerate. If
y0 + y2 6= 0 and [y0, y1, y2] is not of the form [λ, 0, λ], then
Holant∗({[x, y,−x,−y], [y0, y1, y2]}) is #P-hard.

Finally we further extend this result to a set of signatures
with arbitrary arities and finish the proof for Theorem 3.1.
The proofs are omitted here and will be presented in the full
paper.

4. HOLANTC PROBLEMS

Theorem 4.1. Let F be a set of real symmetric signa-
tures, and let F1,F2 and F3 be three families of signatures
defined as

F1 = {λ([1, 0]⊗k + ir[0, 1]⊗k) | λ ∈ C, k = 1, 2, . . . ,

and r = 0, 1, 2, 3};
F2 = {λ([1, 1]⊗k + ir[1,−1]⊗k) | λ ∈ C, k = 1, 2, . . . ,

and r = 0, 1, 2, 3};
F3 = {λ([1, i]⊗k + ir[1, −i]⊗k) | λ ∈ C, k = 1, 2, . . . ,

and r = 0, 1, 2, 3}.
Then Holantc(F) is computable in polynomial time if (1)
After removing unary signatures from F , it falls in one of
the three Classes of Theorem 3.1 (this implies Holant∗(F)
is computable in polynomial time) or (2) (Without remov-
ing any unary signature) F ⊆ F1 ∪ F2 ∪ F3. Otherwise,
Holantc(F) is #P-hard.

Proof Outline: By definition, every instance of Holantc(F)
is also an instance of Holant∗(F). So it is obvious that
if Holant∗(F) is computable in polynomial time then so is
Holantc(F). The polynomial time algorithm for F ⊆ F1 ∪
F2 ∪ F3 is non-trivial. This problem is a special case of a
polynomial time computable problem #CSP(A), where A
is defined in Section 5 as an unsymmetric generalization of
F1 ∪ F2 ∪ F3. The algorithm for #CSP(A) will be given
in Section 5 Theorem 5.2 as part of the proof for complex
weighted #CSP dichotomy theorem.

The main result here is hardness. We want to prove that
aside from these tractable cases, all remaining problems are
#P-hard. Here the main technique is polynomial interpo-
lation. We prove the second dichotomy theorem (Theo-
rem 4.1) by a reduction to the first (Theorem 3.1). We
will show how to interpolate all the unary signatures. Once
we can interpolate all unary signatures, we can make use of
the dichotomy theorem for Holant∗(F). The whole proof is
organized as a sequence of lemmas. In each lemma, we prove
the theorem for a larger family of F , and the remaining un-
proved ones are the beginning of the next lemma. Finally
we prove the theorem for all possible signature sets F . (In
this Extended Abstract, we only present the first of these
lemmas, Lemma 4.3, and leave others to the full paper.) In
some cases, the attempt to interpolate all unary signatures

does not work. In these cases, we employ yet another (the
third) starting point of #P-hardness, which is the problem
of counting Perfect Matchings on 3-regular graphs [11].
We reduce the Perfect Matching problem also by polyno-
mial interpolation , which is done in Lemma 4.4. However,
note that counting Perfect Matchings is computable in
polynomial time for planar graphs [22, 23, 24], therefore our
dichotomy theorem for Holantc problems here does not ex-
tend to planar graphs as our dichotomy theorem for Holant∗

problems does.

The interpolation method was introduced by Valiant [26].
The interpolation method we use here is essentially the same
as Vadhan [25]. We construct a sequence of gadgets with
unary signatures. These signatures are denoted by {Gs} =
[xs, ys] and are related by the following recurrence

»
xs

ys

–
=

»
a11 a12

a21 a22

– »
xs−1

ys−1

–
. (2)

We denote by A =

»
a11 a12

a21 a22

–
and g =

»
x0

y0

–
. We call this

pair (A, g) a recursive construction. It follows from lemma
6.1 in [25] that

Lemma 4.1. Let α, β be the two eigenvalues of A. If the
following three conditions are satisfied (1) det(A) 6= 0; (2) g
is not a column eigenvector of A (nor the zero vector); (3)
α/β is not a root of unity, then the recursive construction
(A, g) can be used to interpolate all unary signatures.

Since two unary signatures [1, 0] and [0, 1] are freely avail-
able, we can get the following lemma from Lemma 4.1 easily.

Lemma 4.2. If we can construct a gadget with signature
[a, b, c], where b2 6= ac, b 6= 0 and a + c 6= 0, then we can in-
terpolate all the unary function. (Hence Theorem 4.1 holds.)

We define some families of symmetric signatures, which
will be used in our proof.

G1 = {[a, 0, 0, · · · , 0, b]|ab 6= 0}
G2 = {[x0, x1, · · · , xk]|∀i even (or ∀i odd), xi = 0}
G3 = {[x0, x1, · · · , xk]|∀i, xi + xi+2 = 0}

We note that G1, G2 and G3 are supersets of F1, F2 and
F3 respectively. As the first step for the proof of Theorem
4.1, we prove that if F contains any signature which is not in
G1∪G2∪G3, then we can interpolate all the unary signatures.

Lemma 4.3. If F 6⊆ G1∪G2∪G3, then Theorem 4.1 holds.

Proof. Since F 6⊆ G1 ∪ G2 ∪ G3, there exists a f ∈ F
and f 6∈ G1 ∪ G2 ∪ G3. Since all the unary signatures are in
G3, the arity of f is larger than 1 and f is non-degenerate.
There are two cases according to whether f has a zero entry
or not.

(1) f has some zero entries. If there exists a sub signature
of f has the form [0, a, b] or [a, b, 0], where ab 6= 0, then we
are done by Lemma 4.2. Otherwise, we can conclude that
there is no two successive non-zero entries. So the signature
f has this form [0i0x10

i1x20
i2 · · ·xk0ik], where xj 6= 0 and

for all 1 ≤ j ≤ k − 1, ij ≥ 1. If for all 1 ≤ j ≤ k − 1, ij
is odd, then f ∈ G2, a contradiction. Otherwise there exists
a sub signature of the form [x, 0, 0, · · · , 0, y], where xy 6= 0

721

and there are an even number of 0s between x and y. If this
is the whole f , then f ∈ G1, a contradiction. So there is
one 0 before x or after y. By symmetry, we assume there is
a 0 before x, so we have a sub signature [0, x, 0, 0, · · · , 0, y],
whose arity is even and larger than 3. We call its dangling
edges 1, 2, · · · , 2k. Then for every i = 1, 2, · · · , k − 1, we
connect dangling edges 2i+1 and 2i+2 together to a regular
edge. After that, we have a F-gate with arity 2, and its
signature is [0, x, y]. Then we are done by Lemma 4.2.

(2) f has no zero entry. We only need to prove that we
can construct a function [a′, b′, c′] satisfying the three con-
ditions in Lemma 4.2. Suppose all sub signatures of f with
arity 2 do not satisfy all the three conditions. For each
sub-signature [a′, b′, c′], either a′ + c′ = 0, or b′2 = a′c′. If
all of them satisfy a′ + c′ = 0, then f ∈ G3. A contradic-
tion. If all of them satisfy b′2 = a′c′, then f is degenerate.
A contradiction. W.l.o.g, we can assume there is a sub-
signature [a, b, c, d] of f , such that a + c = 0, b + d 6= 0,
and c2 = bd. Combining two [a, b, c, d], we can get a func-
tion [a′, b′, c′] = [a2 + 2b2 + c2, ab + 2bc + cd, b2 + 2c2 + d2].
b′ = c(b + d) 6= 0. a′+ c′ = a2 + 3b2 + 3c2 + d2 > 0. Because
c2 = bd, a′c′−b′2 = a2b2+2a2c2+a2d2+2b4+4b2c2+2b2d2 6=
0. We are done by Lemma 4.2.

Lemma 4.4. If a 6= ±1, Holantc([0, 1, 0, a]) is #P Hard.

Proof. Our starting point here is that Holant([0, 1, 0, 0])
is #P-Hard. This is exactly the perfect matching problem
in 3-regular graph [11]. So the problem is #P-Hard if a = 0.

Now assume that a 6∈ {−1, 0, 1}, and we use this signature
to interpolate all the signature of form [0, 1, 0, x], in partic-
ular, we can interpolate [0, 1, 0, 0] and finish the hardness
reduction.

1
i

N

0
N
 1
N
 i
N

Figure 2: A recursive construction. The signature
of every vertex in the gadget is [0, 1, 0, a].

The recursive construction is depicted by Figure 2. By
a simple parity argument, every F-gate Ni has a signature
of the form [0, xi, 0, yi]. After some calculation, we can get
that they satisfy the following recursive relation:

»
xi+1

yi+1

–
=

»
3(a2 + 1) a3 + a
3(a3 + a) a6 + 1

– »
xi

yi

–
.

In this case, the signatures we want to interpolate are of
arity 3, but since all of them are of form [0, xi, 0, yi] with
two dimensions freedom, we can also use the interpolation

method as in Lemma 4.1. Let A =

»
3(a2 + 1) a3 + a
3(a3 + a) a6 + 1

–
,

then (A, [1, a]T) forms a recursive construction. Since det(A) =
3(a4 − 1)2 6= 0, the first condition holds. Its characterize
equation is X2 − (a6 + 3a2 + 4)X + 3(a4 − 1)2 = 0. For

this quadratic equation, the discriminant ∆ = (a6 − 3a2 −
2)2 + 12(a + a3)2 > 0. So A has two distinct real eigenval-
ues. The sum of the two eigenvalues is a6 + 3a2 + 4 which
is larger than zero. So they are not opposite to each other.
Therefore, the ratio of these two eigenvalues is not a root
of unity and the third condition holds. Consider the second
condition, if the initial vector [1, a] is a column eigenvectors

of A. We have A

»
1
a

–
= λ

»
1
a

–
, where λ is one eigenvalue of

A. From this, we will conclude that a(a2 − 1)(a4 − 1) = 0,
which will not happen given a 6∈ {−1, 0, 1}. To sum up, this
recursive relation satisfies all the three conditions of Lemma
4.1 and can be used to interpolate all the signatures of form
[0, 1, 0, x]. This completes the proof.

5. WEIGHTED BOOLEAN #CSP
We define two classes of functions, for which the complex

weighted #CSP problems are tractable.
X denotes the k+1 dimensional column vector (x1, x2, . . . ,

xk, 1) over Boolean field F2. Suppose A is a Boolean ma-
trix. χAX denotes the affine relation on inputs x1, x2, . . . , xk,
whose value is 1 if AX is the zero vector, 0 if AX is not
the zero vector. Suppose F is a function on input variables
x1, x2, . . . , xk. F xs=c denotes the function F xs=c(x1, . . . ,
xs−1, xs+1, . . . , xk) = F (x1, . . . , xs−1, c, xs+1, . . . , xk), and
F xs=∗ denotes the function F xs=∗(x1, . . . , xs−1, xs+1, . . . , xk)
=
P

xs
F (x1, . . . , xk).

We use A to denote all functions which have the form
χAX iL1(X)+L2(X)+···+Ln(X), where i =

√−1, Lj is a 0-1
indicator function χ〈αj ,X〉, where αj is a k + 1 dimensional
vector, the inner product 〈·, ·〉 is over Z2. The additions
among LjX are just the usual addition in Z. It can be
computed mod 4, but not mod 2. (Since we ignore global
constant, all functions that are constant multiples of these
functions are also in this class.)
P denotes the class of functions which can be expressed

as a product of unary functions, binary equality functions
([1, 0, 1]) and binary disequality functions ([0, 1, 0]).

Theorem 5.1. Suppose F is a class of functions mapping
Boolean inputs to complex numbers. If F ⊆ A or F ⊆ P,
then #CSP(F) is computable in polynomial time. Other-
wise, #CSP(F) is #P hard.

Proof Outline: The polynomial time algorithm for #CSP(P)
is obvious. Lemma 5.2 gives a polynomial time algorithm
for #CSP(A). In dichotomy theorems for unweighted and
non-negative weighted #CSP problems, the tractable part
is relatively obvious. In our dichotomy theorem, we have a
more interesting tractable part because of cancelations. In
Lemma 5.4, we prove that #CSP({F}) is #P-hard unless F
has affine support. This structure is essential in the proof
of Lemma 5.5 and Lemma 5.6, the two key lemmas of the
hardness reduction. The common strategy of Lemma 5.5
and Lemma 5.6 is to reduce the arity of a given function. In
lemma 5.5, we prove that given a function F , which is not
in A, we can simulate (in polynomial time) a unary func-
tion F ′ 6∈ A; In Lemma 5.6, we prove that given a function
G, which is not in P, we can simulate (in polynomial time)
a binary or ternary function G′ 6∈ P. Then we prove that
#CSP({F ′, G′}) is #P-hard. The starting point of the hard-
ness result is Lemma 5.3, which says that if F contains only
one binary symmetric function and is not in A∪P, then the

722

#CSP problem is #P-hard. To complete the proof, we show
that we can always combine functions F ′ and G′ to realize
a binary symmetric function which is not in P ∪ A.

Now we analyze #CSP(A). Firstly, we show how to get
rid of the factor χAX .

Lemma 5.1. Let F (x1, x2, . . . , xk) = χAX ·
iL1(X)+L2(X)+···+Ln(X) ∈ A. If AX = 0 is infeasible over
Z2, then

P
x1,x2,...,xk

F = 0. Suppose AX = 0 is not infea-
sible. Then in polynomial time, we can construct another

function H(y1, y2, . . . , ys) = iL
′
1(Y)+L′2(Y)+···+L′n(Y) ∈ A,

such that 0 ≤ s ≤ k, and
P

x1,x2,...,xk
F =

P
y1,y2,...,ys

H.

The following lemma gives a key property of the function
iL1(X)+L2(X)+···+Ln(X). This property plays an important
role both in the tractability proof and the hardness proof.

Lemma 5.2. Let F (x1, x2, . . . , xk) = iL1(X)+L2(X)+···+Ln(X).
Exactly one of the following two statements hold:

1. (Congruity) There exists a constant c ∈ {1,−1, i,−i}
such that for all x2, x3, . . . , xk ∈ {0, 1} we have
F x1=1/F x1=0(x2, x3, . . . , xk) = c;

2. (Semi-congruity) There exists a constant c ∈ {1, i}
and an affine subspace S of dimension k − 2 on T =
{(x2, x3, . . . , xk) | xi ∈ Z2}, such that F x1=1/F x1=0

(x2, x3, . . . , xk) = c on S, and F x1=1/F x1=0(x2, x3, . . . ,
xk) = −c on T − S.

Proof. If for every 1 ≤ j ≤ n, the coefficient for x1 is
zero in the affine linear form for Lj(X), then F x1=1/F x1=0

is a constant 1. Otherwise, w.l.o.g. suppose the coefficients
for x1 is nonzero in exactly the first m affine linear forms
Lj(X). Obviously, the other Lj(X)’s cancel in the ratio
F x1=1/F x1=0.

For any assignment to x2, x3, . . . , xk, consider the two as-
signments (0, x2, x3, . . . , xk) and (1, x2, x3, . . . , xk). For each
1 ≤ j ≤ m, Lj(1, x2, x3, . . . , xk) = 1 − Lj(0, x2, x3, . . . , xk).

Therefore the ratio F x1=1/F x1=0 =
Qm

j=1 i1−2Lj(0,x2,x3,...,xk)

= im(−1)
Pm

j=1 Lj(0,x2,x3,...,xk). Here m is independent of the
assignment on x2, x3, . . . , xk. Since the base is −1 now, the
sum can be evaluated as a sum mod 2. Therefore there is an
affine linear form α(X) =

Pk
`=2 α`x` + αk+1 (mod 2), such

that F x1=1/F x1=0 = im(−1)α(X).
If all α` = 0, for 2 ≤ ` ≤ k, then this ratio is a constant

and we are in the case of Congruity. If α` = 1, for some
2 ≤ ` ≤ k, then we have Semi-congruity.

Theorem 5.2. #CSP(A) is polynomial time computable.

Proof. We first observe that A is closed under multipli-
cation. Therefore given an instance of #CSP(A), the value
of the output can be expressed as the summation on a sin-
gle function F = χAX iL1(X)+L2(X)+···+Ln(X) ∈ A. We also
note that if F ∈ A, so is F xs=c and F xs=∗.

In each step of our algorithm, we reduce the number of
variables by at least one and still get a summation of this
form.

If the linear system AX = 0 over Z2 is infeasible, the
function is a totally zero function and we just output 0. If
AX = 0 is feasible then by Lemma 5.1 we can remove the
factor χAX and possibly decrease the number of variables at
the same time.

Now we assume it has the form F = iL1(X)+L2(X)+···+Ln(X),
we apply Lemma 5.2 to remove x1. There are three cases.

Case 1: We have Congruity in Lemma 5.2. Then F x1=1/F x1=0

is a constant c, and
X

x1,x2,...,xk

F = (1 + c) ·
X

x2,x3,...,xk

F x1=0.

So we get a new summation
P

x2,x3,...,xk
F x1=0 and have

removed a variable x1.
Case 2: We have Semi-congruity in Lemma 5.2, and c = 1.

Then on the affine subspace S, the ratio F x1=1/F x1=0 =
1, and on the complementary subspace T − S the ratio
F x1=1/F x1=0 = −1. For all (x2, x3, . . . , xk) ∈ T − S, the
terms cancel, F x1=1(x2, x3, . . . , xk)+F x1=0(x2, x3, . . . , xk) =
0. On S, the terms are equal. It follows that

X
x1,x2,...,xk

F = 2
X

x2,x3,...,xk

χSF x1=0.

Note that χSF x1=0 is also a function in A, so we get a new
summation of this form and have removed a variable x1.

Case 3: We have Semi-congruity in Lemma 5.2, and c = i.
Then for all (x2, x3, . . . , xk) in the affine subspace S, we have
F x1=1/F x1=0 = i, and in T−S, we have F x1=1/F x1=0 = −i.
It follows that

X
x1,x2,...,xk

F =
X

S

(1 + i)F x1=0 +
X
T−S

(1− i)F x1=0.

Now we make a crucial observation. The ratio of 1 + i and
1 − i is exactly i. As a result we can rewrite the two sums
as follows:
X

x1,x2,...,xk

F =
X

S

(1−i)F x1=0iL(X′)+
X
T−S

(1−i)F x1=0iL(X′),

where L(X ′), on X ′ = (x2, x3, . . . , xk, 1), is a 0-1 indicator
function which takes the value 1 on S and 0 on T −S. Thus
we can combine the two sums and get

X
x1,x2,...,xk

F = (1− i) ·
X

x2,x3,...,xk

“
F x1=0 · iL(X′)

”
.

Note that F x1=0 · iL(X′) is also a function in A. So we get
a new summation of this form and have removed a variable
x1.

After at most k step we can eliminate all the variables and
obtain the value of the initial summation. Both k and n are
bounded by input size. In each iteration, we either resolve
an affine linear system AX = 0 or compute an affine lin-
ear equation from Lemma 5.2 representing the affine linear
subspace S, both of which can be done in polynomial time.
And after one iteration, the formula inside the summation

at most grows by a factor of iL(X′) or χS . So the whole
algorithm is in polynomial time.

The proofs of the following lemmas are left to the full
version.

Lemma 5.3. If [a, b, c] 6∈ A ∪ P, #CSP({[a, b, c]}) is #P-
hard. To be explicit, all tractable functions [a, b, c] from
A ∪ P have one of the following forms: [x, 0, y], [0, x, 0],
[x2, xy, y2], x[1,±i, 1] or x[1,±1,−1].

The following lemma generalizes Lemma 11 in [13] to com-
plex weights. However the original proof does not work for
complex weights, due to possible cancelations.

723

Lemma 5.4. If the support RF is not affine, then #CSP({F})
is #P-hard.

Lemma 5.5. If F 6∈ A, then either #CSP({F}) is #P-
hard, or we can simulate a unary function H 6∈ A, that is,
there is a reduction from #CSP({F, H}) to #CSP({F}).

Lemma 5.6. For any function F 6∈ P, either #CSP({F})
is #P-hard, or we can simulate, using F , a function [a, 0, 1, 0]
(or [0, 1, 0, a]), where a 6= 0, or a binary function H 6∈ P
having no zero values.

We also prove a stronger dichotomy theorem that the
hardness result holds even when restricted to those #CSP
instances, in which each variable occurs at most three times.

Theorem 5.3. If F 6⊆ A and F 6⊆ P, #CSP(F) where
each variable occurs at most three times (that is, #{=1, =2

, =3}|F) is #P-hard.

6. REFERENCES
[1] Andrei A. Bulatov. A dichotomy theorem for

constraint satisfaction problems on a 3-element set. J.
ACM, 53(1):66–120, 2006.

[2] Andrei A. Bulatov. The complexity of the counting
constraint satisfaction problem. In ICALP (1), volume
5125 of Lecture Notes in Computer Science, pages
646–661. Springer, 2008.

[3] Andrei A. Bulatov and Vı́ctor Dalmau. Towards a
dichotomy theorem for the counting constraint
satisfaction problem. Inf. Comput., 205(5):651–678,
2007.

[4] Andrei A. Bulatov and Martin Grohe. The complexity
of partition functions. In ICALP, volume 3142 of
Lecture Notes in Computer Science, pages 294–306.
Springer, 2004.

[5] Andrei A. Bulatov and Martin Grohe. The complexity
of partition functions. Theor. Comput. Sci.,
348(2-3):148–186, 2005.

[6] Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph
homomorphisms with complex values: A dichotomy
theorem. manuscript, 2009.

[7] Jin-Yi Cai and Pinyan Lu. Holographic algorithms:
from art to science. In STOC ’07: Proceedings of the
thirty-ninth annual ACM symposium on Theory of
computing, pages 401–410, 2007.

[8] Jin-Yi Cai and Pinyan Lu. On symmetric signatures
in holographic algorithms. In STACS, volume 4393 of
Lecture Notes in Computer Science, pages 429–440.
Springer, 2007.

[9] Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holographic
algorithms by fibonacci gates and holographic
reductions for hardness. In FOCS ’08: Proceedings of
the 49th Annual IEEE Symposium on Foundations of
Computer Science, pages 644–653, 2008.

[10] N. Creignou, S. Khanna, and M. Sudan. Complexity
classifications of boolean constraint satisfaction
problems. SIAM Monographs on Discrete Mathematics
and Applications, 2001.

[11] P. Dagum and M. Luby. Approximating the
permanent of graphs with large factors. Theor.
Comput. Sci., 102:283–305, 1992.

[12] C. T. J. Dodson and T. Poston. Tensor Geometry.
Graduate Texts in Mathematics 130. Springer-Verlag,
New York, 1991.

[13] Martin E. Dyer, Leslie Ann Goldberg, and Mark
Jerrum. The complexity of weighted boolean #csp.
CoRR, abs/0704.3683, 2007.

[14] Martin E. Dyer, Leslie Ann Goldberg, and Mike
Paterson. On counting homomorphisms to directed
acyclic graphs. In ICALP (1), volume 4051 of Lecture
Notes in Computer Science, pages 38–49. Springer,
2006.

[15] Martin E. Dyer, Leslie Ann Goldberg, and Mike
Paterson. On counting homomorphisms to directed
acyclic graphs. J. ACM, 54(6), 2007.

[16] Martin E. Dyer and Catherine S. Greenhill. The
complexity of counting graph homomorphisms
(extended abstract). In SODA, pages 246–255, 2000.

[17] Martin E. Dyer and Catherine S. Greenhill.
Corrigendum: The complexity of counting graph
homomorphisms. Random Struct. Algorithms,
25(3):346–352, 2004.

[18] Tomás Feder and Moshe Y. Vardi. The computational
structure of monotone monadic snp and constraint
satisfaction: A study through datalog and group
theory. SIAM J. Comput., 28(1):57–104, 1998.

[19] M. Freedman, L. Lovász, and A. Schrijver. Reflection
positivity, rank connectivity, and homomorphism of
graphs. J. AMS, 20:37–51, 2007.

[20] Leslie Ann Goldberg, Martin Grohe, Mark Jerrum,
and Marc Thurley. A complexity dichotomy for
partition functions with mixed signs. CoRR,
abs/0804.1932, 2008.

[21] P. Hell and J. Nešetřil. On the complexity of
h-coloring. Journal of Combinatorial Theory, Series B,
48(1):92–110, 1990.

[22] P. W. Kasteleyn. The statistics of dimers on a lattice.
Physica, 27:1209–1225, 1961.

[23] P. W. Kasteleyn. Graph theory and crystal physics. In
Graph Theory and Theoretical Physics, pages 43–110.
Academic Press, London, 1967.

[24] H. N. V. Temperley and M. E. Fisher. Dimer problem
in statistical mechanics - an exact result. Philosophical
Magazine, 6:1061–1063, 1961.

[25] Salil P. Vadhan. The complexity of counting in sparse,
regular, and planar graphs. SIAM J. Comput.,
31(2):398–427, 2001.

[26] Leslie G. Valiant. The complexity of enumeration and
reliability problems. SIAM J. Comput., 8(3):410–421,
1979.

[27] Leslie G. Valiant. Holographic algorithms (extended
abstract). In FOCS ’04: Proceedings of the 45th
Annual IEEE Symposium on Foundations of
Computer Science, pages 306–315,2004.

[28] Leslie G. Valiant. Accidental algorthims. In FOCS ’06:
Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, pages 509–517,
2006.

[29] Mingji Xia, Peng Zhang, and Wenbo Zhao.
Computational complexity of counting problems on
3-regular planar graphs. Theor. Comput. Sci.,
384(1):111–125, 2007.

724

