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Abstract
We take the first step toward a classification of the approx-
imation complexity of the six-vertex model. This is a sub-
ject of extensive research in statistical physics. Our result
concerns the approximability of the partition function on
4-regular graphs, classified according to the parameters of
the model. Our complexity results conform to the phase
transition phenomenon from physics. We show that the
approximation complexity of the six-vertex model behaves
dramatically differently on the two sides separated by the
phase transition threshold. Furthermore, we present struc-
tural properties of the six-vertex model on planar graphs for
parameter settings that have known relations to the Tutte
polynomial T (G;x, y).

1 Introduction

The six-vertex model originates in statistical mechan-
ics for crystal lattices with hydrogen bonds. It is a
vertex model family with various parameter settings.
Classically it is defined on a planar lattice region where
each vertex of the lattice is connected by an edge to
four nearest neighbors. A state of the model consists of
an arrow on each edge such that the number of arrows
pointing inwards at each vertex is exactly two. This
2-in-2-out law on the arrow configurations is called the
ice rule [33]. Thus there are six permitted types of lo-
cal configurations around a vertex—hence the name six-
vertex model (see Figure 1). In graph theoretic terms,
the states are Eulerian orientations of the underlying
undirected graph.

1 2 3 4 5 6

Figure 1: Valid configurations of the six-vertex model.

In general, the six configurations 1 to 6 in Figure 1
are associated with six possible weights w1, . . . , w6. We
will follow convention in physics and assume arrow

∗Department of Computer Sciences, University of Wisconsin-
Madison. Supported by NSF CCF-1714275. jyc@cs.wisc.edu
†Department of Computer Sciences, University of Wisconsin-

Madison. Supported by NSF CCF-1714275. tl@cs.wisc.edu
‡ITCS, Shanghai University of Finance and Economics.

lu.pinyan@mail.shufe.edu.cn

reversal symmetry1, i.e. w1 = w2 = a,w3 = w4 = b and
w5 = w6 = c. In this paper we assume a, b, c ≥ 0, as
is assumed in classical physics. The partition function
of the six-vertex model with parameters (a, b, c) on a
4-regular graph G, where incident edges of each vertex
are labeled 1 to 4, is defined as

Z(G; a, b, c) =
∑

τ∈EO(G)

an1+n2bn3+n4cn5+n6 ,

where EO(G) is the set of all Eulerian orientations of
G, and ni is the number of vertices in type i (1 ≤ i ≤ 6)
in the graph under an Eulerian orientation τ ∈ EO(G).

The first such models were introduced by Linus
Pauling [28] in 1935 to describe the properties of ice.
In 1967, Elliot Lieb [24, 22, 23] famously showed that,
for parameters (a, b, c) = (1, 1, 1) on the square lattice
graph, as the side N of the square approaches ∞, the
value of the “partition function per vertex” W = Z1/N2

approaches
(

4
3

)3/2 ≈ 1.5396007 . . . (this is called Lieb’s
square ice constant). This result is called an exact
solution of the model, and is considered a triumph.
After that, exact solutions for other lattice type graphs
(such as [34, 8]) have been obtained in the limiting sense.

For half a century, the six-vertex model has fasci-
nated physicists, chemists, mathematicians and others.
Beyond physics, connections of the six-vertex model to
many other areas have been discovered. For example,
in a celebrated proof, Zeilberger [39] proved the alter-
nating sign matrix (ASM) conjecture in combinatorics.
Kuperberg [21] gave a simplified proof making a con-
nection to the six-vertex model.

The six-vertex model is also known to be related to
the Tutte polynomial [7] in at least two points. It is
known [36] that T (G; 0,−2) is the number of Eulerian
orientations, i.e., T (G; 0,−2) = Z(G; 1, 1, 1) = |EO(G)|,
for every 4-regular graph G. Another link was proved
by Las Vergnas [37] that Z(H; 1, 1, 2) = 2T (G; 3, 3) for
any plane graph G with medial graph H.

1This is often assumed in physics. From Baxter’s book [2]:
“These ensure that on the square lattice the model is unchanged
by reversing all arrows, which one would expect to be the situation
for a model in zero external electric field. Thus this is a ‘zero-
field’ model which includes the ice, KDP and F models as special
cases.”
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Recently, the exact computational complexity of the
six-vertex model has been investigated. This is stud-
ied in the context of a classification program for the
complexity of counting problems, where the six-vertex
model serves as important basic cases for Holant prob-
lems defined by not necessarily symmetric constraint
functions [4, 3]. It is shown that there are some sur-
prising P-time computable settings, however most occur
due to nontrivial cancellations. Under our parameteri-
zation of a, b, c being nonnegative (as is the case in the
classical setting), the only P-time (exactly) computable
cases are: (1) two of a, b, c are zero or (2) one of a, b, c
is zero and the other two are equal. Evaluation at any
other point for a general graph is #P-hard. On pla-
nar graphs it is also P-time computable for parameter
settings (a, b, c) that satisfy: (1) c2 = a2 + b2 or (2)
one of a, b is zero. All other non-trivial P-time com-
putable cases require cancellations (for real or complex
parameters (a, b, c)) and do not apply for nonnegative
a, b, c. Mihail and Winkler first proved that comput-
ing the number of unweighted Eulerian orientations is
#P-complete over general graphs [27]. Huang and Lu
proved that it remains #P-complete for even degree reg-
ular (but not necessarily planar) graphs [13]. Guo and
Williams improved it to planar 4-regular graphs [12].
The latter is equivalent to computing the partition func-
tion of the six-vertex model on planar graphs with the
parameter setting (1, 1, 1).

In terms of approximate complexity, results are lim-
ited. To our best knowledge, there are only a very few
papers that relate to the approximate complexity of the
six-vertex model, and they are all on unweighted Eule-
rian orientations. Mihail and Winkler’s pioneering work
[27] gave the first fully polynomial randomized approx-
imation scheme (FPRAS) for the number of Eulerian
orientations on a general graph. Luby, Randall, and
Sinclair presented an elegant proof of the rapid mixing
of a Markov chain that leads to a fully polynomial almost
uniform sampler (FPAUS) for Eulerian orientations on
any region of the Cartesian lattice with fixed bound-
aries [25]. Randall and Tetali [31] used a comparison
technique to prove the single-site Glauber dynamics is
rapidly mixing on the same lattice graph, by relating
this Markov chain to the Luby-Randall-Sinclair chain.
Goldberg, Martin, and Paterson [11] further extended
above techniques to prove that the single-site Glauber
dynamics is rapidly mixing for the free-boundary case
on rectangular regions of the Cartesian lattice. All
known results on approximate complexity for the six-
vertex model are for the unweighted case, which is the
single point (1, 1, 1) in the parameter space (see Fig-
ure 2).

In this paper we initiate a study toward a classifi-

cation of the approximate complexity of the six-vertex
model in terms of the parameters. Our results conform
to phase transitions in physics.

Here we briefly describe the phenomenon of phase
transition of the zero-field six-vertex model (see Bax-
ter’s book [2] for more details). On the square lattice
in the thermodynamic limit: (1) When a > b + c (FE:
ferroelectric phase) any finite region tends to be frozen
into one of the two configurations where either all ar-
rows point up or to the right (Figure 1-1), or all point
down or to the left (Figure 1-2). (2) Symmetrically
when b > a + c (also FE) all arrows point down or to
the right (Figure 1-3), or all point up or to the left (Fig-
ure 1-4). (3) When c > a + b (AFE: anti-ferroelectric
phase) configurations in Figure 1-5 and Figure 1-6 al-
ternate. (4) When c < a + b, b < a + c, and a < b + c,
the system is disordered (DO: disordered phase) in the
sense that all correlations decay to zero with increasing
distance; in particular on the dashed curve c2 = a2 + b2

the model can be solved by Pfaffians exactly [8], and
the correlations decay inverse polynomially, rather than
exponentially, in distance. See Figure 2a.

(a) Phase diagram of the six-
vertex model.

(b) Complexity diagram of
the six-vertex model.

Figure 2

In Figure 2b we have a corresponding complexity
landscape, its main points are stated in:

Theorem 1.1. There is an FPRAS for Z(G; a, b, c) if
a2 ≤ b2 + c2, b2 ≤ a2 + c2, and c2 ≤ a2 + b2 (the blue
region). There is no FPRAS for Z(G; a, b, c) if a > b+c
or b > a + c or c > a + b (the grey region), unless RP
= NP.

We obtain our FPRAS for Z(G; a, b, c) by design-
ing a Markov chain and proving that it is rapidly mix-
ing. The Markov chain is based on the directed-loop
algorithm. This directed-loop algorithm is invented by
Rahman and Stillinger [30] and is widely adopted in the
literature (e.g., [38, 1, 35]). The transitions of this algo-
rithm are composed of creating, shifting, and merging
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of two “defects” on the edges. This is similar to the
worm process introduce in [29] for the Ising model (see
also [17]). Note that Markov chains that stay within the
set of all Eulerian orientations, such as Glauber dynam-
ics, are not irreducible for nonplanar 4-regular graphs
(e.g. a torus). Therefore, introducing “defects” on the
edges, i.e., considering “near-Eulerian” orientations, is
indispensable. Moreover, the defects introduced in the
directed-loop algorithm depict the Bjerrum defects that
are observed to happen in real ice [1]. From this per-
spective, it would be rather artificial to insist that our
Markov chain stay “inside” the set of Eulerian orienta-
tions, even in cases where such a chain is irreducible.
There is no physical reason not to consider a wider
variety, nor a mathematical one—as we shall show in
this paper that the first provable rapidly mixing Markov
chain for a wider parameter space is based on a state
space going beyond the set of Eulerian orientations. We
give a formal description of the directed-loop algorithm
in Section 4. The rapid mixing of this Markov chain is
proved by bounding the conductance via a flow argu-
ment [16, 6, 32, 15]. The crucial ingredient in this proof
is the closure properties we demonstrate in Section 3.

Our FPRAS result is actually stronger in that the
FPRAS works even if different constraint functions
from the blue region are assigned at different vertices.
The blue region is a proper subset of the disordered
phase. The point (1, 1, 1) is contained in this region,
which is the only previously known approximable case.
The hardness part (the grey region) coincides with the
FE/AFE phases. The three green points together with
a point at infinity ((a, b, c) = (1, 1, 0)) are exactly P-
time computable. All parameters belonging to the two
axes (a = 0 and b = 0) and the orange curve c2 =
a2 +b2 are exactly P-time computable on planar graphs.
Computing for the six-vertex model at (1/2, 1/2, 1)
(the red point) is equivalent to evaluating the Tutte
polynomial T (G; 3, 3) on planar graphs. Note that any
4-regular plane graph H is the medial graph of some
plane graph G. The approximation complexity for the
white region is unknown.

More structurally, we show that there is a funda-
mental difference in the behavior on the two sides sep-
arated by the phase transition threshold, in terms of
closure properties. We use the term a 4-ary construc-
tion for a 4-regular graph Γ having 4 “external” edges,
and consider all configurations on the edges of Γ where
every vertex satisfies the ice rule and the arrow reversal
symmetry. It turns out that this Γ defines a constraint
function of arity 4 that also satisfies the ice rule and the
arrow reversal symmetry. If we imagine the graph Γ, ex-
cept the 4 external edges, is shrunken to a single point,
then a 4-ary construction can be viewed as a virtual

vertex with the six-vertex model parameter (a′, b′, c′)
for some a′, b′, c′.

In Theorem 3.1 of Section 3, we prove that the set of
4-ary constraint functions lying in the combined region
of blue and white (this is the same as the DO region
in Figure 2a) is closed under 4-ary constructions. In
Theorem 3.2 we prove that the set of 4-ary constraint
functions lying on the yellow line (phase transition
threshold for AFE and DO) is closed under planar 4-ary
constructions.

Theorem 3.1 is important not only for its revelation
of a structural difference between parameter settings of
the six-vertex model on the two sides of the phase tran-
sition threshold, but also for its crucial role in giving an
FPRAS in Section 4. It is used to upper bound the ratio
of near-Eulerian orientations over Eulerian orientations
(valid six-vertex configurations). By Lemma 4.1, this
shows that the directed-loop algorithm is rapidly mix-
ing. Also, we use Theorem 3.1 to approximately sample
the valid six-vertex configurations, which is necessary
for our FPRAS to work.

Our FPRAS also has implications for counting
weighted sum of directed Eulerian partitions (partition
of edges of G into directed edge-disjoint circuits). A
special case is an FPRAS for this weighted sum when
the weight of is at least

√
2 − 1 (more on the

connection between directed Eulerian partitions and the
three types of pairings , , and can be found in
Section 3).

The NP-hardness of approximation in the grey re-
gion (coincide with the ferroelectric/anti-ferroelectric
phases) is given by an approximation-preserving reduc-
tion from computing the maximum independent set on
3-regular graphs. These are the first inapproximabil-
ity results for the six-vertex model on general 4-regular
graphs.

2 Preliminaries

2.1 The Six-Vertex Model We will present the
six-vertex model as follows: For any 4-regular graph
G = (V,E), let G′ = (UE , UV , E

′) be its edge-vertex
incidence graph. G′ is a bipartite graph. A configura-
tion of the six-vertex model on G is an edge 2-coloring
on G′, namely σ : E′ → {0, 1}. We model an orienta-
tion of edges e ∈ E by requiring “one-0 one-1” for the
two edges incident to each vertex ue ∈ UE ; we model
the ice rule (2-in-2-out) of G on all v ∈ V by requiring
“two-0 two-1” for the four edges incident to each vertex
uv ∈ UV (and the constraint function can have different
weights depending on which two edges have 0). We say
an orientation on edge e = {w, v} ∈ E is going out w
and into v in G if the edge (ue, uw) ∈ E′ in G′ takes
value 1 (and (ue, uv) ∈ E′ takes value 0).

Copyright © 2019 by SIAM
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The “one-0 one-1” requirement on the two edges
incident to a vertex in UE is denoted by ( 6=2). A 4-
ary constraint function f can take 24 values depend-
ing on the input, which can be listed in a matrix

M(f) =

[
f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111
f1000 f1010 f1001 f1011
f1100 f1110 f1101 f1111

]
. Call this matrix the

constraint matrix of f . For the six-vertex model sat-
isfying the ice rule and arrow reversal symmetry, the
constraint function f at a vertex v ∈ UV in G′ has

the form M(f) =

[
0 0 0 a
0 b c 0
0 c b 0
a 0 0 0

]
, if we locally index the left,

down, right, and up edges incident to v by 1, 2, 3, and
4, respectively according to Figure 1. Thus comput-
ing the partition function Z(G; a, b, c) is equivalent to
evaluating

Z′(G′; f) :=
∑

σ:E′→{0,1}

∏
v∈UE

( 6=2)
(
σ|E′(v)

) ∏
v∈UV

f
(
σ|E′(v)

)
.

When it does not cause confusion, we say a vertex
(in G, although strictly it should be in G′) in the six-
vertex model with parameters (a, b, c) has the constraint

function f with M(f) =

[
a

b c
c b

a

]
. Also, we write the

partition function Z(a, b, c) as Z(f) and denote by Z(F)
when the constraint functions come from a set F . For
convenience in presenting our theorems and proofs, we
adopt the following notations assuming a, b, c ∈ R+.

• F≤2 := {f | a2 ≤ b2 + c2, b2 ≤ a2 + c2, c2 ≤ a2 + b2};
• F≤ := {f | a ≤ b+ c, b ≤ a+ c, c ≤ a+ b};
• F= := {f | c = a+ b};
• F> := {f | a > b + c or b > a + c or c > a +
b where a, b, c > 0}.

Remark 2.1. F≤2 ⊂ F≤.

2.2 Approximation Algorithms If a counting
problem is #P-hard, we may still hope that the prob-
lem can be approximated. Suppose f : Σ∗ → R is a
function mapping problem instances to real numbers.
A fully polynomial randomized approximation scheme
(FPRAS) [20] for a problem is a randomized algorithm
that takes as input an instance x and ε > 0, running in
time polynomial in n (the input length) and ε−1, and
outputs a number Y (a random variable) such that

Pr [(1− ε)f(x) ≤ Y ≤ (1 + ε)f(x)] ≥ 3

4
.

3 Closure Properties

Theorem 3.1. Consider a 4-ary construction using
constraint functions from F≤. Let f be the resulting
constraint function of the 4-ary construction. Then
f ∈ F≤. In other words, the set of constraint functions
in F≤ is closed under 4-ary constructions.

Theorem 3.2. The set of constraint functions in F=

is closed under 4-ary plane constructions.

Before proving Theorem 3.1 and Theorem 3.2, we
introduce another view of the six-vertex model. A
valid configuration in the six-vertex model, i.e. a
weighted Eulerian orientation, can also be viewed as
a combination of weighted directed Eulerian partitions.
An Eulerian partition of a graph G is a partition of the
edges of G into edge-disjoint circuits (in which vertices
may repeat whereas edges cannot). A directed Eulerian
partition is an Eulerian partition where every edge-
disjoint circuit takes one of the two cyclic orientations.
Let G = (V,E) be a 4-regular graph and v be a vertex
of G. Let e1, e2, e3, e4 be the four edges incident to v. A
pairing % at v is a partition of {e1, e2, e3, e4} into pairs.
There are exactly three distinct pairings at v (Figure 3)
which we denote by three special symbols: , , ,
respectively. An Eulerian partition of G can be uniquely
determined by a family of pairings ϕ = {%v}v∈V , where
%v ∈ { , , } is a pairing at v—once the pairing at
each vertex is fixed, then the two edges paired together
at each vertex is also adjacent in the same circuit.

Figure 3: Pairings at a degree 4 vertex.

For any vertex v in a valid configuration τ of the six-
vertex model (where ice rule is satisfied), incoming edges
can be paired with outgoing edges in exactly two ways,
corresponding to two of the three pairings at v. For ex-
ample, the configuration in Figure 1-1 of the six-vertex
model has two underlying pairings, and . There-
fore, τ can be decomposed into 2|V | distinct directed
Eulerian partitions denoted by Φ(τ). Since no two Eu-
lerian orientations share one directed Eulerian partition
and every directed Eulerian partition corresponds to a
particular Eulerian orientation, the map from six-vertex
configurations to directed Eulerian partitions is 1-to-
2|V |, non-overlapping, and surjective. Define w to be
a function assigning a weight to every pairing at every
vertex and let the weight w̃(ϕ) of an Eulerian partition
ϕ, undirected or directed, be the product of weights at
each vertex. In particular, when w is defined such that{
w( )=−a+b+c2

w( )= a−b+c
2

w( )= a+b−c
2

, or equivalently

{
a=w( )+w( )
b=w( )+w( )
c=w( )+w( )

, for ev-

ery vertex with constraint matrix

[
a

b c
c b

a

]
, then the
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weight of a six-vertex model configuration τ is equal to∑
ϕ∈Φ(τ) w̃(ϕ), by expressing a product of sums as a

sum of products.
The connection between Eulerian orientations and

Eulerian partitions on 4-regular graphs has been ex-
plored in particular parameter settings for the six-vertex
model. Las Vergnas [37] demonstrated a special case for
plane graphs: the number of directed non-intersecting
Eulerian partitions is equal to the number of Eulerian
orientations with weight 2 on every saddle configura-
tion (Figure 1-5 1-6), which is the six-vertex model at
(1, 1, 2). Jaeger [14] proposed a graph polynomial called
transition polynomial as a generalization of weighted
Eulerian partitions, and related it with weighted Eu-
lerian orientations. The idea of unweighted directed
Eulerian partitions was implicitly used in Mihail and
Winkler’s paper [27] to approximate the number of un-
weighted Eulerian orientations, where they also adopted
the notion of pairings. Here we give a general corre-
spondence between weighted Eulerian orientations and
weighted Eulerian partitions for the six-vertex model in
the proof of Theorem 3.1 and Theorem 3.2. In par-
ticular we establish a weight-preserving 1-to-2|V |, non-
overlapping, and surjective mapping for Eulerian ori-
entations in F≤ and nonnegatively weighted Eulerian
partitions. This “quantum graph” perspective is at the
heart of the proof in this paper.

Proof. [Proof of Theorem 3.1] For the constraint func-
tion f of a 4-ary construction using vertices with con-
straint functions in F≤ (Figure 4a), we first show that

its constraint matrix must be of the form

[
a′

b′ c′

c′ b′

a′

]
.

This is to say that the ice rule and the arrow reversal
symmetry are still satisfied. First, f still obeys the ice
rule, i.e. it cannot take nonzero values on inputs with
Hamming weight not 2. Including the dangling edges,
every vertex has exactly two incoming edges and two
outgoing edges. Thus if we sum the in-degrees over all
vertices, it must equal to the sum of out-degrees over
all vertices. Every internal edge contributes exactly 1
to each sum. Thus the number of incoming dangling
edges is equal to the number of outgoing dangling edges,
which must be 2 each since they sum to 4. Second, f still
satisfies arrow reversal symmetry. For any valid orien-
tation of edges in the 4-ary construction contributing a
term to f(x), reversing the orientations on all edges has
the same contribution to f(x), because the constraint
function on each vertex of degree 4 satisfies the arrow
reversal symmetry.

The notion of Eulerian partitions previously used
for graphs (without external edges) can also be defined
for 4-ary constructions. An Eulerian partition for a

(a) (b) (c)

Figure 4: A 4-ary construction using vertices with
constraint function in F≤.

4-ary construction g is a partition of the edges in g
into edge-disjoint circuits and exactly two trails (walks
with no repeated edges) whose ends are exactly the
four dangling edges. The weight w̃ of such an Eulerian
partition ϕ can be similarly defined. Set w such

that

{
w( )=−a+b+c2

w( )= a−b+c
2

w( )= a+b−c
2

, or equivalently

{
a=w( )+w( )
b=w( )+w( )
c=w( )+w( )

.

Observe that if a vertex has a constraint function f ∈
F≤, then the weight of every pairing is nonnegative,
and the weight of any directed Eulerian partition of a
graph/4-ary construction comprised of such vertices is
also nonnegative.

Under the six-vertex model, for any specific con-
figuration τ of the 4-ary construction with constraint
function f that contributes a nonzero factor to f(0011)
when e1, e2 go in and e3, e4 go out, it can be viewed as
a weighted sum of directed Eulerian partitions Φ(τ).
For every Eulerian partition ϕ ∈ Φ(τ), the two di-
rected trails are either {e1  e4, e2  e3} (Figure 4b)
or {e1  e3, e2  e4}. Denote by Φ

0011,
the set

of directed Eulerian partitions (distributed in poten-
tially many different six-vertex configurations), each of
which has directed trails {e1  e4, e2  e3}; denote
by Φ

0011,
the set of directed Eulerian partitions, each

of which has directed trails {e1  e3, e2  e4}. In
terms of directed Eulerian partitions of the 4-ary con-
struction, f(0011) can be seen as the weighted sum of
elements from two disjoint sets Φ

0011,
and Φ

0011,
.

Defining the weight of a set Φ of directed Eulerian
partitions by W (Φ) =

∑
ϕ∈Φ w̃(ϕ) yields f(0011) =

W (Φ
0011,

) + W (Φ
0011,

), and similarly f(1100) =

W (Φ
1100,

) + W (Φ
1100,

). Note that there is a bi-

jective weight-preserving map between Φ
0011,

and

Φ
1100,

by reversing the direction of every circuit and

trail of an Eulerian partition. Thus, W (Φ
0011,

) =

W (Φ
1100,

) and similarly W (Φ
0011,

) = W (Φ
1100,

).

Consequently, f(0011) = f(1100), f(0110) = f(1001),
and f(0101) = f(1010).

An important observation is that for each Eulerian
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partition in Φ
0011,

, if we only reverse the trail from

e1  e4 to e4  e1 and keep the directions on all
circuits and the other trail unchanged, this Eulerian
partition has the same weight but now lies in Φ

1010,

(Figure 4c). This is because at every vertex v, reversing
any orientation of a branch of the given pairing %v ∈
{ , , } does not change the value w(%v). In this way,
we set up a one-to-one weight-preserving map between
Φ

0011,
and Φ

1010,
, i.e. W (Φ

0011,
) = W (Φ

1010,
).

Combining the result in the last paragraph, we can write

• W ( ) = W (Φ
0011,

) = W (Φ
1100,

) = W (Φ
0101,

) =

W (Φ
1010,

);

• W ( ) = W (Φ
0110,

) = W (Φ
1001,

) = W (Φ
0101,

) =

W (Φ
1010,

);

• W ( ) = W (Φ
0011,

) = W (Φ
1100,

) = W (Φ
0110,

) =

W (Φ
1001,

).

Consequently, we have

{
a′=W ( )+W ( )

b′=W ( )+W ( )

c′=W ( )+W ( )
. W ( ),

W ( ), and W ( ) are all nonnegative due to the fact
that the weight of every directed Eulerian partition has
a nonnegative weight. Therefore, a′ ≤ b′+c′, b′ ≤ a′+c′,
and c′ ≤ a′ + b′. This is to say, f ∈ F≤.

Proof. [Proof of Theorem 3.2] Inheriting the notations
from the above proof, we have w( ) = 0 when c = a+b
for each vertex, which is to say no “crossing” can be
made at any vertex in any Eulerian partition. Due to
planarity, a trail e1  e3 must cross a trail e2  e4

at a vertex, thus W ( ) = W (Φ
0011,

) = 0. Therefore,

c′ = a′ + b′.

Remark 3.1. Theorem 3.1 is important not only be-
cause it reveals a structural difference between parame-
ter settings of the six-vertex model lying on the two sides
of the phase transition threshold, but also for its crucial
role in proving Corollary 4.1 which helps us upper bound
the mixing time of the directed-loop algorithm and lower
bound the proportion of valid six-vertex model configu-
rations in the state space so that approximately counting
via sampling [19] leads to an FPRAS.

4 FPRAS

In this section we prove the following theorem.

Theorem 4.1. There is an FPRAS for computing
Z(F≤2).

For simplicity we prove Theorem 4.1 only for the
case where all constraint functions of arity 4 are from
a fixed finite subset F ⊂ F≤2 , i.e., we show that there
is an FPRAS for computing Z(F). With some care
the more general statement in Theorem 4.1 can also be
proved.

We use the common approach to approximate
counting via almost uniform sampling [19] using a
rapidly mixing Markov chain [16, 6, 32, 15]. The
Markov chain is the widely-used directed-loop algo-
rithm [30, 38, 1, 35] whose transitions are composed
of creating, shifting, and merging of two “defects” on
the edges. Some examples of the states in the directed-
loop algorithm are shown in Figure 5 where the state in
Figure 5a is an Eulerian orientation and the state in Fig-
ure 5b and the state in Figure 5c are “near-Eulerian”
orientations with exactly two “defects”. Some typical
moves in the directed-loop algorithm are as follows: the
transition from the state in Figure 5a to the state in
Figure 5b creates two defects; the transition from the
state in Figure 5b to the state in Figure 5a merges two
defects; the transitions between Figure 5b and Figure 5c
shift one of the defects.

(a) (b) (c)

Figure 5: Examples of the states in the directed-loop
algorithm.

Although the directed-loop algorithm MC runs on
the Eulerian orientations of a 4-regular graph G, it is
formally defined and analyzed using the edge-vertex
incidence graph G′ of G, introduced in Section 2. Let
G′ = (V,U,E) be the edge-vertex incidence graph of G,
an instance of Z(F≤2). Each vertex in V is assigned
( 6=2); each vertex u ∈ U is assigned a constraint
function fu ∈ F≤2 . An assignment σ assigns a value
in {0, 1} to each edge e ∈ E. The state space of
MC is Ω = Ω0 ∪ Ω2, which consists of “perfect” or
“near-perfect” assignments to E, defined as follows: All
assignments satisfy the “two-0 two-1” ice rule at every
vertex u ∈ U of degree 4. We also insist that all
assignments satisfy the “one-0 one-1” at every v ∈ V
with possibly exactly two exceptions. Assignments in Ω0

have no exceptions, and are “perfect” (corresponding
to the Eulerian orientations in G). Assignments in
Ω2 have exactly two exceptions, and are “near-perfect”
(corresponding to the near-Eulerian orientations in G).
Thus any σ ∈ Ω0 sastifies all (6=2) on V , and any σ ∈ Ω2

sastifies all (6=2) on V − {v′, v′′} for some two vertices
v′, v′′ ∈ V where it satisfies (=2) (which outputs 1 on
inputs 00, 11 and outputs 0 on 01, 10).

For any assignment σ ∈ Ω and any subset
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S ⊆ Ω, define the weight function W by W(σ) =∏
u∈U fu(σ|E(u)) and Z(S) =

∑
σ∈SW(σ). Then the

Gibbs measure for Ω is defined by π(σ) = W(σ)
Z(Ω) , assum-

ing Z(Ω) > 0. Observe that if a state σ ∈ Ω2 assigns 00
to both edges incident to v′ ∈ V (satisfying (=2) at v′)
then it must assign 11 to both edges incident to v′′ ∈ V ,
and vice versa. Indeed, having 00 at v′ models the fact
that v′ has two arrows going out (to degree-4 vertices
in U). To maintain the property that the number of
incoming arrows is equal to the number of outgoing ar-
rows everywhere else, v′′ must have two arrows coming
in, which is equivalent to having 11 at v′′ in the edge 2-
coloring model of the edge-vertex incidence graph. An
example state is shown in Figure 7a.

Transitions in MC are comprised of three types of
moves. Suppose σ ∈ Ω0. An Ω0-to-Ω2 move from
σ takes a degree 4 vertex u ∈ U and two incident
edges e′ = (v′, u), e′′ = (v′′, u) ∈ V × U satisfying
{σ(e′), σ(e′′)} = {0, 1}, and changes it to σ2 ∈ Ω2

which flips both σ(e′) and σ(e′′). The effect is that
we still have {σ2(e′), σ2(e′′)} = {0, 1}, but at v′ and
v′′, σ2 satisfies (=2) instead. An Ω2-to-Ω0 move is the
opposite. An Ω2-to-Ω2 move is, intuitively, to shift one
(=2) from one vertex v′ ∈ V to another v∗ ∈ V , where
for some u ∈ U , v′ and v∗ are both incident to u and
the “two-0 two-1” rule at u is preserved. Formally, let
σ ∈ Ω2 be a near-perfect assignment with v′, v′′ ∈ V
being the two exceptional vertices (i.e., σ satisfies (=2)
at v′ and v′′). Let v∗ ∈ V − {v′, v′′} be such that
for some u ∈ U , both e′ = (v′, u), e∗ = (v∗, u) ∈ E,
and {σ(e′), σ(e∗)} = {0, 1}. Then an Ω2-to-Ω2 move
changes σ to σ∗ by flipping both σ(e′) and σ(e∗). The
effect is that we still have {σ∗(e′), σ∗(e∗)} = {0, 1}, but
σ∗ satisfies ( 6=2) at v′ and (=2) at v∗. Note that σ∗

continues to satisfy (=2) at v′′.
The above describes a symmetric binary relation

neighbor (∼) on Ω. No two states in Ω0 are neighbors.
Set n = |U |. The number of neighbors of a Ω0-state is
at most 4n (by first picking a vertex and then picking an
“in-out” pair of edges incident to this vertex) and the
number of neighbors of a Ω2-state is at most a constant.
The transition probabilities P (·, ·) ofMC are Metropolis
moves between neighboring states:

P (σ1, σ2) =


1

8n
min

(
1, π(σ2)

π(σ1)

)
if σ2 ∼ σ1;

1− 1
8n

∑
σ′∼σ1 min

(
1, π(σ′)

π(σ1)

)
if σ1 = σ2;

0 otherwise.

MC is aperiodic due to the “lazy” movement; one
can verify that MC is irreducible by creating, shifting,
and merging of a pair of (=2)’s; as the transitions
are Metropolis moves, detailed balance conditions are
satisfied with regard to π. By results from [16, 32], such
a Markov chain is rapidly mixing if there is a flow whose

congestion can be bounded by a polynomial in n.

Lemma 4.1. Assume Z(Ω0) > 0. There is a flow on Ω

with congestion at most O

(
n2
(
Z(Ω)
Z(Ω0)

)2
)

, using paths

of length O(n).

Proof. The idea is to design a flow F : P → R+ from Ω2

to Ω0 which satisfies∑
p∈Pσ2σ0

F(p) = π(σ2)π(σ0), for all σ2 ∈ Ω2, σ0 ∈ Ω0,

where Pσ2σ0
is defined to be a set of simple di-

rected paths from σ2 to σ0 in MC and P =⋃
σ2∈Ω2,σ0∈Ω0

Pσ2σ0
. Once the congestion of F from Ω2

to Ω0 is polynomially bounded, so is the flow from Ω0

to Ω2 by symmetric construction. Moreover, there is a
flow from Ω2 to Ω2 (or from Ω0 to Ω0) whose congestion
can also be polynomially bounded by randomly picking
an intermediate state in Ω0 (or Ω2, respectively). Thus
we have a flow on Ω with polynomially bounded conges-
tion. This technique has been used in [18, 26]. In the
following we show that the congestion of F from Ω2 to

Ω0 is bounded by O(n2)Z(Ω2)
Z(Ω0) . Then the bound in the

lemma for a flow on Ω follows.
To describe the flow F, we first specify the sets of

paths that are going to take the flow. In line with the
definition of Ω0 and Ω2, we define Ω4 to be the set of
assignments where there are exactly four violations of
( 6=2) in V . Let Ω′ = Ω0 ∪ Ω2 ∪ Ω4. For σ, σ′ ∈ Ω′,
let σ ⊕ σ′ denote the symmetric difference (or bitwise
XOR), where we view σ and σ′ as two bit strings in
{0, 1}|E|. This is a 0-1 assignment to the edge set of the
edge-vertex incidence graph G′ = (V,U,E) of G. We
also treat σ ⊕ σ′ as an edge subset of E (corresponding
to bit positions having bit 1, where σ and σ′ assign
opposite values), and this defines an induced subgraph
of G′. Since at every u ∈ U of degree 4, the “two-0
two-1” rule is satisfied by both σ and σ′, this induced
subgraph has even degree (0, 2, or 4) at every u ∈ U .

Denote by U4 ⊆ U the degree-4 vertices in σ ⊕ σ′.
Then there are exactly 2|U4| Eulerian partitions for
σ ⊕ σ′. Recall that an Eulerian partition of σ ⊕ σ′ is
uniquely determined by a family of pairings on U4. This
is a 1-1 correspondence and we will identify the two
sets. For any pairing in { , , } on a vertex u with

constraint matrix M(fu) =

[
a

b c
c b

a

]
, define the weight

function w for pairings as follows,

w( )=−a
2+b2+c2

2

w( )= a2−b2+c2

2

w( )= a2+b2−c2
2

,

or equivalently

{
a2=w( )+w( )

b2=w( )+w( )

c2=w( )+w( )

. Note that when fu ∈
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F≤2 , w takes nonnegative values. Let Φσ⊕σ′ be the set
of Eulerian partitions for σ ⊕ σ′. For ϕ ∈ Φσ⊕σ′ , define

W(σ, σ′, ϕ) := ∏
u∈U\U4

fu
(
σ|E(u)

)
fu
(
σ′|E(u)

)( ∏
u∈U4

w(ϕ(u))

)
.

Then for all distinct σ, σ′ ∈ Ω′, we have∑
ϕ∈Φσ⊕σ′

W(σ, σ′, ϕ)

=
∑

ϕ∈Φσ⊕σ′

∏
u∈U\U4

fu
(
σ|E(u)

)
fu
(
σ′|E(u)

) ∏
u∈U4

w(ϕ(u))

=
∏

u∈U\U4

fu
(
σ|E(u)

)
fu
(
σ′|E(u)

) ∑
ϕ∈Φσ⊕σ′

∏
u∈U4

w(ϕ(u))

=
∏

u∈U\U4

fu
(
σ|E(u)

)
fu
(
σ′|E(u)

) ∏
u∈U4

fu
(
σ|E(u)

)
fu
(
σ′|E(u)

)
=
∏
u∈U

fu
(
σ|E(u)

)
fu
(
σ′|E(u)

)
=W(σ)W(σ′).

The equality from line 2 to line 3 is due to the following:
when the degree (in the induced subgraph σ ⊕ σ′) of a
vertex u ∈ U is 4, σ and σ′ must take the same value at
u, since one represents a total reversal of all arrows of
another; thus fu

(
σ|E(u)

)
fu
(
σ′|E(u)

)
is in {a2, b2, c2}.

Then∏
u∈U4

fu
(
σ|E(u)

)
fu
(
σ′|E(u)

)
=

∑
ϕ∈Φσ⊕σ′

∏
u∈U4

w(ϕ(u))

is obtained by using the sum expressions for a2, b2 and c2

in terms of w( ),w( ), and w( ), and then expressing
the product-of-sums as a sum-of-products.

Now we are ready to specify the “paths” which take
nonzero flow from σ2 ∈ Ω2 to σ0 ∈ Ω0. In order to
transit from σ2 to σ0, paths in Pσ2σ0 go through states
in Ω that gradually decrease the number of conflicting
assignments along trails and circuits in σ2 ⊕ σ0. We
first specify a total order on E, the set of edges of G′.
This induces a total order on circuits by lexicographic
order. In the induced subgraph σ2 ⊕ σ0, exactly two
vertices in V have degree 1 (called endpoints) and all
other vertices have degree 2 or degree 4. The set of paths
in Pσ2σ0

are designed to be in 1-to-1 correspondence
with elements in Φσ2⊕σ0

. Given any family of pairings
ϕ ∈ Φσ2⊕σ0

, we have a unique decomposition of the
induced subgraph σ2⊕σ0 as an edge disjoint union of one
trail [e1](v1, e

′
1, u1, e2, v2, e

′
2, u2, . . . , ek, vk)[e′k] (where e1

and e′k are not part of the trail), and zero or more edge
disjoint circuits, which are ordered lexicographically.
Here vi ∈ V and ui ∈ U , and we may assume σ2(e1) =
σ2(e′1) = 0, σ2(e2) = 1, σ2(e′2) = 0, . . . , σ2(ek) =

σ2(e′k) = 1. So the two exceptional vertices are v1 and
vk, where σ2 satisfies (=2). The unique path pϕ first
“pushes” the (=2) from v1, to v2, then to v3, . . . , vk−1,
and then “merge” at vk, arriving at a configuration
in Ω0. Then pϕ reverses all arrows on each circuit in
lexicographic order, and within each circuit C it starts
at the least edge e (according to the edge order) and
reverses all arrows on C in the direction defined by the
starting cyclic orientation of σ2. (Technically it flips
a pair of incident edges to vertices in U in each step.)
Such paths pϕ are well-defined and are valid paths in
MC since along any path every state is in Ω = Ω0 ∪Ω2

and every move is a valid transition defined in MC.
With regard to the flow distribution, the flow value put

on pϕ is W(σ2,σ0,ϕ)

(Z(Ω))2
, making the following hold for all

σ2 ∈ Ω2, σ0 ∈ Ω0:∑
pϕ∈Pσ2σ0

F(pϕ) =
∑

ϕ∈Φσ2⊕σ0

W(σ2, σ0, ϕ)

(Z(Ω))
2

=
W(σ2)W(σ0)

(Z(Ω))
2

= π(σ2)π(σ0).

Note that in each path, no edge is flipped more
than once, so the length is O(n). For any transi-
tion (σ′, σ′′) where σ′ 6= σ′′, we have P (σ′, σ′′) =
1

8n min
(

1, π(σ′′)
π(σ′)

)
= Ω

(
1
n

)
, as π(σ′′)

π(σ′) is a constant. (This

is a constant because we have restricted the constraint
function fu to be from a fixed finite set F .) Let Hσ′ =
{σ2 ⊕ σ0 | σ2 ∈ Ω2, σ0 ∈ Ω0,∃ϕ ∈ Φσ2⊕σ0 s.t. σ′ ∈ pϕ}.
The congestion of F is

max
transition (σ′,σ′′)

1

π(σ′)P (σ′, σ′′)

∑
σ2∈Ω2
σ0∈Ω0

∑
pϕ∈Pσ2σ0
pϕ3(σ′,σ′′)

W(σ2, σ0, ϕ)

(Z(Ω))2

≤max
σ′∈Ω

O(n)

W(σ′)Z(Ω)

∑
σ2∈Ω2
σ0∈Ω0

∑
ϕ∈Φσ2⊕σ0
pϕ3σ′

W(σ2, σ0, ϕ)

= max
σ′∈Ω

O(n)

W(σ′)Z(Ω)

∑
σ2∈Ω2

∑
η∈Hσ′

∑
ϕ∈Φη

W(σ2, σ2 ⊕ η, ϕ)

= max
σ′∈Ω

O(n)

W(σ′)Z(Ω)

∑
η∈Hσ′

∑
ϕ∈Φη

∑
σ2∈Ω̃2

W(σ2, σ2 ⊕ η, ϕ).

On the last line above we exchange the order of
summations where Ω̃2 is the set of Ω2-states that are
compatible with the symmetric difference η and its
Eulerian partition ϕ. The number of states in Ω̃2 is
bounded by the length of the longest path O(n) because
σ′ is an intermediate state on a path. Fix any σ′ ∈ Ω.
For any σ2 ∈ Ω2, and η ∈ Hσ′ consisting of exactly one
connected component with two endpoints of degree 1
and all other vertices having even degree (and zero or
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more connected components of even degree vertices),
observe that σ′ ⊕ η ∈ Ω′. Indeed, if σ′ ∈ Ω0 then
σ′ ⊕ η ∈ Ω2; if σ′ ∈ Ω2 then depending on whether
σ′

(1) is σ2, or

(2) appears in the process of reversing arrows on the
trail with two endpoints, or

(3) appears after reversing arrows on the trail with
endpoints,

σ′ ⊕ η lies in Ω0, Ω2, or Ω4, respectively. For the edges
not in η, σ′ agrees with σ2 and σ2 ⊕ η as the path pϕ
never “touches” them, and so does σ′ ⊕ η. Recall that

W(σ2, σ2 ⊕ η, ϕ) = ∏
u∈U\U4

fu
(
σ2|E(u)

)
fu
(
(σ2 ⊕ η)|E(u)

)( ∏
u∈U4

w(ϕ(u))

)
.

For every vertex u ∈ U that is not in η, fu takes
the same value in all σ2, σ2 ⊕ η, σ′, and σ′ ⊕ η. For
every vertex u ∈ U that is degree-2 in η, assuming

M(fu) =

[
a

b c
c b

a

]
, fu

(
σ2|E(u)

)
and fu

(
(σ2 ⊕ η)|E(u)

)
take two different elements in {a, b, c}. Meanwhile,
fu
(
σ′|E(u)

)
and fu

(
σ′ ⊕ η|E(u)

)
also take these two

elements (possibly in the opposite order). For example,
at the vertex u shown in Figure 6, fu

(
σ2|E(u)

)
= a

and fu
(
σ2 ⊕ η|E(u)

)
= c. The two solid edges are in

η and assignments on the two dotted edges are shared
by σ2 and σ2 ⊕ η, as well as σ′ and σ′ ⊕ η. On the
path pϕ from σ2 to σ2 ⊕ η decided by ϕ: if σ′ appears
before reversing the two solid edges, then σ′ agrees with
σ2 on them (fu

(
σ′|E(u)

)
= a) and σ′ ⊕ η agrees with

σ2⊕η on them (fu
(
σ′ ⊕ η|E(u)

)
= c); if σ′ appears after

reversing the two solid edges, then σ′ agrees with σ2⊕η
on them (fu

(
σ′|E(u)

)
= c) and σ′ ⊕ η agrees with σ2

on them (fu
(
σ′ ⊕ η|E(u)

)
= a). For every vertex u ∈ U

that is degree-4 in η, w(ϕ(u)) takes the same value in
W(σ2, σ2⊕η, ϕ) and W(σ′, σ′⊕η, ϕ) as the weight only
depends on ϕ(u), the pairing at u.

(a) σ2. (b) σ2 ⊕ η.

Figure 6

By the above argument, we established that
W(σ2, σ2⊕η, ϕ) = W(σ′, σ′⊕η, ϕ). Therefore, the con-

gestion of F can be bounded by

max
σ′∈Ω

O(n)

W(σ′)Z(Ω)

∑
η∈Hσ′

∑
ϕ∈Φη

∑
σ2∈Ω̃2

W(σ′, σ′ ⊕ η, ϕ)

≤max
σ′∈Ω

O(n2)

W(σ′)Z(Ω)

∑
η∈Hσ′

∑
ϕ∈Φη

W(σ′, σ′ ⊕ η, ϕ)

≤max
σ′∈Ω

O(n2)

W(σ′)Z(Ω)

∑
η∈Hσ′

W(σ′)W(σ′ ⊕ η)

= max
σ′∈Ω

O(n2)

Z(Ω)

∑
η∈Hσ′

W(σ′ ⊕ η)

≤O(n2)

Z(Ω)

∑
σ∈Ω′

W(σ)

=O(n2)
Z(Ω′)

Z(Ω)
.

By a standard argument as in [16, 27, 26], Z(Ω4)
Z(Ω2) ≤

Z(Ω2)
Z(Ω0) . Therefore, the congestion is bounded by

O(n2)Z(Ω2)
Z(Ω0) .

Remark 4.1. We have an alternative derivation of
Lemma 4.1 using the notion of “windability” [26]. How-
ever, this alternative derivation does not yield a proof of
Theorem 4.1; we still require the results from Section 3
to show that. Readers are referred to [5] for details.

In order to show MC is rapidly mixing, we need to

show Z(Ω2)
Z(Ω0) is polynomially bounded. This bound is also

needed to get an FPRAS from a rapidly mixing Markov
chain in Ω, since ultimately we are only interested in
Ω0. Such a bound is a corollary of Theorem 3.1.

Corollary 4.1. Z(Ω2)
Z(Ω0) = O(n2).

(a) A state in Ω2 with (=2

)’s at v′ and v′′.
(b) A 4-ary construction
made by deleting v′ and v′′.

Figure 7

Proof. For each σ ∈ Ω2, there are exactly two vertices in

V satisfying (=2). Let Ω
{v′,v′′}
2 ⊆ Ω2 be the set of states

in which v′, v′′ are these two vertices. We have Z(Ω2)
Z(Ω0) =∑

{v′,v′′} ∈ (V2)
Z(Ω

{v′,v′′}
2 )
Z(Ω0) . For any σ ∈ Ω

{v′,v′′}
2 , the
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local assignments around v′ and v′′ must be 00 on one
and 11 on the other. An example is in Figure 7a. If we
“delete” v′ and v′′ as shown in Figure 7b, we get a 4-ary
construction g using degree 4 vertices with constraint
functions in F≤2 ⊂ F≤. Denote the constraint matrix

of g by M(g) =

[
a′

b′ c′

c′ b′

a′

]
, with the input order being

counter-clockwise starting from the upper-left edge. For
this 4-ary construction g we observe that: the states

in Ω
{v′,v′′}
2 where edges incident to v′ (also v′′) take

the same value contribute a total weight (a′ + a′), i.e.

Z(Ω
{v′,v′′}
2 ) = 2a′; the states in Ω0 where v′, v′′ satisfy

( 6=2) have a total weight Z(Ω0) = 2b′ + 2c′. Note that
F≤2 ⊂ F≤. By Theorem 3.1 we know that for 4-ary

construction g, a′ ≤ b′ + c′. Therefore,
Z(Ω

{v′,v′′}
2 )
Z(Ω0) ≤ 1.

In total, Z(Ω2)
Z(Ω0) ≤

(|V |
2

)
.

Combining Lemma 4.1 and Corollary 4.1, we con-
clude that MC is rapidly mixing, and Ω0, the set of
valid six-vertex configurations, in total takes a non-
negligible proportion in the stationary distribution. As
a consequence, we are able to efficiently sample six-
vertex configurations according to the Gibbs measure
on Ω0, and in the following algorithm we only work
with states in Ω0. We design the following algorithm to
approximately compute Z(F≤2) via sampling with the
directed-loop algorithmMC. As we have argued in Sec-
tion 3, the partition function of the six-vertex models
can be viewed as the weighted sum of Eulerian parti-
tions. For a vertex v ∈ U , the ratios among differ-
ent pairings ( , , and ) in weighted Eulerian parti-
tions can be uniquely determined by the ratios among
different orientations (represented by a, b, and c) at
v. As long as the partition function is not zero (this
can be easily tested in P), there must be a pairing %
showing up at v with probability at least 1

3 among all
three pairings. Therefore, running MC on G, we can
approximate, with a sufficient 1/poly(n) precision, the
probability of having % at v, denoted by Prv(%). De-
note by Gv,% the graph with v being split into v1 and
v2, each assigned a ( 6=2) and the edges reconnected ac-
cording to %. Write the partition function of Gv,% as
Z(Gv,%), we have Prv(%) = w(%)Z(Gv,%)/Z(G) which
means Z(G) = w(%)Z(Gv,%)/Prv(%). To approximate
Z(G) it suffices to approximate Z(Gv,%), which can be
done by running MC on Gv,% and recursing. Repeat-
ing this process for |U | steps we decompose the graph
G into the base case, a set of disjoint cycles with even
number of vertices, each assigned a (6=2). The partition
function of this cycle graph is just 2C where C is the
number of cycles. By this self-reduction, the partition
function for G can be approximated.

Therefore, Theorem 4.1 is proved. Note that for
the special case (1, 1, 1), the FPRAS by Mihail and
Winkler is a reduction [27] to computing the number
of perfect matchings in a bipartite graph. We give a
direct algorithm using Markov chain Monte Carlo.

Remark 4.2. After this paper was posted, it has been
suggested that one can find an alternative algorithm for
the interior of the blue region by adapting and combining
the algorithm in [18] and the reduction in [27], although
this approach would produce a slightly worse running
time. Together with our direct approximation algorithm,
this further delineates the blue region as being possibly
an intrinsic barrier.

5 Hardness

Theorem 5.1. If f ∈ F>, then Z(f) does not have an
FPRAS unless RP = NP.

Proof. Let 3-MIS denote the NP-hard problem of com-
puting the cardinality of a maximum independent set
in a 3-regular graph [9]. We reduce 3-MIS to approxi-
mating Z(f). Since f ∈ F>, all a, b, c > 0. Since the
proof of NP-hardness for Z(f) is for general graphs (i.e.,
not necessarily planar), we can permute the parameters
so that c > a + b, and normalize c > b ≥ a = 1. Let
γ = c

a+b . Then γ > 1.
Before proving this theorem we briefly state our

idea. Denote an instance of 3-MIS by G = (V,E). For
any independent set, no two adjacent vertices u, v ∈ V
can both appear. The only possible configurations for
adjacent {u, v} in any independent set S are (u ∈ S, v 6∈
S), (u 6∈ S, v ∈ S), and (u 6∈ S, v 6∈ S). We want
to encode this local constraint by a local fragment of
a graph G′ in terms of configurations in the six-vertex
model.

(a) (b) (c)

Figure 8: A construction implementing a single edge in
an independent set.

In Figure 8a we show how to implement a toy
example—a single edge {u, v}—by a construction in the
six-vertex model with parameters (a = 1, b ≥ 1, c >
a + b). We create two vertices, the left one for u and
the right one for v, both given the constraint function
f , and connect them as is shown in Figure 8a. The
order of the 4 edges at each vertex is aligned to Figure 1
by a rotation so that the northwest edge marked by
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“N” corresponds to the north edge in Figure 1. There
are a total of 4 edges in Figure 8a. Every 2-in 2-out
configuration on the left vertex uniquely extends to a
2-in 2-out configuration on the right, and vice versa.
Hence there are a total of 6 valid configurations. When
the left vertex has a saddle configuration (in-out-in-
out, or its reversal) which has weight c, the right must
have a non-saddle configuration of weight b. Figure 8b
depicts one such configuration; reversing all arrows gives
another one having the same weight. Similarly if the
right vertex has a saddle configuration (or its reversal)
having weight c then the left must be a non-saddle
having weight b. There are two more configurations
with two non-saddles (Figure 8c and its reversal); these
both have weight a2 = 1. This models how two adjacent
vertices interact in 3-MIS. We will call the connection
pattern described in Figure 8a between two sets of 4
dangling edges the four-way connection.

However, when a vertex in G has more than one
neighbor, simply duplicating this elementary implemen-
tation will not work, because we cannot make sure that
the duplicate copies corresponding to the same vertex v
behave consistently. To handle this difficulty, we design
a locking device (Figure 9) for every v ∈ V such that
the property whether v belongs to an independent set
in G is consistently reflected in G′ in terms of being in
a saddle configuration or not. This locking mechanism
is enforced in the sense of approximation.

Figure 9: A locking device implementing a degree three
vertex and its incident edges.

In Figure 9, we identify the leftmost node J with
the rightmost node J—there are three “circles” in to-
tal. Most nodes depicted in Figure 9 will be replaced
by some construction implementing the locking mecha-
nism. Each circle has 4 dangling edges. The “left circle”
has two dangling edges incident to A, one incident to D,
and one incident to E. Similarly for the “middle circle”
and the “right circle”. Each edge {u, v} in G is mod-
eled by a four-way connection of the 4 dangling edges
between one circle of the construction for u and another
circle of the construction for v. The 4 dangling edges
of any circle is said to be in a saddle (or non-saddle)
configuration if it is so when viewed externally in the
cyclic order depicted in Figure 9.

The locking mechanism is to realize the following:
when the four dangling edges of one of the 3 circles
take a saddle configuration, (either in-out-in-out, or
out-in-out-in), the other two circles must also take the
identical saddle configuration (in-out-in-out, or out-in-
out-in, respectively); when one circle takes any non-
saddle configuration, the other two circles can take
independently any non-saddle configurations, with no
linkage (aside being a non-saddle). This is made
possible by chaining, and the guarantee is enforced by
approximate counting.

Figure 10: 2-chain.

Figure 10 depicts a 2-chain. We place the constraint
function (6=2) on the two degree 2 vertices connecting
the two degree 4 vertices, each assigned a copy of f ,
and the edges are ordered so that M = Mxixj ,xlxk(f) =

Mxpxq,xsxr (f) =

[
c

a b
b a

c

]
. Then the constraint func-

tion f2 of this 2-chain construction is obtained by ma-
trix multiplication M(f2) = Mxixj ,xsxr (f2) = MNM ,

where N =

[
1

1
1

1

]
. Thus M(f2) =

[ c2
a2 b2
b2 a2

c2

]
=[

c2

2ab a2+b2

a2+b2 2ab
c2

]
, where c2 = c2, a2 + b2 = (a + b)2.

Thus c2 > a2 + b2, and γ2 := c2
a2+b2

=
(

c
a+b

)2

= γ2.

This can be generalized to a k-chain, which connects
k vertices with constraint function f by k − 1 copies of
N , such that ck = ck, ak + bk = (a + b)k, γk = γk.
Notice that when c > a + b, the ratio c

a+b can be
amplified exponentially in k in a k-chain. Therefore, by
a chain of polynomially bounded size we can ensure the
undesirable configurations are negligible — the 4-ary
construction is locked into the only two complementary
configurations which c represents. It can be verified
that bk = (µk + νk)/2 ≥ ak = (µk − νk)/2 ≥ 1,
where µ = a + b and ν = b − a. We can “normalize”
a k-chain by dividing ak, so that its parameters are
c̃k = ck/ak > b̃k = bk/ak ≥ ãk = 1, and the ratio
c̃k

ãk+b̃k
= γk.

To reduce the problem 3-MIS to approximating
Z(f), let κ > λ ≥ 1 be two constants that will be
fixed later. For each 3-MIS instance G = (V,E) with
|V | = n, we construct a graph G′ where a device in
Figure 9 is created for each v ∈ V , and a four-way
connection is made for every {u, v} ∈ E(G), on the
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dangling edges between two circles corresponding to
{u, v} as in Figure 8a. For each device in Figure 9,
each of the nodes A,B,C is replaced by a normalized
λn-chain to boost the ratio of the saddle configuration
over other configurations; each of the nodes D,F,H is
replaced by a κn2-chain to lock in the configuration
“all arrows pointing up and right” and its reversal;
each of the nodes E,G, I is also replaced by a κn2-
chain to lock in the configuration “all arrows pointing
down and right” and its reversal (these configurations
at D,F,H, and at E,G, I respectively, will be called
locking configurations); at each of J,K,L, we just put
f , of which the maximum weight of a configuration over
the minimum is a constant c

min{a,b} = c. Note that

the constraint function in Figure 10 has the dominating
entry at 0011 and 1100. Since our graph G′ does not
need to be planar, we can reorder the 4 external edges
arbitrarily. In particular, for A,B,C the dominating
entry c̃λn is in the saddle 0101 and 1010 positions, as
depicted in Figure 9. Similarly the 4 external edges of
D,F,H and E,G, I are also properly reordered from the
order given in Figure 10, as a κn2-chain to achieve the
proper locking configurations.

Next we argue that the maximum size s of indepen-
dent sets in G can be recovered from an approximate
solution to Z(G′; f).

Given an independent set S ⊂ V of size s, we
show there is a valid configuration (at the granularity
of nodes and edges shown in Figure 9) of weight ≥
c6κn

3
(
c̃λnb̃λn

)3s

. For any vertex v ∈ S we set the

following configuration for its locking device: set each
of 3 nodes A,B,C to the same saddle configuration in-
out-in-out cyclically starting from the upper edge—each
has weight c̃λn; set each of 3 nodes D,F,H to the same
out-out-in-in locking configuration (clockwise) cyclically

starting from the upper edge—each has weight cκn
2

; set
each of 3 nodes E,G, I to the same in-out-out-in locking
configuration (clockwise) cyclically starting from the

upper edge—each also has weight cκn
2

; set each of 3
nodes J,K,L to the same configuration “two in from
the left and two out to the right”, which has a non-zero
weight ≥ 1. For any vertex v 6∈ S we set the following
configuration for its locking device: All D,F,H,E,G, I
will be in some locking configurations. Consider any of
the 3 circles in the device, for example the circle formed
by A,D,E, J,K. The node A is involved in a four-way
connection to another circle belonging to a device for
some vertex u. If u ∈ S, the assigned configuration
just defined at u forces a non-saddle configuration here;
more specifically the horizontal two dangling edges at
A must either both point right (or both point left), and
the upper edge ê of E and the lower edge e of D must

either both point down (or both point up, respectively).
Regardless of which of the two assignments for the pair
(ê, e), either both down or both up, we can assign a
locking configuration for E and D so that the upper
and lower edges of A are either both point down or
both point up respectively, inheriting the orientation
at (ê, e). Note that in either case, the left two edges
of K are one-in-one-out; similarly the right two edges
of J are also one-in-one-out (this allows “freedom”
between the 3 circles where each of J , K, L can take
a nonzero weight ≥ 1). Continuing our description at
the circle A,D,E, J,K, if u 6∈ S, then we will pick
an arbitrary non-saddle to non-saddle configuration in
the four-way connection for {u, v}. These can all be
extended to a valid configuration at A,D,E such that
the configuration at A is non-saddle having weight ≥ 1,
the configurations at D and E are locking, and the
right two edges of J and the left two edges of K are
both one-in-one-out. The weight at D and E are still
cκn

2

. Because J and K each has one-in-one-out from
within the side of the circle, the 3 circles can be assigned
independently from each other. This allows us to handle
the situation where, for the same v 6∈ S, some edge
{v, u} connects to u ∈ S and some edge {v, u′} connects
to u′ 6∈ S.

We have defined a valid configuration, and

it has weight ≥
∏
v∈V c

6κn2 ∏
v∈S

(
c̃λnb̃λn

)3

=

c6κn
3
(
c̃λnb̃λn

)3s

, where 6 comes from the 6 locking

nodes D,E, F,G,H, I in each locking device. (Omitted
factors are all ≥ 1.)

Next we show that the weighted sum of all config-

urations is smaller than 1
2c

6κn3
(
c̃λnb̃λn

)3(s+1)

, where s

is the maximum size of independent sets in G. First
we bound Wlock, the sum of weights for configurations
where all nodes labeledD,E, F,G,H, I are locked. Con-
sider any circle such as the one labeled A,D,E, J,K
for any v ∈ V . It is involved in a four-way connec-
tion with another such circle for a vertex u ∈ V , say
A′, D′, E′, J ′,K ′, where {u, v} ∈ E(G). The fact that D
is locked forces that the upper and lower edges of D are
to be consistently oriented, i.e., both up or both down.
Similarly, consistency holds at E, D′ and E′. Thus the
four-way connection forces that there can be at most one
of A and A′ is in a saddle configuration. Furthermore, if
A is in a particular saddle configuration, say in-out-in-
out starting from the upper edge, both upper and lower
edges of D must point up, and both upper and lower
edges of E must point down, and then both right edges
of D and E must point right, causing the left two edges
of K point in, and thus the right two edges of K point
out. This forces both F and G to take exactly the same
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locked configurations of D and E respectively, whch
forces B to be in exactly the same saddle configura-
tion as A. Similarly so is C. We conclude that when all
nodes labeled D,E, F,G,H, I are locked, for any v ∈ V ,
if any of its A,B,C is in a saddle configuration, then
all 3 are in exactly the same saddle configuration, and
none of A′, B′, C ′ for u ∈ V is a saddle, if {u, v} ∈ E. In
particular, there can be at most 3s many saddles among
A,B,C’s in G′. If 0 ≤ i ≤ s is the number of {A,B,C}’s
being in saddle, their weight is (c̃λn)

3i
, and their corre-

sponding non-saddles in respective four-way connections

must take weight
(
b̃λn

)3i

. Those (3n − 6i)/2 pairwise

four-way connections (here (3n− 6i)/2 is an integer, as
n = |V | is even for a 3-regular graph G) between two
non-saddles have weight ãλn = 1. Note that, if any of
those non-saddles were to take weight b̃λn, then the cor-
responding paired node in its four-way connection must
be in saddle, a contradiction.

It follows that

Wlock ≤ 26n
(
cκn

2
)6n s∑

i=0

(
n

i

)(
c̃λnb̃λn

)3i

c3n

≤ 27nc6κn
3+3n

(
c̃λnb̃λn

)3s

,

where each locked node D,E, F,G,H, I has 2 possi-
ble locking configurations each with weight cκn

2

, and
given a particular assignment of 6n locking configura-
tions, there can be at most s batches of A,B,C’s in
saddle configurations (same for each batch and deter-
mined by the locks) with weight c̃λn. Hence Wlock <

1
4c

6κn3
(
c̃λnb̃λn

)3(s+1)

, when λ ≥ 1 is large.

It remains to upper-bound the weighted sum of
configurations where there is at least one device with
some lock broken. This quantity is bounded by

6n−1∑
i=0

(
6n

i

)
ciκn

2

(a+ b)(6n−i)κn2

66n

×
[
2
(
c̃λn + b̃λn + 1

)]3n
[2(a+ b+ c)]3n

≤ 230n(a+ b)6κn3

(
c

a+ b

)(6n−1)κn2

×
[
c̃λn + b̃λn + 1

]3n
[a+ b+ c]3n

≤ 230n[Θ(1)]λn
2

c6κn
3 1

cκn2 (a+ b)κn
2

= 230n[Θ(1)]λn
2

c6κn
3 1

γκn2 ,

which is < 1
4c

6κn3

when κ� λ ≥ 1 is large. Here Θ(1) is
a constant depending only on a, b, c, and 66n comes from

six possible valid configurations for at most 6n vertices
of the type D,E, F,G,H, I, not necessarily in locking
configurations.

6 Open problems

The main open problem on the approximate complex-
ity of the six-vertex model is in the white region.
The finer classification of the approximate complex-
ity for the planar case is also open. Approximating
T (G; 3, 3) is #BIS-hard for general graphs [10]. On
planar graphs, T (G; 3, 3) is equivalent to the six-vertex
model at (1, 1, 2) where the approximation complexity
for planar graphs is unknown.
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