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Abstract. In holographic algorithms, symmetric signatures have been
particularly useful. We give a complete characterization of these symmet-
ric signatures over all bases of size 1. These improve previous results [4]
where only symmetric signatures over the Hadamard basis (special basis
of size 1) were obtained. In particular, we give a complete list of Boolean
symmetric signatures over bases of size 1.

It is an open problem whether signatures over bases of higher
dimensions are strictly more powerful. The recent result by Valiant [I§]
seems to suggest that bases of size 2 might be indeed more powerful than
bases of size 1. This result is with regard to a restrictive counting version
of #SAT called #Pl-Rtw-Mon-3CNF. It is known that the problem is
#P-hard, and its mod 2 version is ®P-hard. Yet its mod 7 version
is solvable in polynomial time by holographic algorithms. This was
accomplished by a suitable symmetric signature over a basis of size 2 [I§].
We show that the same unexpected holographic algorithm can be realized
over a basis of size 1. Furthermore we prove that 7 is the only modulus
for which such an “accidental algorithm” exists.

1 Introduction

Valiant has recently developed the theory of matchgate computations and
holographic algorithms [I3/15]. This is a novel methodology to design polynomial
time algorithms. With this methodology, for some seemingly exponential time
computations, one can design a custom made process to carry out exponentially
many cancellations so that the computation can actually be done in polynomial
time. Frequently the technical content of this design process amounts to finding
a suitable signature.

These algorithms can appear quite unintuitive and exotic. So far, the main
impact of this new theory is not so much as solving every day algorithmic
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problems, but rather pointing out the existence of some unexpected ways of
doing computation. Thus, to us, the most intriguing aspect of the new theory
is its broader implication in complexity theory. A case in point is the following
restrictive version of #SAT (the problem of counting satisfying assignments),
called #Pl-Rtw-Mon-3CNF. Here we consider only planar Boolean formulae
in Conjunctive Normal Form with 3 variables in each clause. Furthermore we
assume each variable appears positively (Monotone) and in exactly two clauses
(Read twice). (This problem can also be stated naturally as a Vertex Cover
problem on 2-3-regular planar bipartite graphs.) #Pl-Rtw-Mon-3CNF has been
studied before, including its approximate versions [7J6/T]. It is known to be #P-
hard. Moreover counting the satisfying assignments modulo 2 for such formulae
is @P-hard. However, Valiant [I8] showed that a surprising polynomial time
(he called it an “accidental”) algorithm exists for this counting problem mod 7,
denoted #7Pl-Rtw-Mon-3CNF, using holographic algorithms. What makes this
work is a particular symmetric signature exists over the field Z;. This is what
Valiant called an “accidental or freak object” [I8] [

Suppose we all believe P # NP. Unless and until a proof of P # NP is found,
one should regard this as an open problem. Then it is reasonable to ask where
do we derive our confidence in this assertion. Certainly this is not due to any
strong unconditional lower bound. We believe this confidence is based on the
fact that all existing algorithmic approaches do not seem to tackle a myriad of
NP-hard problems. Valiant’s new theory of holographic algorithms challenges us
to re-examine this belief critically. To put it bluntly, if you haven’t seen these
“exotic” or “accidental” algorithms, and haven’t looked closely at how such
algorithms behave, then how do you know such algorithms do not exist for one
NP-hard problem? As Valiant pointed out [15], “any proof of P # NP may need
to explain, and not only to imply, the unsolvability” of NP-hard problems in this
framework.

Valiant actually introduced two related theories, first, matchgate / match-
circuit [I3], and second, holographic algorithms [I5]. In the first theory, the
basic notion is a matchgate and its character, defined by Pfaffians. He used this
theory to simulate a fragment of quantum computations. In the second, a new
ingredient was added, that of a linear vector basis through which computation is
expressed. In this second theory, the matchgates are assumed to be planar, and
each matchgate is associated with a signature defined by the Perfect Matching
polynomial PerfMatch. Then the computation is ultimately done in terms of the
Fisher-Kasteleyn-Temperley (FKT) method [8I9/12] via the Holant Theorem [I5].
After the development from [3/4], a certain unification of the two theories was
achieved. Basically, using the algebraic properties of Pfaffians, we were able
to achieve a complete characterization of realizable characters in [3]. In [4] an
equivalence theorem was proved for matchgates/characters on the one hand and

! From Valiant [I8]: “... the situation with the P = NP question is not dissimilar to
that of other unresolved enumerative conjectures in mathematics. The possibility
that accidental or freak objects in the enumeration exist cannot be discounted, if
the objects in the enumeration have not been systematically studied previously.”
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planar-matchgates/signatures on the other, thereby the characterization theorem
also applies to planar matchgates and their standard signatures. In this paper,
we will use these results.

Due to space limitations, we will omit most definitions, and refer the readers
to [I3TBI3I42). A planar matchgate I' = (G, X,Y) is a weighted graph G =
(V, E,W) with a planar embedding, having external nodes, the input nodes
X and the output nodes Y, placed on the outer face. Define PerfMatch(G) =
> L1 (i jyen wij, where the sum is over all perfect matchings M. The standard

signature, u = u(I'), is defined to be a 2/¥l x 2/XI matrix whose entries are
indexed by subsets X’ C X and Y’ C Y, and the entry at (row Y, column X')
is uz = PerfMatch(G — Z), where Z = X'UY". Here G — Z denotes the subgraph
of G obtained by removing the subset of nodes in Z (and all their incident edges).
Matchgates with only output nodes are called generators. Matchgates with only
input nodes are called recognizers.

In the design of holographic algorithms so far, the most useful signatures
have been the so-called symmetric signatures. A symmetric signature is one
where uz only depends on the cardinality of Z; we denote this by o|z/. Thus,
a symmetric signature of a generator or a recognizer with k£ external nodes can
be identified with a vector of k + 1 entries ¢ = [09,01,...,0%]. The ingenious
idea of holographic algorithms is that one can transform the standard signatures
under a linear transformation of the basis vectors. Under this transformation,
the symmetric signature will remain a symmetric signature, but will have a clear
combinatorial meaning. E.g., o = [0,1,1,1] will mean a Boolean OR. These
combinatorial interpretations, when applied with the Holant Theorem [I5], lead
to polynomial time algorithms. The symmetric signatures are responsible for a
majority of the interesting polynomial time algorithms in the new theory.

To understand the limit of holographic algorithms, and to develop a sub-
stantial theory for this new methodolgy, we must come to grips with what
can or cannot be done by signatures of matchgates, under all possible basis
transformations. This is still a rather remote goal. For now we can only say
something intelligent on symmetric signatures, and over bases of size 1.

In this paper, we give a complete characterization of symmetric signatures
over bases of size 1. Our characterization is valid for all fields with characteristic
p # 2. These improve previous results [4] where only symmetric signatures over
the Hadamard basis, which is a special basis of size 1, were obtained. In [4],
those results were proved using properties of Krawtchouk polynomials. Here
we are able to prove a much stronger results without the use of these special
polynomials. We also give a complete list of Boolean symmetric signatures over
bases of size 1.

It is an open problem whether signatures over bases of higher dimensions are
strictly more powerful. The recent result by Valiant [I8] seems to suggest that
this might be the case. He considered a restrictive version of #SAT, called #P1-
Rtw-Mon-3CNF: To count the number of satisfying assignments for a planar
monotone read-twice 3CNF formula. The problem is #P-hard for counting [6/1]
and @P-hard for counting mod 2. But Valiant showed that it is solvable by
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an exotic holographic algorithm for counting mod 7. In order to do that, he
used a suitable signature, with a basis of size 2. We show that the same
holographic algorithm for #;Pl-Rtw-Mon-3CNF can be realized over a basis
of size 1. Furthermore we prove that 7 is the only modulus for which such an
“accidental algorithm” exists.

2 Holographic Algorithms for #,;Pl-Rtw-Mon-3CNF

We briefly review some background information on holographic algorithms.
We use the tensor theoretic treatment for matchgates (see [2]). Let b denote
the standard basis for two dimensional space (or size 1), b = [eg,e1] =

[(é) , (?)] Consider another basis 8 = [n,p] = [(”O) (PO)]_ Let T be

ni ) \p1

ni1p1
convenience, denote 1" = (t;) and T-1 = (t?) (Upper index is for row and lower
index is for column.)

Each generator (with n output nodes) is associated with a contravariant tensor
G. Each recognizer (with n input nodes) is associated with a covariant tensor
R. The standard signature of a matchgate is the expression of its matchgate
tensor under the standard basis for the tensor product space. Under a basis
transformation 8 = bT, these tensors take different forms, and transform either
contravariantly or covariantly.

More concretely, the contravariant tensor G of a generator transforms under
the basis transformation 3 = bT as

the transformation matrix from b to 3, where T = 10 p0]7 and 8 = bT. For

(G)iriain = ZG”“‘"“EEEZ {z: (1)
Here the entry of the standard signature G2+ = PerfMatch(G — Z), and the
bit string iyis ..., denotes subset Z. Correspondingly, the covariant tensor R
of a recognizer transforms as

(R)iriy..ir, = ZRiliQ...int%tZ tzz (2)

(where the sum is with all matching upper and lower indices.)

Let’s consider #P1l-Rtw-Mon-3CNF. We are given a planar formula in 3SCNF
form, where each variable appears positively, and appearing in exactly 2 clauses.
By being a planar formula [I0] our formula can be drawn as a planar bipartite
graph (L, R, E)), where each variable z is represented by a node in L, and each
clause C'is represented by a node in R, such that they are connected iff x appears
in C. Because it is a Read-twice 3CNF, each node in L has degree 2, and each
node in R has degree 3.

Now we replace each node in L by a generator with 2 outputs, and replace
each node in R by a recognizer with 3 inputs, and connect each generator output
and recognizer input in the natural way. This means that, suppose x appears in
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C, and G[z] and R[C] are the generator and recognizer for z and C' respectively,
then there is an edge (with assigned weight 1) connecting one output of G[z]
and one input of R[C].

This is called a matchgrid 2. If 2 has g generators G[i] and r recognizers R|[j],
and w(= 2¢g = 3r) connecting wires, the beautiful Holant Theorem of Valiant [15]
states that under any basis 3,

Holant({2) = PerfMatch(G), (3)
where
Holant(£2) = Z {IT<i<gGi]"] - [IIi<j<rR[jl2]} - (4)
$€/@®f

(In tensor language, this is called a contraction.)

Now imagine we were able to find a generator matchgate GG, a recognizer
matchgate R, and a basis 3 over the field of complex numbers C, such that G
has a signature [1,0,1] and R has a signature [0, 1,1, 1]. Note that the signature
[1,0,1]]=1n®n+0(n®p+p®n)+ 1p® p has the clear combinatorial meaning
of two equal signals nn or pp, and [0, 1,1, 1] has the Boolean meaning of OR.
Thus the exponential sum represented by Holant({2) in @) counts exactly the
number of satisfying assignments of the original Boolean formula, since each
such assignment contributes exactly one to the sum defining Holant({2).

However, Holant({?2) is not computed by its defining expression (), but rather
as PerfMatch(G) in (B]) by the Holant Theorem. Notice how fragments of actual
Boolean assignments to the 3CNF formula, represented by the signature entries,
get all “mixed up holographically” by the transformation in () and (@), so that
each fragment is split into exponentially many “shares” which then get summed
up in (@). The latter can be computed in polynomial time by the FKT method.
Now if we were able to find such matchgates and a basis over C such that the
(symmetric) signatures have the desired form, it would have collapsed #P to P.

However, Valiant showed that one can find such matchgates and a basis over
Z7, but a larger basis of size 2 is used (we will not formally define this notion
for space limitations). The resulting Holant counts the number of satisfying
assignments modulo 7. This is surprising, especially because it is known that the
problem modulo 2 is &P-hard.

In the rest of this section we prove that the problem can be solved using a
basis of size 1. Moreover, modulo 7 is the only modulus for which this is possible.

Theorem 1. For Z7 and for basis 3 = [n,p| = [(Z?) J (g?)] - {(é) ’ (g)] ’

there is a generator for [1,0,1] and a recognizer for [0,1,1,1].

Remark: We recall that the notation is for symmetric signatures. Thus for
a generator, [1,0,1] denotes (1,0,0,1)T in dimension 4, and for a recognizer,
[0,1,1,1] denotes (0,1,1,1,1,1,1,1,1) in dimension 8.

Proof: It is a simple fact that the standard signature (3,0,0,5)7 is realizable
by a generator matchgate with 2 outputs. This can be shown directly by a direct
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construction [I5] or it follows from the general theory of standard signature
realizability theorem in terms of matchgate identities [I5J3I4]. Similarly the
standard signatures [0, 3, 0, 5] is realizable by a recognizer, with 3 inputs.
A simple calculation shows that n @ n +p®@p = (3,0,0,5)T for the chosen
basis 3 over Z7. Thus the generator has signature [1,0, 1] under the basis 3.
As a recognizer, its signature ug w.r.t. the basis 8 and its standard signature
u are related by the equation

ug = uT®,  where T = {no po} .
nip1

We can calculate its signature w.r.t. 8, and we find the symmetric signature
[ro, 71,72, 73], where
ro = 3 X 3ngny + 5n3 = 0,
r1 = 3(ngp1 + 2nonipo) + 5nipy =1,
r2 = 3(pgn1 + 2popino) + Spini = 1,
r3 =3 X 3pgp1 + 5p} = 1.
Therefore this matchgate recognizes [0, 1,1, 1]. O

Corollary 1. There is a polynomial time algorithm for #+ Pl-Rtw-Mon-CNF.

For bases of size 1, we can further prove that a similar technique can not be
applied to any other #;Pl-Rtw-Mon-3CNF problem unless £ = 7. This result
may highlight the true “accidental” nature of the polynomial time algorithm
for #7Pl-Rtw-Mon-3CNF. (The proof is omitted here, and is given in the full
paper[].)

Theorem 2. Characteristic 7 is the unique characteristic of a field for which
there is a common basis of size 1 for generating [1,0, 1] and recognizing [0,1,1,1].

3 Symmetric Signatures

In this section we give a closed form solution to characterize all symmtric
signatures of generators and recognizers, under any basis of size 1. Our closed
form applies to complex numbers C and to all fields with characteristic p greater
than the arity n of the matchgate. Since we can calculate (t;) and (t?) from [n, p],
we need only consider recognizers. The situation for generators is similar.

In tensor analysis we have the following proposition, which is straightfarward

from (I)@).

Proposition 1. If a tensor T is symmetric in one basis, it is still symmetric
after transforming to other basis.

Since we focus on the case of two dimensional space V spanned by {eg, e1}, all
the symmetric tensors in V" form a n + 1 dimensional space, which can be
denoted by o = [09,01,...,0,]. The symmetric signature transforms as follows
under a basis transformation:

o = Zakaﬁl, (5)
k
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where PN | |
=§;(s)(k_s)@fu%kSa@kﬂﬁw'kk“. (©)

We can rewrite (@) as

oS (N W) @

A matchgate is called an even or an odd matchgate, precisely when it has an
even or an odd number of nodes. The parity consideration is crucial in signatures
of matchgates, as they are defined in terms of perfect matchings. More subtle, but
just as important, are the matchgate identities [I53]. From the work of [3/4] we
know the following precise information regarding symmetric standard signatures.

Lemma 1. Suppose I' is an even matchgate, with symmetric standard signature

o =l00,01,-..,0n]. Then for all odd i, o; = 0, and there exist constants r1, r2
and A, such that o9 = A (r)V/A- (7’2) .

Lemma 2. Suppose I is an odd matchgate, with symmetric standard signature
o =[00,01,...,04]. Then for all even i, o; = O,‘and there exist constants ry, ro
and X\, such that o941 = A+ (r1)[(”*1)/2]*1 - (r2)”.

Let’s substitute r; = b and 72 = ¢? (if necessary in an extension field). Since
b =0 and ¢ = 0 is trivial, we assume at least one of them is non-zero.

Case 1: even n and even matchgate
In this case, we have o, = A"~ FcF, Vk even, and o}, = 0, Vk odd. From (&) and

[@) we get:

O'k/ E akak,
=A E bnkckak,

k even

s e[S () () ()]

k even

n s k—s
_ (tU n—k’ Z ( ) ( ) bk’—s Z (7;;7 kl) pn— k'—k+s <L(IJ) .

s=0 k even, k>s - to

Now the second sum within the brackets is

k—s
Z n—k Pk — s cto _1
k even, k>s k—s tg 2

Choose + if s is even and — if s is odd.

n—k’ 1\ n—k’
ct(l) ctg
b +|b—
<+%) < %) }’
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Therefore, we have

n—k’ s
1 ’ n—k' ct ct} ! t1 s
%2WWU®k[G+ﬁ) +(o-2)" }{EZ()(&)M ]
0 seven \ O £y
n—k’ n—k’ n s
1 K n—k’ Cté Ct(% K Ct% k'—s
+§/\(t?) () [(b + W U )\ b
s odd

oda

K K

cti ct

h4+ —L -1
(+t?) *( t?”
N /

oy

1 ! n— n— 1
= S (086 + ctp) g (bt — ctg)" ] 5

1 ’ 1
FS AT [0t + ctg)" ™ = (btg — ctg)"™ 15

]. !’
= 2/\[(bt8 + et 0t + D)+ (bt — ctd) T (0t — et

Case 2: odd n and even matchgate
In this case, we have o}, = Ab"~'Fc* Wk even, and o}, = 0 ,Vk odd. From (B
and ([0) we get:

O—;Cl Zo—kak/ = Z b 1= kckak/ (8)

k even

If b#£ 0, let X = \/b, we can have the similar calculation as Case 1 and get the
following form:

1 ,
Oh = 2>\’[(bt8 + b)) F (Bt + D+ (0t — etd) T (0t — et (9)

Otherwise b = 0, then o,_1 = A"~ !, and o, = 0, Yk # n — 1. In this subcase,
let ' = A" ! = 5,,_1. The only non-zero term in (B]) is when & = n — 1 and
further more the only non-zero terms in (6) are when s =k’ and s = k' — 1:

n
0—;{:/ = E J}catl
k=0

-1
= Jn,laz,

= N (0= K)EDY (@) () ) ).

The situations of case 3 “odd n and odd matchgate” and case 4 “even n and
odd matchgate” are similar with case 1 and case 2. Detail is omitted here and
is given in the full paper [5].

To sum up, we get the following theorem: (We assume the characteristic of
the field is not 2)

Theorem 3. A symmetric signature [xo, 1, ..., %] for a recognizer is realizable

under the basis 3 = [n,p] = {(Z()) , (g())} iff it takes one of the following forms:
1 1
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— Form 1: there exist (arbitrary) constants A, s,t and € where € = +1, such
that for all 1,0 <1i <mn,

x; = N(sng +tny)" " (spo + tp1)" + e(sng — tn1)™ *(spo — tp1)"].  (10)

— Form 2: there exist (arbitrary) constants \,such that for all i,0 <i <mn,
i = A(n — D)no(p1)’ (n1)" 17" +ipo(p1)™™ (n1)" 7] (11)

— Form 3: there exist (arbitrary) constants A,such that for all 1,0 <i <mn,
@i = A(n — i)n1(po)’ (n0)" 7" +ip1(po)™ (no)" ] (12)

Similarly we can prove

Theorem 4. A symmetric signature [xg, 21, ...,Ty] for a generator is realizable
under the basis 3 = [n,p] = {(Z()) , (Z())} iff it takes one of the following forms:
1 1

— Form 1: there exist (arbitrary) constance X\, s,t and € where ¢ = %1, such
that for all i,0 < i <mn,

x; = A(sp1 — tpo)" " (—sn1 + tng)" + e(sp1 + tpo)" " (—sny — tng)’]. (13)
— Form 2: there exist (arbitrary) constants \,such that for all i,0 <i <mn,

—ini(no)' " (—po)" ). (14)

n—1—1¢

i = N[(n —0)p1(no)* (—po)
— Form 3: there exist (arbitrary) constants \,such that for all i,0 <i <mn,
i = A[=(n — d)po(—n1)"(p1)" ' 7" +ing(—na) " (p)" ] (15)

We wish to obtain another characterization of realizable symmetric signatures.
First, we deal with some degenerate cases. The following three cases are called
degenerate:

— In Form 1, sng + tny = 0 or sng — tn; = 0.
— In Form 2, ny = 0.
— In Form 3, ng = 0.

In Form 1, if sng+tny = 0 and sng—tn; = 0, then all the realizable signatures
take the following form (X is arbitrary):

0,0, ,0, Al (16)

In Form 1, if sng +tny = 0 and sng — tn; # 0, or sng + tny # 0 and
sng — tn; = 0, then all the realizable signatures take the following form (a, ¢, A
are arbitrary):

[a,aq,aq?, - ,aq" ", \]. (17)

Notice that (6] is a special case of ([['f]), we will not consider (6] later.
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In Form 2, if ny = 0, then all the realizable signatures take the following form
(A1, Ao is arbitrary):
[0,0,---,0, A1, Az]. (18)

In form 3, if ng = 0, then all the realizable signatures take the following form
(A1, Ao is arbitrary):
[07 07 e 707 )‘17 )‘2]

This is the same as ([I8).

Besides these degenerate cases, we can rewrite the sequence defined in Form 1
as r; = Aa'+ B/, and the sequence defined Form 2 or Form 3 as z; = a*(Ai+B).
Both are solutions to second-order homogeneous linear recurrences (z; =
ar;—1 + br;—2). To sum up in a more symmetric way, we have the following
theorem: (We assume the the characteristic of the field p # 2 and p fn.)

Theorem 5. A symmetric signature [xo,x1,- - ,Ty] s realizable on some basis
of size 1 iff there exists three constants a, b, c(not all zero), such that Vk,0 < k <
n—2,

axg + brgy1 + crigo = 0. (19)
Proof
“#”:
Since [xg, 1, - , Zp] is realizable, from Theorem B (@), z; takes one of the forms

in Theorem B {@). If it is degenerate as ([T), we can let a = —¢,b = 1,¢ = 0.
If it is degenerate as (IJ)), we can let « = 1,b = 0,¢ = 0. Otherwise it is a
second-order homogeneous linear recurring sequence x; = agx;—1 + box;—2, we
can let a = bg,b = ag,c = —1. Therefore if [xg, 21, - ,2,] is realizable on
some basis of size 1 , there exists three constants a, b, ¢ (not all zero), such that
Vk,0< k<n-—2 axy + bryy1 + cxp42 = 0.

“@77:

If ¢ =0 and b = 0, then a # 0. From ([[d), we know z;, =0, Vk,0 < k <n— 2.
So {z;} takes the form (I8, which is realizable.

If c=0and b # 0, form [IJ) we have axy + bzt =0, Vk,0 < k <n —2. Let
q = —a/b, we have zj1 = xq, Vk,0 < k < n — 2. Therefore {z;} takes the
form (I7), which is realizable.

Otherwise ¢ # 0, substituting ag = —b/c, by = —a/c, we have T2 = agTiy1+
bozr, Vk,0 < k < n — 2. The characteristic equation is 2 — agx — bg = 0. Let
a, B be the two roots of the characteristic equation. If a # (3, we can calculate
A, B such that z; = Ao + BB, Vi,0 < i < n. If A =B = 0, then z; =
0, Vi,0 <14 < n, which trivially realizable. If A =0 and B # 0 (the case B =0
and A # 0 is similar), then z; = BB’ Let ¢ = s = 1,t = 0,A = B/2,n9 =
1,p0 = B,n1 = 0,p1 = 1 in ([I0), we know it is realizable. Otherwise AB # 0, let
A=¢=s=t=1in (I0), we have the following equations:

no+ny = VA (20)
nNo —nyp = {L/B (2].)
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po+p1=aVA (22)
po—p1=pBVB (23)

From the above equations, we can get the value of ng,n1,po,p1 and we
conclude that z; = Ao’ + B3 is realizable.

If « = 8 we can calculate A, B such that z; = a'(A4i + B), Vi,0 < i < n.
If a = 0or A =0, the above argument shows it is realizable. Otherwise let
A=n; =1,p1 = ang = 571)0 = Ao + fila in form (), we conclude that
x; = o*(Ai + B) is realizable. O

Corollary 2. QOwver the complex numbers C as well as all fields F of character-
istic p > 3, every signature [xg,x1, 22, x3] is realizable on some basis of size 1.

Proof: View r; = (zo,z1,22),72 = (21, 22,23) as two vectors in 3-dimension
Euclid space. Geometrically, there exists a non-zero vector rg = (a,b,c) such
that rg L r1 and rg L ro. That is axg + bx1 + cxo = 0 and axq + bxo + cx3 = 0.
From Theorem [B we know that [xg, x1, 22, 23] is realizable. |

4 Boolean Symmetric Signatures

In this section, we consider the realizability of a special family of symmetric
signatures, which we call boolean symmetric signatures (BSS).

Definition 1. A signature of a generator or a recognizer is called a Boolean
Symmetric Signature (BSS) iff it is symmetric [xg, T1,...,zy] and Vi € [n],x; €
{0,1}.

From Corollary 21 and Theorem [l , we can conclude that:

Theorem 6. When n < 3, all BSS are realizable.

When n > 4, the set of realizable BSS is rather sparse. More precisely we have
the following theorem:

Theorem 7. When n > 4, a BSS [xo,z1,...,2,] is realizable on some
basis of size 1 iff it has one of the following forms (A, A1,A2 € {0,1} is
arbitrary): [A1,0,0,---,0,A2], [1,1,---,1,A], [\, 1,1,---,1], [0,0,---,0, A1, A2],
[>‘17)‘270707"' 70]) [17071707"' 70(1)]; [07170717"' 70(1)]

Proof: From Theorem [Bl we can check that all the forms are all realizable.
Using theorem [B] and checking all the possible values of zg, 1, 2, x3, we can

prove that these forms are the only possible cases. Detail is omitted here and is

given in the full paper [5] O
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