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Abstract

We consider a monopolist seller that has n heteroge-
neous items to sell to a single buyer. The seller’s goal
is to maximize her revenue. We study this problem in
the correlation-robust framework recently proposed by
Carroll [Econometrica 2017]. In this framework, the
seller only knows marginal distributions for each sep-
arate item but has no information about correlation
across different items in the joint distribution. Any
mechanism is then evaluated according to its expected
profit in the worst-case, over all possible joint distribu-
tions with given marginal distributions. Carroll’s main
result states that in multi-item monopoly problem with
buyer, whose value for a set of items is additive, the
optimal correlation-robust mechanism should sell items
separately.

We use alternative dual Linear Programming for-
mulation for the optimal correlation-robust mechanism
design problem. This LP can be used to compute opti-
mal mechanisms in general settings. We give an alterna-
tive proof for the additive monopoly problem without
constructing worst-case distribution. As a surprising
byproduct of our approach we get that separation re-
sult continues to hold even when buyer has a budget
constraint on her total payment. Namely, the optimal
robust mechanism splits the total budget in a fixed way
across different items independent of the bids, and then
sells each item separately with a respective per item
budget constraint.

1 Introduction

In the monopolist setting the seller has n heterogeneous
items to sell to a single buyer. The monopolist has a
prior belief about the distribution of buyer’s values and
wants to sell the goods so as to maximize her expected
revenue. In case of a single item (n = 1) with value
drawn from a distribution F the optimal solution [30] is
straightforward: the seller offers a fixed take-it-or-leave-
it price p chosen to maximize expected payment p · (1−
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F (p)). As an example of the multidimensional problem
let us consider the most basic and widely studied
version, where buyer’s value for a set of items is additive.
This easy-to-state problem despite the simplicity of
the single-item case remains one of the primary open
challenges in algorithmic mechanism design.

The problem of finding the right auction format
and proving its optimality is quite difficult even in
the case of two items (n = 2). The monopolist may
use quite a few selling strategies: she may sell items
independently by posting a separate price for each of
the two items; or offer a bundle of both goods, at
yet another price. In general, the seller can offer a
menu with many options that may involve lotteries with
probabilistic outcomes, e.g., a 0.6 chance of getting first
item and 0.4 chance of getting second item, for some
price. In some special cases the optimal mechanism is
relatively simple, e.g., in a natural case of values for
different goods being independent and uniform [0, 1],
the optimal mechanism offers a menu with separate
prices for each of the items and a price for the bundle
(despite a simple answer the proof of this fact is quite
nontrivial [29].) For general distributions it has been
shown that randomization might be necessary and even
that the seller might have to offer an infinite menu of
lotteries [24, 19]. On the other note, the revenue of
the optimal auction may be non-monotone [25] when
the buyer’s values in the prior distribution are moved
upwards (in the stochastic dominance sense). These
issues not only appear when values for two or more items
are correlated, but also when values for the two items
are independently distributed.

To avoid the aforementioned complications Car-
roll [10] has recently proposed a new framework for mul-
tidimensional monopolist problem1 for additive buyer.
In this framework the seller knows prior distribution
of types vi ∼ Fi for each individual item i ∈ [n]. How-
ever, unlike the traditional approach, in which the seller
maximizes expected payment with respect to a given
prior distribution D over the complete type profiles
v = (v1, · · · , vn), in the new framework the seller does
not know anything about correlation of types across dif-

1Carroll considered a more general setting of multidimensional
screening with additively separable payoff structure.
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ferent items. Any mechanism then is evaluated accord-
ing to its expected profit in the worst-case, over all possi-
ble joint distributions with given marginal distributions
{Fi}ni=1 of each separate item i ∈ [n]. In other words,
the seller wants to get a guarantee on the expected profit
of a mechanism which is robust to any correlation across
different type v components. Although, Carroll’s model
is formulated for a buyer with additively separable valu-
ation, the framework easily extends to other more gen-
eral mechanism design settings, where the buyer does
not need to be additive and may potentially have any
valuation function for different allocations x of items,
e.g., the buyer might be unit-demand (i.e., he does not
want more than one item), or have budget constraint.

It is quite remarkable that traditional for com-
puter science worst-case approach was proposed by an
economist in an economics journal. There are standard
pros and cons of the worst-case versus average-case anal-
ysis frameworks in computer science, which also apply
to the monopolist setting. However, there are some spe-
cific points that we shall discuss below.

1. The underlying assumption of the Bayesian analy-
sis framework is that joint prior distribution is al-
ready known to the seller. There is a serious prac-
tical concern regarding learning correlated multi-
dimensional distribution: the computational and
sampling complexity of this problem is exponential
in the dimension (i.e., number of items). Another
challenge in learning the prior distribution arises
as a result of strategic behavior of the buyer, who
does not usually report his type but respond to the
seller’s offer in each single interaction and who also
might have incentives to conceal data in order to
improve his interaction with the seller in the future.
In this respect, learning information about separate
marginals is much simpler econometrics task that
does not suffer from the curse of dimensionality.

2. The most common case studied in the algorithmic
mechanism design literature is the case of known
independent prior distribution. In this case it is
expected that one can get better revenue guaran-
tees than in the worst-case framework. However,
in practice, the independence assumption does not
always hold and even verifying it (in the prop-
erty testing sense) is quite non trivial statistical
task. There are many scenarios in which it is nat-
ural to assume correlation across different items.
The studies for correlated priors are not uncom-
mon in the literature, both for the cases of pos-
itively or negatively correlated distributions, see
e.g. [27, 31, 2]. However, the case of independent
priors is usually more tractable and much better

studied in algorithmic mechanism design literature
than the case of correlated priors. Indeed, it seems
reasonable to resolve first a simpler and more regu-
lar case of independent distributions before study-
ing a general and more difficult problem with cor-
related priors. In this respect, correlation-robust
framework offers an alternative tractable model to
study the unwieldy case of possibly correlated prior
distributions.

3. As was mentioned earlier, even with independent
prior distribution the optimal mechanism can be
very complex and as such is not employed in prac-
tice. A recent line of work in algorithmic game
theory studied the monopolist problem in the sim-
ple versus optimal framework [26] and obtained
a few interesting approximation guarantees. In
the case of additive buyer, Babaioff et. al. [1]
showed that a simple mechanism, of selling items
either separately, or together in one grand bundle
gives a constant-factor approximation to the opti-
mal revenue. In the worst-case framework, Car-
roll has shown that the optimal correlation-robust
mechanism is to sell items separately, without any
bundling. His result compliments the result of [1]
by adding a valuable counterpoint to the algorith-
mic mechanism design literature as Carroll puts it
“If you don’t know enough to see how to bundle,
then don’t.”

4. The prior distribution usually represents a belief of
the seller about buyer’s types, but not the exact dis-
tribution. As such the prior might not accurately
capture the actual distribution and thus some ro-
bustness guarantees and insensitivity to the precise
data can be useful. The new framework addresses
the issue of possible correlation between different
type components. Furthermore, it seems to offer
more tractable way to analyze other robustness is-
sues, such as mistakes in the beliefs about marginal
distributions.

To conclude, the new framework complements and
adds a few valuable points to mechanism design liter-
ature on the monopolist problem and as such deserves
more attention from the computer science community.
Specifically, it seems quite natural to examine this
framework from a computational perspective. A general
monopolist problem in the correlation-robust framework
can be described with n distributions {Fi}ni=1 for each
separate item. The goal is to find a truthful mechanism
with the best revenue guarantee over all possible joint
distributions D with specified marginals {Fi}ni=1. We
know from Carroll’s work what the optimal solution is

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2070

D
ow

nl
oa

de
d 

01
/1

8/
19

 to
 2

19
.2

20
.1

45
.1

55
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



for the case of additive buyer. However, for other ver-
sions of the problem (e.g., for unit-demand or budget
constrained buyer) the structure of the optimal mecha-
nism is unclear and it is natural to ask a question of
computing the optimal mechanism for any given set
of marginals {Fi}ni=1. We note that this problem has
quite a succinct description. Indeed, the input to this
problem can be specified with n one-dimensional distri-
butions {Fi}ni=1, each described with |Vi| parameters,
where Vi is a support of Fi. This is in contrast with the
traditional computational Bayesian framework [6, 5, 7],
where the input to a single-buyer monopoly problem
(distribution D of types v = (v1, . . . , vn)) might have
exponential in the number of items size of

∏n
i=1 |Vi|

and thus some assumptions about polynomial number
of types in the support of D are necessary.

An inquisitive reader may wonder at this point in
which other than additive settings the new framework
can lead to interesting and tractable auction designs.
Carroll’s result for additive buyer shows optimality of
quite special and simple mechanism that sells items
separately. In this setting selling items separately seems
to be a perfect idea to the seller who knows only
marginal distributions and who then would equalize her
expected profit over all possible joint distributions of
the buyer. We note however that even this apparently
simple and intuitive result requires a highly non-trivial
proof [10]. The proof goes by constructing the worst-
case joint distribution with fixed marginals. Carroll
shows that the worst-case distribution is nothing but
simple2. Another central concept in the paper are
generalized virtual values, which add extra layer of
difficulty compared to the analysis with the classic
virtual values defined in [30].

1.1 Our Results The central problem in the new
worst-case framework is a maxmin problem of finding
optimal correlation-robust auction with a given set of
marginal distributions. In other words, this problem is a
zero sum game played between the auction designer who
picks a mechanism and the adversary who chooses the
joint distribution with fixed marginals. In this work we
give a new Linear Program formulation for this maxmin
problem3. Our LP has intuitive interpretation: in addi-
tion to the standard variables representing mechanism’s
allocation and payment functions {x(v), p(v),v ∈ V } it
has a set of new variables {λi(vi), vi ∈ Vi} for each sep-
arate item i ∈ [n]; the LP objective captures the best
additive approximation of the payment function p(v)

2The joint distribution is neither completely independent, nor
perfectly correlated and is constructed as a result of converging
Poisson process.

3Carroll used a similar idea for a different problem in [10].

with {λi(vi)}ni=1. The LP has succinct description, i.e.,
it has similar number of variables and constraints as the
LP describing a truthful auction (Incentive Compatibil-
ity and Individual Rationality constraints). In partic-
ular, our result implies that one can solve the LP for
any given set of marginal distributions, any valuation
function, and any feasibility constraint on the alloca-
tion and payments in time polynomial in the number of
possible types4

∏n
i=1 |Vi|. Another important feature of

our LP is that it can witness optimality of the auction
without constructing the worst case distribution. Thus,
our proof completely avoids the explicit construction
of the highly non trivial worst-case distribution, which
was an essential part in the Carroll’s proof [10]. We
note that generalized virtual values are defined as dual
variables to a different LP. In our LP dual and primal
formulations, we also avoid explicit construction of the
generalized virtual values.

We study next a new setting with a budget con-
strained buyer. In this setting the buyer still has ad-
ditive valuation, but has a publicly known budget cap
on the maximum amount he can pay to the seller. As
the budget constraint applies to all items rather than
each individual item, the strategy of selling items to-
gether (i.e., bundle items) seems more plausible than
in the case without a budget constraint. Surprisingly,
it turned out that the optimal correlation-robust auc-
tion would still sell items separately. More specifically,
we show that the optimal auction should split the total
budget across different items (the division depends only
on the marginal distributions, but not the bids), and
then sell each item separately with a respective per item
budget constraint. Our proof of optimality is obtained
from our new LP formulation without a construction of
the worst case distribution. We further derive a solu-
tion for the budget partition problem (i.e., how to split
the total budget across different items) and provide an
efficient algorithm that computes the optimal auction
in O(

∑n
i=1 |Vi|) time.

Conceptual contribution. The contribution of
this paper is twofold. First, we propose an alterna-
tive approach with intuitive LP formulation that sim-
plifies previous proofs and allows to consider many
other computational mechanism design problem in a
correlation-robust framework. Second, we identify an-
other class of problems with simple optimal solution,
which strengthen the Carroll’s counterpoint regarding
advantages of bundling in mechanism design literature.

4Note that the dependency on the number of possible types∏n
i=1 |Vi| is unavoidable, as the description of a truthful mecha-

nism as a pair of allocation and payment functions would already
require Ω(

∏n
i=1 |Vi|) space.
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Technical contribution. We propose a simpler
alternative to the existing techniques which rely on the
relatively new concept of generalized virtual values that
simultaneously and independently to Carroll’s work
appeared in [8]. The idea of generalized virtual values
was first proposed in [22] in the context of verification of
action optimality. Our approach is built on the idea of
studying dual LP to the adversary’s problem (one who
picks the worst-case distribution) and avoids the explicit
construction of the joint distribution in the Carroll’s
proof. We demonstrate the technical benefit of our
LP formulation by extending the separation result of
Carroll to a budgeted setting. It is unclear whether the
previous techniques of generalized virtual values would
yield that result.

1.2 Related work For a given distribution (either
with independent or correlated values), the revenue-
maximizing auction is usually quite complex. In par-
ticular, it may involve bundling and lottery pricing, the
menu size could be very large or even infinite [32, 29, 24,
18]. The task of finding the optimal mechanism could
be computationally intractable [17, 19].

The computational framework of Cai-Daskalakis-
Weinberg addresses the problem of multidimensional
mechanism design [6, 5, 7] from a computational com-
plexity perspective. This line of work proposes a com-
putationally tractable Bayesian incentive compatible
(BIC) solution for mechanism design problems with
multiple buyers. For a few quite general mechanism de-
sign settings, they showed that the computational prob-
lem can be solved with a black-box access to an algorith-
mic problem, where the goal is to optimize a perturbed
version of the initial objective without any incentives
constraints. However, for a single-buyer problem they
need assumptions on the support size of joint value dis-
tribution.

Another line of work employs a simple versus opti-
mal framework [26] to justify why simple auctions are
employed in the real world by showing approximation
guarantees of a simple format compared to the optimal
mechanism. For the case of unit-demand buyers, it was
shown in Chawla et. al. [12, 13, 14] that posted-price
mechanisms achieve constant approximation to the op-
timum. For the case of additive buyers, it was shown
in [23, 28, 1, 33] that simple auction format of either
selling items separately and a VCG mechanism with
per-bidder entry fee yields constant approximation to
the optimal revenue. In this work we focus on the
exact optimal auction in the correlation-robust worst-
case framework. It is possible that our LP formula-
tion can help to obtain approximation guarantees in the
correlation-robust auction design framework.

A recent work by Cai et al. [8] provided a unified
view on some of the above “simple versus optimal”
results by an LP duality based approach of generalized
virtual values. The work of Carroll [10]5 also heavily
relies on the concept of generalized virtual values.
Our LP formulation approach is also based on the
LP duality. However, we view the mechanism as a
parameter and work with the dual problem of designing
the worst-case distribution. Combining our techniques
with the concept of generalized virtual values might find
its applications and can be beneficial in other settings
in the correlation-robust framework.

There is a few lines of work in economics literature
on robust mechanism design, that aims to explain the
usage of intuitive and simple mechanisms by providing
performance guarantees in uncertain environment [9, 11,
4, 3, 16, 20]. This body of literature employs a similar
to our approach of searching a worst-case solution over
the uncertainty in the optimization problem.

2 Preliminaries

We consider a canonical multidimensional auction en-
vironment where one agent is selling n heterogeneous
items to a single buyer. This environment can be
specified by an allocation space X, which is assumed
to be a compact measurable set in [0, 1]n; type space
V =

∏n
i=1 Vi, Vi ⊆ R≥0 and a value function val :

X × V → R≥0. In general we will use bold face script
to denote vectors, or multidimensional objects like V ,
e.g., n-dimensional vector of 1 we denote as 1. We con-
sider the set of convex combinations ∆(X) achievable
in expectation by a random feasible allocation X. The
agent is risk-neutral, and thus his value naturally ex-
tends to E[val] : ∆(X) × V → R. We will use the
variable x to denote either an element of X or of ∆(X);
and function val to denote Ex[v] for x ∈ ∆(X). We use
v = (v1, v2, · · · , vn) ∈ V to denote a multidimensional
type of the agent. We employ standard formulation of
incentive compatible mechanism as a pair of allocation
x : V → X and payment p : V → R≥0 functions satis-
fying incentive compatibility (IC) and individual ratio-
nality (IR) constraints for quasi-linear utility u(v, v̂).

u(v, v̂)
def
= val(v, x(v̂))− p(v̂) ≤ u(v,v)

= val(v, x(v))− p(v) for all v, v̂ ∈ V (IC).

u(v,v) = val(v, x(v))− p(v) ≥ 0 for all v ∈ V (IR).

In this formulation, the agent has a true type v
and submits a bid v̂ to the auctioneer. The auctioneer

5Carroll proposed the notion of generalized virtual values
independently and simultaneously with [8]
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sees the agent’s bids v̂ and outputs an allocation vector
x(v̂) = (x1, x2, · · · , xn) ∈ X and a payment p(v̂). The
agent’s valuation is val(v, x) and his utility is val(v, x)−
p for the true type v. When buyer has additive
valuation, we have val(v, x) = 〈v, x〉 =

∑n
i=1 vi · xi.

A mechanism (x, p) is called truthful if it satisfies IR
and IC conditions.

Another property for mechanism is budget feasibil-
ity: the agent’s payment to the seller is bounded by a
budget B. The agent derives utility of −∞ when p(v) >
B and the same quasi-linear utility of val(v, x(v))−p(v),
when p(v) ≤ B. We assume that agent’s budget B is
public, i.e., the budget B is known to the auctioneer6.
In this setting, the auctioneer must use budget feasible
mechanism, i.e., a mechanism such that p(v) ≤ B for
all v ∈ V .

The type v is drawn from a joint distribution D,
which is not completely known to the auctioneer and
which may admit correlation between different com-
ponents vi and vj of v. The auctioneer only knows
marginal distributions Fi of D for each separate com-
ponent i but does not know how these components
are correlated with each other. We assume that ev-
ery distribution Fi is discrete and has finite support7

Vi. We use fi to denote the probability density func-
tion of the distribution Fi. We also slightly abuse no-
tations and use Fi to denote the respective cumula-
tive density function. The joint support of all Fi is
V = ×ni=1Vi. We use Π to denote all possible dis-
tributions π supported on V that are consistent with
the marginal distributions F1, F2, · · · , Fn, i.e., Π ={
π |
∑

v-i
π(vi,v-i) = fi(vi), ∀i ∈ [n], vi ∈ Vi

}
. The

goal is to design a truthful mechanism that maximizes
auctioneer’s expected revenue in the worst case with re-
spect to the unknown joint distribution D. Formally,
we want to find a truthful (budget feasible) mechanism
(x∗, p∗) such that

(2.1) (x∗, p∗) ∈ argmax
(x,p)

min
π(x,p)
π∈Π

∑
v∈V

π(v)p(v).

3 LP formulation of Maxmin

We begin by looking at equation (2.1) as a zero-sum
game played between the auction designer and an ad-
versary, who gets to pick a distribution π with given
marginals F1, · · · , Fn and whose objective is to mini-
mize the auctioneer’s revenue. We note that the strat-

6We note that optimal auction problem in a private budget
setting is quite complex even in the single-item case. Thus the
public budget assumption is indeed necessary if our goal is to find
settings with simple optimal auctions.

7Similar to [10] our results extend to the distributions with
continuous type distributions.

egy space of the auctioneer, i.e., the set of truthful mech-
anisms given by x : V → ∆(X) and p : V → R≥0, is
convex (because a random mixture of truthful mecha-
nisms is a truthful mechanism itself) and is compact8.
Similarly the strategy space Π of the adversary (distri-
bution player) is also a compact convex set. Thus the
sets of both players’ mixed strategies coincide with their
respective sets of pure strategies. Now, our two-player
game admits at least one mixed Nash equilibrium9,
which is also a pure Nash equilibrium: M∗ = (x∗, p∗)
for the auctioneer player and π∗ for the adversary. This
Nash equilibrium defines a unique value of a zero sum
game and, therefore, yields a solution to minmax prob-
lem (2.1).

We restrict our attention to the minimization prob-
lem of the distribution player for any fixed truthful
mechanism M = (x, p):

(3.2) min
π∈Π

∑
v

p(v) · π(v).

Note that this is a linear program, since Π is given by a
set of linear inequalities. We also write a corresponding
dual problem.

min
∑
v

p(v) · π(v)(3.3)

s. t.
∑
v-i

π(vi,v-i) = fi(vi) dual var. λi(vi)

π(v) ≥ 0

max

n∑
i=1

∑
vi

fi(vi) · λi(vi)

s. t.

n∑
i=1

λi(vi) ≤ p(v) ∀v

λi(vi) ∈ R

The value of the primal LP (3.3) is worst-case rev-
enue Rev(M) of the mechanism M = (x, p). Intu-
itively, the dual LP (3.3) captures the best additive ap-
proximation of the payment function p(v) of M with
{λi(vi), vi ∈ Vi}ni=1. The values of the primal and dual

8Indeed, as there are only finite number of types, one can think
of a pair of allocation x and payment p functions as |V | vectors
in X and |V | real numbers in R≥0. Thus we get a natural notion
of convergence and distance for the mechanisms. As the set of
truthful mechanisms is described by a finite set of not strict IC
and IR inequalities, we conclude that truthful mechanisms form a
closed set. Note that allocation domain is compact and payment
function of a truthful mechanism is bounded by a constant, which
makes the set of truthful mechanisms to be bounded as well.
Therefore, it is compact.

9by Glicksberg Theorem for continues games.
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problems (3.3) are equal for any fixed truthful mecha-
nismM = (x, p). This allows us to convert the maxmin
problem (2.1) to a maximization LP problem:

max

n∑
i=1

∑
vi

fi(vi) · λi(vi)(3.4)

s. t.

n∑
i=1

λi(vi) ≤ p(v) ∀v;

(x, p) : (IC),(IR); x(v) ∈ ∆(X).

One can solve LP (3.4) with standard polynomial
time techniques to get an optimal auction in a variety
of settings. For example we can compute optimal
auctions for buyer’s valuations such as additive, unit-
demand, budget additive and many other tractable
settings which allow succinct LP description of ∆(X).
However, the optimal solution to these problems would
normally require description proportional to the size
of the type domain |V | =

∏n
i=1 |Vi|, which makes it

not efficient for problems with large number of items.
Thus a next most natural question is to find special
classes of problems that admit succinct and simple
auctions in the correlation-robust framework. One such
problem is monopolist setting for additive buyer, for
which Carroll [10] showed that simple auction of selling
items separately achieves the optimal revenue in the
worst-case.

4 Additive Separation with Budget

Let us denote by Rev(Fi, Bi) the optimal revenue of a
single-item single-bidder auction that can be extracted
from a single agent with a value distribution vi ∼ Fi
and a public budget Bi. We will use Rev(Fi) to
denote the revenue of the optimal posted-price auction
without budget constraint. To simplify notations we

use Revi(Bi)
def
= Rev(Fi, Bi). We propose the following

straightforward format of budget feasible mechanisms:
split the budget B =

∑n
i=1Bi across all items {Bi}ni=1;

independently for each item i run an optimal single-item
auction with the revenue Revi(Bi). We call this class of
budget feasible mechanisms item-budgets mechanisms.
We note that this is fairly large class of mechanisms,
as there are many ways in which the budget B can be
split over the different items. We use Rev({Fi}ni=1, B)
to denote

max

n∑
i=1

Revi(Bi), s.t.

n∑
i=1

Bi ≤ B.

The solution to this problem gives us the expected
revenue of the the optimal item-budgets mechanism.
We will discuss how to find an optimal mechanism for

each individual item i and budget Bi (i.e., those with
revenue Rev(Fi, Bi)) and how to split the budget in the
optimal way over different items in the next Section 5).
In the following theorem we show that the optimal
correlation-robust mechanism is in fact an item-budgets
mechanism.

Theorem 4.1. The optimal correlation-robust mecha-
nism has the revenue of Rev({Fi}ni=1, B).

Proof Outline. We assume towards a contradic-
tion that there is a mechanism M with higher rev-
enue. Then we fix M and consider the variables
{λi(vi)}i∈[n],vi∈Vi

in the dual LP (3.4), which give an

additive approximation (lower bound) on the payment
function of M. It is natural to interpret {λi(vi)}vi∈Vi

as prices for each separate item i ∈ [n]. However, we
need to deal with a problem that variables {λi(vi)}
can be negative. To this end, we regularize the prob-
lem by restricting the domain vi ∈ Vi and ensure that
{λi(vi)}i∈[n],vi∈Vi

are non-negative and monotonically

increasing for each i ∈ [n]. We construct an item-pricing
mechanism such that its payment function is point-wise
dominated (upper bounded) by

∑
i∈[n] λi(vi). Finally,

we get a contradiction by combining certain tight IC
and IR constraints for the item-pricing mechanism that
together yield an upper bound on a weighted sum of the
payments of M.

Proof. Let us assume to the contrary that M is a
truthful and budget-feasible mechanism, such that its
revenue Rev(M) >

∑n
i=1 Rev(Fi, Bi) for any partition

{Bi}ni=1 of the budget B. Now let {λi(vi)}i∈[n],vi∈Vi

be a solution to the dual LP 3.3 for the mechanism
M = (x, p). Notice that the solution to the dual
LP 3.3 is not unique, since we can do the following linear
transformation with {λi(vi)} for any fixed pair of items
i, j ∈ [n] and δ ∈ R:

(4.5)

{
λi(vi)← λi(vi) + δ ∀vi ∈ Vi
λj(vj)← λj(vj)− δ ∀vj ∈ Vj ,

and get another feasible solution with the same value∑n
i=1

∑
vi
fi(vi) · λi(vi). In particular, by applying a

few of these transformation we can get the following set
of {λi(vi)}i∈[n],vi∈Vi

Claim 1. ∃ {λi(vi)}i∈[n],vi∈Vi
s.t.

∑
vi∈Vi

λi(vi) · fi(vi) >

Revi(B
o
i ) with Boi = max

vi∈Vi

{0, λi(vi)} ∀i ∈ [n].

Proof. First, note that by applying transform (4.5)
to {λi(vi)} we increase max

vi∈Vi

λi(vi) by δ and decrease

max
vj∈Vj

λj(vj) by δ. Thus we can make max
vi∈Vi

λi(vi) ≥
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0 for all i ∈ [n]. If we keep {λi(vi)} within the

region max
vi∈Vi

λi(vi) ≥ 0 for all i ∈ [n], then Boi
def
=

max
vi∈Vi

{0, λi(vi)} = max
vi∈Vi

λi(vi).

Second, let v∗i
def
= argmax

vi∈Vi

λi(vi) for each i ∈ [n],

then from the dual LP 3.3 we have∑
i∈[n]

Boi =
∑
i∈[n]

λi(v
∗
i ) ≤ p(v∗) ≤ B,

I.e., the set {Boi }i∈[n] is budget feasible. Now, since∑
i∈[n]

∑
vi∈Vi

λi(vi) · fi(vi) >
∑
i∈[n]

Revi(B
o
i ), we can always

find j ∈ [n] s.t.
∑

vj∈Vj

λj(vj) · fj(vj) > Revj(B
o
j ) + ε for

some fixed small ε > 0.
Finally, we show in Section 5 that Revi(Bi) is

concave as a function of Bi. Also note that the revenue
can never exceed the budget Revi(Bi) ≤ Bi, Revi(B) is
increasing function, Revi(0) = 0, and Revi(∞) = Revi.
I.e., the derivative of Revi(x) is equal to or smaller than
1 for any x ≥ 0. If for some i ∈ [n]

∑
vi∈Vi

λi(vi) · fi(vi) ≤

Revi(B
o
i ), then we find j ∈ [n] with

∑
vj∈Vj

λj(vj)·fj(vj) >

Revj(B
o
j ) + ε and do transform (4.5) with some small

fixed δ > 0 s.t.
∑

vj∈Vj

λj(vj) · fj(vj) > Revj(B
o
j ). As

Revi(B) is a bounded function
∑
vi∈Vi

λi(vi) · fi(vi) will

become greater than Revi(B
o
i ) after finitely many steps.

This way we can make
∑
vi∈Vi

λi(vi) · fi(vi) > Revi(B
o
i )

for all i ∈ [n].

Now we fix M and {λi(vi)}vi∈Vi
for each i ∈ [n]

and try to find marginal distribution with the smallest
support that still has a gap between Revi(B

o
i ) and

corresponding revenue term
∑
vi∈Vi

λi(vi) · fi(vi) of M:

f∗i = argmin
fi

{
|supp(fi)|

∣∣∣∣∣∆rev
i (fi)

def
=

∑
vi∈Vi

λi(vi) · fi(vi)− Rev(fi, B
o
i ) > 0

}
(4.6)

Notice that either 0 /∈ supp(f∗i ), or supp(f∗i ) = {0}.
Indeed, if λi(0) ≤ 0 one can either remove 0 from the
support of f∗i and proportionally increase the remaining
f∗i (vj), or when λi(0) > 0 simply set supp(Fi) = {0}
with f∗i (0) = 1 (in this case Rev(f∗i , B

o
i ) = 0). Notice,

that in the latter case we have a counter-example
to the original problem where one of the items has
a deterministic value 0 to the buyer. Then we can
have a counter-example with a smaller number of items

n − 1, as we can use the same M for the setting
where item i is excluded with the revenue larger than
Rev({Fj}j∈[n],j 6=i, B). Note that we cannot continue
reducing the counter-example indefinitely, as there is
no counter-example for n = 1. Thus we assume that
0 /∈ supp(f∗i ). Furthermore, we observe the following
properties of λi(vi) for vi ∈ supp(f∗i ).

Claim 2. λi(vi) < λi(v̂i) for any vi < v̂i in the support
of f∗i .

Proof. If this is not the case, then modification f∗i (vi)←
f∗i (vi) + f∗i (v̂i), f

∗
i (v̂i)← 0 does not decrease ∆rev

i (f∗i ).
The new distribution has a smaller support – a contra-
diction with the definition of f∗i .

Claim 3. λi(vi) > 0 for any vi in the support of f∗i .

Proof. Let us assume towards a contradiction that
λi(v

0
i ) ≤ 0 for some v0

i ∈ supp(f∗i ). We note that
v0
i is not unique point in the support of f∗i , since

∆rev
i (f∗i ) =

∑
vi∈Vi

λi(vi) · f∗i (vi) − Rev(f∗i , B
o
i ) > 0.

We define f̂i(vi) ← f∗i (vi)

1−f∗i (v0i )
for vi 6= v0

i , and

f̂i(v
0
i ) ← 0. For the new distribution f̂i we

have Rev(f̂i, B
o
i ) ≤ Rev(f∗i ,B

o
i )

1−f∗i (v0i )
. Indeed, the prob-

ability of any particular type increases only by
at most factor of 1

1−f∗i (v0i )
. On the other hand,∑

vi∈Vi
λi(vi) · f̂i(vi) =

∑
vi∈Vi

λi(vi) · f∗i (vi)

1−f∗i (v0i )
−

λi(v
0
i ) · f∗i (v0i )

1−f∗i (v0i )
≥

∑
vi∈Vi

λi(vi)·f∗i (vi)

1−f∗i (v0i )
. Thus we

have ∆rev
i (f̂i) =

∑
vi∈Vi

λi(vi) · f̂i(vi) − Rev(f̂i, B
o
i ) ≥

1
1−f∗i (v0i )

( ∑
vi∈Vi

λi(vi) · f∗i (vi)− Rev(f∗i , B
o
i )

)
>

∆rev
i (f∗i ) and f̂i has smaller support than f∗i – a

contradiction.

Given that {λi(vi)}vi∈supp(f∗i ) is non negative and
monotonically increasing according to Claims 2-3, we
try to construct a mechanism Mi selling individual
item i with the payment pMi(vi) matching λi(vi) for
vi ∈ supp(f∗i ). Let supp(f∗i ) = {vj}kj=1, 0 < v1 < v2 <

· · · < vk for some k ∈ N. We set q(vj)
def
=

λi(vj)−λi(vj−1)
vj

for k ≥ j ≥ 2 and q(v1)
def
= λi(v1)

v1
. If

∑
j∈[k] q(vj) ≤ 1,

then we can define Mi as the mechanism that posts a
random price vj with probability q(vj) for each j ∈ [k]
and price 0 with the remaining probability. Then
pMi

(vi) = λi(vi) ≤ Boi and

Rev(f∗i , B
o
i ) ≥ RevMi(f

∗
i ) =

∑
vi∈Vi

f∗i (vi) · pMi(vi)

=
∑
vi∈Vi

f∗i (vi) · λi(vi).
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I.e., ∆rev
i (f∗i ) =

∑
vi∈Vi

λi(vi) · f∗i (vi) −
Rev(f∗i , B

o
i ) ≤ 0 – a contradiction. Therefore,∑

j∈[k] q(vj) > 1. Then we define Mi as the mecha-
nism that posts a random price vj with probability

q(vj)∑
j∈[k] q(vj) for each j ∈ [k]. The expected pay-

ment pMi(vi) = λi(vi)∑
j∈[k] q(vj) < λi(vi) of Mi for

each vi ∈ supp(f∗i ). We denote these payments by

λ̃i(vi)
def
= pMi(vi). Let M̃ def

= (x̃, p̃) =
⊕n

i=1Mi be
the mechanism that sells each item i ∈ [n] separately
using Mi. Let us restrict the domain vi ∈ Vi to

Ṽi
def
= supp(f∗i ) for each i ∈ [n] and respectively

V =
∏n
i=1 Vi to Ṽ =

∏n
i=1 Ṽi. By construction we have

∀v ∈ Ṽ p̃(v) =
∑
i∈[n]

λ̃i(v)

∀i ∈ [n], vi ∈ Ṽi λ̃i(vi) < λi(vi).

We denote by vmax
i , vmin

i the largest and the smallest

types in Ṽi, and by v+
i denote the next type in Ṽi

larger than vi for each vi ∈ Ṽi \ {vmax
i }. We use

vmin = (vmin
1 , . . . , vmin

n ) to denote the vector of minimal

types. For any vector v ∈ Ṽ we define a set Imax(v)
def
=

{i | vi = vmax
i } and decompose v = vm + w into

vm
def
=

{
vmi = vmax

i ∀i ∈ Imax(v)

vmi = 0 ∀i /∈ Imax(v)

w
def
=

{
wi = 0 ∀i ∈ Imax(v)

wi = vi ∀i /∈ Imax(v)

For v (or w) and i ∈ [n] s.t. vi 6= vmax
i (wi 6= vmax

i ),

we define vi+
def
= (v-i, v

+
i ), wi+ def

= (w-i, w
+
i ).

Claim 4. w =
∑

i/∈Imax(v)

αi · wi+, where αi ≥ 0 and∑
i/∈Imax(v)

αi < 1.

Proof. It is easy to verify that αj
def
=

wj

w+
j −wj

(
1 +

∑
i/∈Imax(v)

wi

w+
i −wi

)−1

, where j /∈ Imax(v)

satisfy the condition.

We summarize below some important properties10 of
M̃ = (x̃, p̃):

1. x̃i(v
max
i ,v-i) = 1 tight alloc. constraint at vmax

i

2. u(vmin,vmin) = 0 tight IR at vmin

10See the description of the optimal single-item mechanism in
Section 5.

3. u(vi+,vi+) = u(vi+,v) = 〈vi+, x̃(v)〉 − p̃(v)
tight IC at vi+ → v.

We can write down the following inequality for our
mechanism M = (x, p) and corresponding set of

{λi(vi)}i∈[n],vi∈Ṽi
for any v ∈ Ṽ

u(v,v) = 〈vm + w,x(v)〉 − p(v)(4.7)

=
∑

i/∈Imax(v)

αi ·
(
〈wi+ + vm,x(v)〉 − p(v)

)
+

+

1−
∑

i/∈Imax(v)

αi

(〈vm,x(v)〉 − p(v)

)

=
∑

αi · u(vi+,v) +
(

1−
∑

αi

)(
〈vm,x(v)〉 − p(v)

)
≤
∑

αi · u(vi+,vi+) +
(

1−
∑

αi

)
〈vm,1〉

−
(

1−
∑

αi

) n∑
i=1

λi(vi).

Observe that the inequality (4.7) is tight for M̃ and

{λ̃i(vi)}i∈[n],vi∈Ṽi
. In the following we are going to ap-

ply inequality (4.7) multiple times to arrive at a contra-
diction. We start with an inequality u(vmin,vmin) ≥ 0,

which is also tight for M̃ and apply (4.7) to write an
upper bound on u(vmin,vmin). We obtain inequality of
the form:

C1 +
∑
v∈Ṽ

β(v) · u(v,v)−
∑
i∈[n]

∑
vi∈Ṽi

γi(vi) · λi(vi) ≥ 0,

(4.8)

where β(v) ≥ 0, γi(vi) ≥ 0, C1 = Const > 0.

We can apply (4.7) again to substitute a term u(v,v)
in LHS of (4.8) with positive coefficient β(v) > 0 and
derive another inequality of the form (4.8). Notice that
at each iteration of this process, the types v in u(v,v)
in LHS of (4.8) are increasing. Therefore, after finite
number of steps we can transform the inequality (4.8)
into one of the form

C ≥
∑
i∈[n]

∑
vi∈Ṽi

δi(vi) · λi(vi)(4.9)

where δi(vi) ≥ 0, C = Const > 0

Note that since each step in the derivation of
inequality (4.9) was tight for M̃, we also have (4.9) to

be tight for M̃ meaning that C =
∑
i∈[n]

∑
vi∈Ṽi

δi(vi) ·
λ̃i(vi). I.e., at least one of δi(vi) is strictly greater than

0. Since λ̃i(vi) < λi(vi) for any i ∈ [n] and vi ∈ Ṽi we
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get

C =
∑
i∈[n]

∑
vi∈Ṽi

γi(vi) · λ̃i(vi)

<
∑
i∈[n]

∑
vi∈Ṽi

γi(vi) · λi(vi) ≤ C.

A contradiction.

5 Optimal Item-Budgets Mechanism

In this section, we show how to find the optimal item-
budgets auction and prove some properties of it, which
are used in the previous section.

Optimal single-item auction. We note that the
solution to this problem is known for more general set-
ting [15], where the buyer has private valuation and pri-
vate budget and the seller only knows the joint distri-
bution of possibly correlated agent’s budget and value.
Here, however, we give an independent and simple solu-
tion to this problem in the special case of public budget.
It will help us to solve the next problem of designing
optimal item-budgets mechanism (i.e., finding optimal
budget partition) for the multi-item problem. We begin
by recalling a well-known equivalence between truthful
single-item single-buyer auctions [21] and randomized
posted-price mechanisms. I.e., any truthful mechanism
for single-item single-buyer auction can be expressed as
a convex combination of posted-price mechanisms (in
other words, it is a random mechanism with a ran-
domly selected take-it-or-leave price offer). Indeed, one
can express any monotone allocation curve x of a given
truthful mechanismM = (x, p) as a convex combination
of step-functions each corresponding to a posted-price
mechanism. The resulting random posted-price mecha-
nism has the same payment function p asM by revenue
equivalence principle.

We emphasize the convenience of such represen-
tation of truthful mechanisms as convex combinations
of single posted-price auctions. Indeed, the budget
constraint can be stated as a single linear inequality
p(vmax

i ) ≤ Bi for the payment of the highest type vmax
i .

Furthermore, both the revenue objective and the pay-
ment p(vmax

i ) are linear functions for the operation of
taking convex combinations of mechanisms. With these
observations at hand, we can plot a simple graph repre-
senting every deterministic posted-price mechanism on
the plane with the axises corresponding to the payment
of the highest type p(vmax

i ) (x-axis) and expected rev-
enue Rev (y-axis) and get the set of all truthful mech-
anisms as a convex hull of these points (see Figure 1).

Given the convex polygon of truthful mechanisms
we can easily find the revenue maximizing mechanism

Figure 1: Bold dots represent single price mechanisms
with posted prices in {0, Vi} ⊂ [0, vmax

i ]. Shaded area
represents set of all truthful mechanisms.

satisfying budget constraint Bi: we just need to consider
intersection of the polygon with half-space x ≤ Bi and
take the maximal y-axis point in this set. In particular,
the optimal solution will be either a single vertex (i.e.,
deterministic posted price mechanism), or a convex
combination q1 · M1 + q2 · M2 of two deterministic
posted-price mechanismsM1,M2 with respective prices
r1 and r2 and probabilities q1 + q2 = 1. In the
latter case the expected payment of the highest type
p(vmax

i ) = q1 ·r1 + q2 ·r2 = Bi.
11 We now return to the

general case of multi-item auction and describe optimal
budget partition across different items.

Optimal partition of item budgets. We recall
that the optimal multi-unit auction for a single budget
constrained buyer is the one where items are auctioned
independently, each item i being sold in the optimal
auction with a specified budget constraint Bi. The set of
budgets {Bi}ni=1 is such that

∑n
i=1Bi ≤ B. We already

know how to find the optimal revenue Rev(Fi, Bi) =
Revi(Bi) in a single-item auction with given budget Bi.
We only left to find the optimal partition of budgets
{Bi}ni=1 that solves the following problem

max
n∑
i=1

Revi(Bi), s.t.
n∑
i=1

Bi ≤ B.

11Note that in this case the mechanismM2 (one with the higher
reserve r2 > r1) is not budget feasible, since for the equality
q1 ·r1 +q2 ·r2 = Bi to hold we must have r2 > Bi > r1. However,
the convex combination of M1 and M2 is budget feasible and
admits the following simple description with a 2-option menu:
offer (i) entire item xi = 1 for the price Bi = q1 · r1 + q2 · r2, or
(ii) xi = q1 for the price q1 · r1
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item 1

item 2

Figure 2: Rev1(B1) and Rev2(B2) concave curves. Bold
dots represent the final budget partition. The greedy
algorithm starts with B1 ← θ0, then B2 ← B2

∗ and
finally B1 ← B2

∗ = B −B2.

From the previous paragraph we already know that
each Revi(Bi) is a concave, monotone, and piece-wise
linear function of Bi. Indeed, it is just an upper
envelop of the the truthful mechanisms polygon up to
the point with the highest y-axis (i.e., posted price
mechanism with the highest revenue), after that point
the function Revi(Bi) is just a constant. One can
recognize here a simple concave maximization problem
with budget constraint. We know that this problem can
be solved with a simple greedy algorithm that starts at
the point of Bi = 0 for all i ∈ [n] and proceeds by
greedily increasing one Bi at a time with the current
highest derivative (slope) of Revi(Bi) until derivative
of Revi(Bi) changes, or when algorithm reaches the
point

∑n
i=1Bi = B, or when all functions Revi(Bi)

reach their respective maximums. We note that such an
algorithm will need to make at most

∑n
i=1 |Vi| changes

of the derivative value and can be implemented in
O(
∑n
i=1 |Vi|) time. An interesting observation about

the optimal solution is that for all but at most one item
the optimal mechanism posts deterministic prices, and
for only one item the mechanism may use randomized
outcomes (see Figure 2).

6 Open Problems

Correlation-robust approach offers a new optimization
framework for design and analysis of mechanisms. It
addresses some reasonable practical concerns and also
brings closer Bayesian and worst-case frameworks in
algorithmic mechanism design literature. The results in
our and Carroll’s papers seem to be only initial steps in
this framework and there are multiple open avenues for

future work. Here, we list a few interesting directions.
We believe that the LP formulation approach developed
in this paper may find its applications as a useful initial
step in the future work on this topic.

Beyond additive valuations. All current work on
the topic has assumed buyer to have additive valu-
ations. It is intriguing research direction to investi-
gate other types of valuations. It is particularly in-
teresting to understand optimal correlation-robust
auctions for another class of simple unit-demand
valuations. It is not clear if the optimal mechanism
will have to use lotteries as sometimes is required in
the Bayesian framework with independent values.
Another natural simple class of valuations to study
is the class of budget additive buyer’s valuations.

Multiple buyers. In the monopolist problem we have
only one buyer. It is important research direction
to extend the correlation-robust framework to the
case of multiple buyers. Two possible extensions
include (i) a model where worst-case distributions
for different buyers are independent (ii) the distri-
butions for different buyers can be correlated and
the performance of a mechanism is measured in the
worst-case over this correlation. We believe that
both extensions are reasonable and deserve further
investigation.

Computational complexity. Our LP formulation
for the optimal correlation-robust auction has
Ω(
∏n
i=1 |Vi|) variables, which has exponential de-

pendency on the input size
∑n
i=1 |Vi|. When can

we describe the optimal auction succinctly, i.e., find
a polynomial in the input size representation? We
know that for additive buyer, and also for additive
buyer with budget constraint the optimal mecha-
nism has a simple form and can be described and
computed in polynomial time. But the problem
remains open for other settings, such as, e.g., the
monopolist problem for unit-demand buyer.

Approximation. In this work, we focused on studying
exact optimality of mechanisms. Similar to the case
of independent prior distribution in the Bayesian
model, it is reasonable to look at approximately op-
timal mechanisms in the correlation-robust frame-
work, especially in the case when the exact opti-
mum is too complex to implement in practice. Con-
sidering all the complications of the optimal mech-
anisms in the Bayesian framework, it seems that we
are lucky to have simple optimal mechanism for the
case of additive buyer. It is quite likely that this is
not going to be the case in many other settings. In
this situation a reasonable next step would be to
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search for simple auctions that are approximately
optimal in the correlation-robust framework.
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