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Abstract. We give a fully polynomial-time approximation scheme (FPTAS) to count the number

of q-colorings for k-uniform hypergraphs with maximum degree \Delta if k \geq 28 and q > 357\Delta 
14

k - 14 . We

also obtain a polynomial-time almost uniform sampler if q > 931\Delta 
16

k - 16/3 . These are the first
approximate counting and sampling algorithms in the regime q \ll \Delta (for large \Delta and k) without
any additional assumptions. Our method is based on the recent work of Moitra (STOC, 2017). One
important contribution of ours is to remove the dependency of k and \Delta in Moitra's approach.
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1. Introduction. Hypergraph coloring is a classic and important topic in com-
binatorics. Its study was initiated by Erd\H os' seminal result [Erd63], a sufficient upper
bound on the number of edges so that a uniform hypergraph is 2-colorable. Many
important tools in the probabilistic method have been developed around this subject,
such as the Lov\'asz local lemma [EL75] and the R\"odl nibble [R\"od85].

In this paper, we consider the problem of approximately counting colorings in
k-uniform hypergraphs. The most successful approach to approximate counting is
Markov chain Monte Carlo (MCMC). See [DFK91, JS93, JSV04] for a few famous
examples. Indeed, MCMC has been extensively studied for graph colorings in low-
degree graphs. Jerrum [Jer95] showed that the simple and natural Markov chain,
Glauber dynamics, mixes rapidly, if q > 2\Delta , where q is the number of colors and \Delta is
the maximum degree of the graph. As a consequence, there is a fully polynomial-time
randomized approximation scheme (FPRAS) for the number of colorings if q > 2\Delta .
This result initiated a series of research, and the best bound in general requires that
q > (11/6  - \varepsilon )\Delta for some small constant \varepsilon > 0 [Vig00, CDM+19]. It is conjectured
that Glauber dynamics is rapidly mixing if q > \Delta + 1, the ``freezing"" threshold, but
current evidence typically requires extra conditions in addition to the maximum degree
[HV03, DFHV13]. On the flip side, see [GSV15] for some (almost tight) NP-hardness
results.

In k-uniform hypergraphs, the Markov chain approach still works if q > C\Delta for
C = 1 when k \geq 4 and C = 1.5 when k = 3 [BDK08, BDK06]. However, the local
lemma implies that a hypergraph is q-colorable if q > C\Delta 1/(k - 1) for some constant
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1398 HENG GUO, CHAO LIAO, PINYAN LU, AND CHIHAO ZHANG

C. This threshold is much smaller than \Delta when \Delta is large. Moser and Tardos'
algorithmic version of the local lemma [MT10] implies that we can efficiently find a
q-coloring under the same condition. Indeed, the study of the algorithmic local lemma
has been a highly active area. See [KS11, HSS11, HS13a, HS13b, HV15, AI16, Kol16,
CPS17, HLL+17] for various recent development.

In view of the success of the algorithmic local lemma, it is natural to wonder
whether we can also randomly generate hypergraph colorings, or, equivalently, approx-
imately count their number, beyond the q \asymp \Delta bound and approaching q \asymp \Delta 1/(k - 1).
Unfortunately, designing Markov chains quickly runs into trouble if q \ll \Delta . ``Freez-
ing"" becomes possible in this regime (see [FM11] for examples1), and the state space
of proper hypergraph colorings may not be connected via changing the color of a
single vertex, the building block move of Glauber dynamics.

The only successful application of MCMC in this regime is due to Frieze and
Melsted [FM11] and Frieze and Anastos [FA17], which requires that q > max\{ Ck log n,
500k3\Delta 1/(k - 1)\} and the hypergraph is simple.2 Here q = \Omega (log n) is necessary to
guarantee that ``frozen"" colorings are not prevalent. Furthermore, it is reasonable to
believe that simple hypergraphs are much easier algorithmically than general ones,

since their chromatic numbers are O
\bigl( 

\Delta 
log\Delta 

\bigr) 1/(k - 1)
[FM13], significantly smaller than

the bound implied by the local lemma, and related Glauber dynamics for hypergraph
independent sets works significantly better in simple hypergraphs than in general ones
[HSZ19].

Our main result is a positive step beyond the freezing barrier in general k-uniform
hypergraphs. Our result also answers some open problems raised in [FM11].

Theorem 1.1. For integers \Delta \geq 2, k \geq 28, and q > 357\Delta 
14

k - 14 , there is a fully
polynomial-time approximation scheme (FPTAS) for q-colorings in k-uniform hyper-
graphs with maximum degree \Delta .

When k and \Delta are large, our result is better than the Markov chain results
[BDK08, BDK06] and gets into the freezing regime. The exponent of our polynomial
time bound depends on the constants k and \Delta .

Our method is based on an intriguing recent result shown by Moitra [Moi19], who
gave FPTAS to count satisfying assignments of k-CNF formulas in the local lemma
regime. It is not hard to see that Moitra's approach is rather general, and indeed it
works for hypergraph colorings if some strong form of the local lemma condition holds,
and k \geq C log\Delta for some constant C, without any requirement on the connectedness
of the state space. Unfortunately, the requirement that k \geq C log\Delta is necessary
for a ``marking"" argument to work in Moitra's approach. This is not an issue for
k-CNF formulas, as in that setting the (strong) local lemma condition dictates that
k \geq C log\Delta . However, for hypergraph colorings, we generally want k and \Delta to be
two independent parameters. Marking is no longer possible in our general situation.

We briefly describe Moitra's approach before introducing our modifications. The
first observation is that if the maximum degree is much smaller than the local lemma
threshold, variables in the target distribution are very close to uniform. As a conse-
quence, if we couple two copies of the Gibbs distribution while giving different colors
at a particular vertex, sequentially and in a vertexwise maximal fashion, the discrep-
ancy in the resulting coupling will be logarithmic with high probability. Then, one

1Interestingly, to prove the existence of frozen colorings, we also need to appeal to the local
lemma.

2A hypergraph is simple if the intersection of any two hyperedges contains at most one vertex.

D
ow

nl
oa

de
d 

10
/2

1/
19

 to
 2

19
.2

20
.1

45
.1

83
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COUNTING HYPERGRAPH COLORINGS 1399

can set up a linear program to do a binary search for the marginal probability, where
the variables to solve mimic the transition probabilities in this coupling. The mark-
ing procedure ensures that these locally (almost-)uniform properties will hold at any
point of the coupling process above by finding a good set of vertices so that we only
couple these vertices and nothing goes awry.

Since marking is no longer possible in our setting, we take an adaptive approach
in the coupling procedure to ensure local (almost-)uniform properties, rather than
marking what we are going to couple in advance. Although similar in spirit, our proof
details are rather different from those of Moitra [Moi19]. Since this coupling (or the
analysis thereof) is used repeatedly in the whole algorithm, we have to rework almost
all other proofs as well. A crucial technical contribution of ours is to distinguish two
kinds of errors that may rise in the linear program.3 In particular, the coupling process
terminating in logarithmic steps with high probability is not sufficient to bound the
number of certain ``bad"" partial colorings and a new exponentially small bound is
shown (see Lemma 4.8). Moreover, we also streamline the argument and tighten the
bounds at various places. Hopefully these refinement also shed some light on where
the limit of the method is.

The outline above only gives an approximation of the marginal probabilities.
Due to the lack of marking, we also need to provide new algorithms for approximate
counting and sampling. For approximate counting, we use the local lemma again to
find a good ordering of the vertices so that the standard self-reduction goes through.
For sampling, we use the marginal algorithm as an oracle, to faithfully simulate the
true distribution, in an adaptive fashion similar to the coupling procedure. At the
end of this process, not all vertices will be colored. However, we show that with high
probability all remaining connected components have logarithmic sizes and we fill
those in by brutal force enumeration. The threshold we obtain for sampling is larger
than the one for approximate counting.

Theorem 1.2. For integers \Delta \geq 2, k \geq 28, and q > 931\Delta 
16

k - 16/3 , there is a sam-
pler whose distribution is \varepsilon -close in total variation distance to the uniform distribution
on all proper colorings, with running time polynomial in the number of vertices and
1/\varepsilon .

The correlation decay approach of approximate counting [Wei06, BG08] has been
successfully applied to graph coloring problems [LY13, LYZZ17] or hypergraph prob-
lems [BGG+19], but it seems difficult to combine the two in our setting. More recently,
there are other progresses with respect to approximate counting in the local lemma
regime [HSZ19, GJL19, GJ19]. However, these results do not directly apply to our
situation either. Indeed, our result can be seen as one step further to linking the
local lemma with approximate counting, as we made Moitra's approach applicable in
a more general setting, where the constraint size does not have to be directly related
to the probability of bad events or the dependency degree. However, there still seem
to be a few difficulties, such as constraints that cannot be satisfied by partial assign-
ments, to go further towards the most general abstract setting of the local lemma,
and this is an interesting direction for the future.

The paper is organized as follows. Section 2 introduces basic notions as well as the
local lemma, and section 3 introduces the coupling procedure. We give the algorithm
of estimating marginal probabilities in section 4 and use this algorithm to do counting

3These two kinds of errors are not to be confused with the type 1 and type 2 errors in [Moi19].
Both types are one kind of error in our analysis.
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1400 HENG GUO, CHAO LIAO, PINYAN LU, AND CHIHAO ZHANG

and sampling in sections 5 and 6, respectively. To maintain flexibility, in sections 3,
4, 5, and 6, we keep track of various parameters, and all parameters are optimized
in section 7. We conclude in section 8 by describing the bottleneck of the current
approach and outlining the difficulties for further generalizations.

2. Preliminaries. A hypergraph is a pair H = (V, \scrE ), where V is the collection
of vertices and \scrE \subseteq 2V is the set of hyperedges. We say a hypergraph H is k-uniform
if every e \in \scrE satisfies | e| = k. Let q \in \BbbN be the number of available colors. A
proper coloring of H is an assignment \sigma \in [q]V so that every hyperedge in \scrE is not
monochromatic, namely that \sigma satisfies | \{ \sigma (v) : v \in e\} | > 1 for every e \in \scrE .

Although our goal is to count colorings in k-uniform hypergraphs, as the algorithm
progresses, vertices will be pinned to some fixed value. Therefore, we will work with a
slightly more general problem, namely hypergraph coloring with pinnings. Formally,
an instance of hypergraph coloring with pinnings is a pair (H(V, \scrE ),\scrP ), where \scrP =
\{ Pe \subseteq [q] : e \in \scrE \} and Pe is the set of colors that are already present (pinned) inside
the edge e. In the intermediate steps of our algorithms, \scrP will be induced by pinning
a subset of vertices, but it is more convenient to consider this slightly more general
setup. For an instance with pinning, a coloring \sigma \in [q]V is proper if for every e \in \scrE ,
it holds that | \{ \sigma (v) : v \in e\} \cup Pe| > 1.

Denote by \scrC the set of all proper colorings of (H,\scrP ). For any \scrC \prime \subseteq \scrC , we use \mu \scrC \prime 

to denote the uniform distribution over \scrC \prime . Since there is no weight involved, \mu \scrC is
our targeting Gibbs distribution.

Let \mu be a distribution over colorings ([q] \cup \{  - \} )V , where `` - "" denotes that the
vertex is not colored (yet). We say \mu (\cdot ) is pre-Gibbs with respect to \mu \scrC if for every
\sigma \in \scrC ,

1

| \scrC | 
= \mu \scrC (\sigma ) =

\sum 
\sigma \prime \in ([q]\cup \{  - \} )V

\sigma | =\sigma \prime 

\mu (\sigma \prime ) \cdot \mu \scrC (\sigma | \sigma \prime ),

where \sigma | = \sigma \prime means that the full coloring \sigma is consistent with the partial one \sigma \prime . In
other words, if we draw a partial coloring \sigma \prime from a pre-Gibbs distribution \mu , and
then complete \sigma \prime uniformly conditioned on colored vertices (with respect to \mu \scrC ), the
resulting distribution is exactly \mu \scrC . Note that in our definition we do not require the
support of \mu to be all partial colorings.

2.1. Lov\'asz local lemma. Let (H(V, \scrE ),\scrP ) be an instance of hypergraph col-
orings and q \in \BbbN be a nonnegative integer. We use \Delta to denote the maximum degree
of H. Although we consider k-uniform hypergraphs in Theorem 1.1, in both the
sampling and the counting procedures we will pin vertices gradually. Those pinning
operations reduce the size of edges, but in our algorithms we make sure that the size
of edges will not go down too much. Throughout the section, for every e \in \scrE , we
assume k\prime \leq | e| \leq k. Instances of this kind will emerge in Theorems 5.2 and 6.2.

Let Lin(H) be the line graph of H; that is, vertices in Lin(H) are hyperedges in
H and two hyperedges are adjacent if they share some vertex in H. The ``dependency
graph"" of our problem is simply the line graph of H. For e \in \scrE , let \Gamma (e) be the
neighborhood of e, namely the set \{ e\prime | e \cap e\prime \not = \emptyset \} . It is clear that the maximum
degree of Lin(H) is at most k(\Delta  - 1). Hence | \Gamma (e)| \leq k(\Delta  - 1) for any e \in \scrE . With a
little abuse of notation, for v \in V , let \Gamma (v) be the set of edges in \scrE incident to v, i.e.,
\Gamma (v) := \{ e \in \scrE : v \in e\} . Furthermore, for any event B depending a set of vertices
ver(B), let \Gamma (B) be the set of dependent sets of B, i.e., \Gamma (B) = \{ e | e \cap ver(B) \not = \emptyset \} .

The (asymmetric) Lov\'asz local lemma (proved by Lov\'asz and published by Spencer
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COUNTING HYPERGRAPH COLORINGS 1401

[Spe77]) states a sufficient condition for the existence of a proper coloring. Note that
in the following Pr [\cdot ] refers to the product distribution where every vertex is colored
uniformly and independently.

Theorem 2.1. If there exists an assignment x : \scrE \rightarrow (0, 1) such that for every
e \in \scrE we have

Pr [e is monochromatic] \leq x(e)
\prod 

e\prime \in \Gamma (e)

(1 - x(e\prime )),(2.1)

then a proper coloring exists.

When the condition of Theorem 2.1 is met, we actually have good control over
any event in the uniform distribution \mu \scrC due to the next theorem, shown in [HSS11].

Theorem 2.2. If (2.1) holds for every e \in \scrE , then for any event B, it holds that

\mu \scrC (B) \leq Pr [B]
\prod 

e\in \Gamma (B)

(1 - x(e))
 - 1

.

Theorem 2.2 also allows us to have some quantitative control over the marginal
probabilities.

Lemma 2.3. If k\prime \leq | e| \leq k for any e \in \scrE , t \geq k, and q \geq (et\Delta )
1

k\prime  - 1 , then for
any v \in V and any color c \in [q],

Pr
\sigma \sim \mu \scrC 

[\sigma (v) = c] \leq 1

q

\biggl( 
1 +

4

t

\biggr) 
.

Proof. Let x(e) = 1
t\Delta for every e \in \scrE . We first verify that (2.1) holds. Since

| \Gamma (e)| \leq k(\Delta  - 1) and t \geq k,

x(e)
\prod 

e\prime \in \Gamma (e)

\bigl( 
1 - x(e\prime )

\bigr) 
\geq 1

t\Delta 

\biggl( 
1 - 1

t\Delta 

\biggr) k(\Delta  - 1)

\geq 1

et\Delta 
\geq q1 - k\prime \geq \bfP \bfr [e is monochromatic] .

Hence Theorem 2.2 applies. Then,

Pr
\sigma \sim \mu \scrC 

[\sigma (v) = c] \leq 1

q

\biggl( 
1 - 1

t\Delta 

\biggr)  - \Delta 
\leq 1

q
exp

\biggl( 
2

t

\biggr) 
\leq 1

q

\biggl( 
1 +

4

t

\biggr) 
.

Unfortunately, Theorem 2.2 does not give lower bounds directly. We will instead
bound the probability of blocking v to have color c.

Lemma 2.4. If k\prime \leq | e| \leq k for any e \in \scrE , t \geq k, and q \geq (et\Delta )
1

k\prime  - 1 , then for
any v \in V and any color c \in [q],

Pr
\sigma \sim \mu \scrC 

[\sigma (v) = c] \geq 1

q

\biggl( 
1 - 1

t

\biggr) 
.

Proof. Fix v and c. For every e \in \Gamma (v), let Blocke be the event that vertices in e
other than v all have the color c. Clearly, conditioned on none of Blocke occurring,
the probability of v colored c is larger than 1/q. Hence we have that

Pr
\sigma \sim \mu \scrC 

[\sigma (v) = c] \geq 1

q

\left(  1 - 
\sum 

e\in \Gamma (v)

\mu \scrC (Blocke)

\right)  .(2.2)D
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Clearly, Pr [Blocke] = q1 - | e| \leq q1 - k
\prime 
. Again let x(e) = 1

t\Delta for every e \in \scrE , and
(2.1) holds. Since | \Gamma (Blocke)| \leq k(\Delta  - 1) + 1 and t \geq k, by Theorem 2.2,

\mu \scrC (Blocke) \leq q1 - k
\prime 
\biggl( 
1 - 1

t\Delta 

\biggr)  - k(\Delta  - 1) - 1
\leq 1

t\Delta 
.(2.3)

Plugging (2.3) into (2.2) yields

Pr
\sigma \sim \mu \scrC 

[\sigma (v) = c] \geq 1

q

\biggl( 
1 - 1

t

\biggr) 
.

Combining Lemmas 2.3 and 2.4, we obtain the following result.

Lemma 2.5. If k\prime \leq | e| \leq k for any e \in \scrE , t \geq k, and q \geq (et\Delta )
1

k\prime  - 1 , then for
any v \in V and any color c \in [q],

1

q

\biggl( 
1 - 1

t

\biggr) 
\leq Pr\sigma \sim \mu \scrC [\sigma (v) = c] \leq 1

q

\biggl( 
1 +

4

t

\biggr) 
.

3. The coupling. Recall a partial coloring is an assignment \sigma \in ([q] \cup \{  - \} )V ,
where `` - "" denotes an unassigned color. Fix a vertex v \in V and two distinct colors
c1, c2 \in [q], define two initial partial colorings X0 and Y0 that assign v with colors c1
and c2, respectively, and let all other vertices be unassigned. We use \scrC 1 and \scrC 2 to
denote the set of proper colorings with v fixed to be c1 and c2, respectively. For a
partial coloring X, we use \scrC X to denote the set of proper colorings consistent with X.

Moitra [Moi19] introduced the following intriguing idea (in the setting of CNF) to
compute the ratio of marginal probabilities on v. Couple \mu \scrC 1 and \mu \scrC 2 in a sequential
way. Start from v, where the colors differ, and proceed in a breadth-first search man-
ner, vertex by vertex. At each vertex we draw a color from \mu \scrC 1 and \mu \scrC 2 , respectively,
conditioned on all the existing colors, and couple them maximally. The process ends
when the set of vertices coupled successfully form a cut separating v from uncolored
vertices. If every vertex we encounter has its marginal distribution close enough to the
uniform distribution, then this coupling process terminates quickly with high prob-
ability. These local almost-uniform properties are guaranteed by Lemma 2.5. Then
Moitra sets up a clever linear program (LP), where the variables mimic transition
probabilities during the coupling (but in some conditional way), and shows that the
LP is sufficient to recover the marginal distribution at v by a binary search.

We apply the same idea here for hypergraph colorings. However, one needs to
carefully implement the coupling to guarantee that all marginal distributions encoun-
tered are close enough to uniform. Formally, we describe our coupling process in
Algorithm 3.1. The coupling process applies to hypergraphs with edge size between
k1 and k for some parameter 0 < k1 \leq k. There is another parameter 0 < k2 < k1,
and all these parameters will be set in section 7. The output is a pair of partial col-
orings (X,Y ) extending X0 and Y0, respectively. Notice that in order to implement
the coupling process, we fix an arbitrary ordering of edges and vertices in advance.

The set Vcol consists of all colored vertices. Intuitively, the set V1 contains vertices
that have failed the coupling and V2 is its complement. Once a hyperedge is satisfied
by both partial colorings X and Y , it has no effect anymore and is thus removed.

The main difference from Moitra's coupling [Moi19] is that we cannot choose what
vertices to couple in advance (``marking""). Instead, we take an adaptive approach to
ensure that no hyperedge becomes too small. Once k2 vertices of a hyperedge are
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Algorithm 3.1. The coupling process.

1: Input: A hypergraph H(V, \scrE ) with pinnings \scrP and k1 \leq | e| \leq k for every e \in \scrE ,
two partial colorings X0 and Y0.

2: Output: Vcol \subseteq V , a partition V1 \sqcup V2 = V , and two partial colorings X,Y
defined on Vcol.

3: V1 \leftarrow \{ v\} , V2 \leftarrow V \setminus V1, Vcol \leftarrow \{ v\} ;
4: X \leftarrow X0, Y \leftarrow Y0;
5: while \exists e \in \scrE s.t. e \cap V1 \not = \varnothing and e \cap V2 \not = \varnothing do
6: Let e be the first such hyperedge;
7: Let u be the first vertex in e \cap V2;
8: Sample a pair of colors (cx, cy) according to the maximal coupling of the

marginal distribution at u conditioned on X and Y , respectively;
9: Extend X and Y by coloring u with cx and cy, respectively;

10: Vcol \leftarrow Vcol \cup \{ u\} ;
11: if cx \not = cy then
12: V1 \leftarrow V1 \cup \{ u\} , V2 \leftarrow V2 \setminus \{ u\} ;
13: end if
14: for e \in \Gamma (u) \cap \scrE s.t. e is satisfied by both X and Y do
15: \scrE \leftarrow \scrE \setminus \{ e\} ;
16: end for
17: for e \in \Gamma (u) \cap \scrE s.t. e \cap V1 \not = \varnothing , e \cap V2 \not = \varnothing , and | e \cap Vcol| = k2 do
18: V1 \leftarrow V1 \cup (e \setminus Vcol), V2 \leftarrow V \setminus V1;
19: \scrE \leftarrow \scrE \setminus \{ e\} ;
20: end for
21: end while

colored, all the rest of the vertices are considered ``failed"" in the coupling (namely,
they are added to V1). However, these failed vertices are left uncolored.

Algorithm 3.1 outputs a pair of partial colorings X,Y defined on Vcol and a
partition of vertices V = V1\sqcup V2. For any edge e in the original \scrE such that e\cap V1 \not = \varnothing 
and e \cap V2 \not = \varnothing , it is removed because either it is satisfied by both X and Y , or k2
vertices in e have been colored. In the latter case, all vertices in e are either colored or
in V1, namely e \subset V1 \cup Vcol. Hence all edges intersecting V1 and V2 \setminus Vcol are satisfied
by both X and Y . This fact will be useful later.

For u \in V , let \Gamma ver(u) denote the neighboring vertices of u (including u), namely
\Gamma ver(u) = \{ w | \exists e \in \scrE , \{ u,w\} \subseteq e\} , and let \Gamma ver(U) =

\bigcup 
u\in U \Gamma ver(u) for a subset U \subseteq 

V . The following lemma summarizes some properties of this random process.

Lemma 3.1. The following properties of Algorithm 3.1 hold:
1. All colored vertices are either in V1 or incident to V1, namely Vcol \subseteq \Gamma ver(V1).
2. The distributions of X and Y are pre-Gibbs with respect to \mu \scrC 1 and \mu \scrC 2 ,

respectively.

Proof. For property 1, notice that whenever we add a vertex u into Vcol, it must
hold that u \in e for some e \cap V1 \not = \varnothing at the time. The claim follows from a simple
induction.

For property 2, we only prove the lemma for X. The proof for Y is similar. The
partial coloring X is generated in the following way: at each step either the process
ends, or the next uncolored vertex u is chosen and extends X to u with the correct
(conditional) marginal probability and repeats. Our decisions (whether or not to halt,
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1404 HENG GUO, CHAO LIAO, PINYAN LU, AND CHIHAO ZHANG

and what the next u is) depend on Y in addition to the partial coloring X so far.
An intermediate state \scrS of Algorithm 3.1 consists of partial colorings X, Y , Vcol,

and V1.
4 Our claim is that, conditioned on any valid \scrS , the distribution of the final

output (on the X side) of Algorithm 3.1 is pre-Gibbs with respect to \mu \scrC X . The lemma
clearly follows from the claim by setting \scrS to the initial state of Algorithm 3.1.

We induct on the maximum possible future steps of \scrS . The base case is that
\scrS will halt immediately. Thus the output is simply X and completing it yields the
uniform distribution on \scrC X . That is, the output is pre-Gibbs.

For the induction step, \scrS will not halt but rather extend the colorings to some
vertex u which is deterministically selected by our algorithm. Let \tau \scrS (\cdot ) denote the
measure on colorings obtained by completing the output of Algorithm 3.1 conditioned
on \scrS . Let Xu\leftarrow c be a partial coloring defined on Vcol \cup \{ u\} by extending X to u with
color c, and let \scrS \prime be an internal state consistent with Xu\leftarrow c, denoted by \scrS \prime | = Xu\leftarrow c.
Moreover, let q(\scrS \prime ) be the probability of transiting from \scrS to \scrS \prime . Since the marginal
probability at u only depends on the previous partial colorings X \prime , we have that\sum 

\scrS \prime | =Xu\leftarrow c

q(\scrS \prime ) = \mu CX
(Xu\leftarrow c),(3.1)

where \mu CX
(Xu\leftarrow c) is in fact the marginal probability of the color c at u conditioned

on X. By our induction hypothesis, conditioned on \scrS \prime , the final output is pre-Gibbs
with respect to \scrC Xu\leftarrow c . That is,

\tau \scrS \prime (\cdot ) = \mu \scrC Xu\leftarrow c (\cdot ).(3.2)

For \sigma \in \scrC X , suppose Xu\leftarrow c is the partial coloring of \sigma restricted to Vcol \cup \{ u\} . Then
we have that

\tau \scrS (\sigma ) =
\sum 

\scrS \prime | =Xu\leftarrow c

q(\scrS \prime )\tau \scrS \prime (\sigma )

=
\sum 

\scrS \prime | =Xu\leftarrow c

q(\scrS \prime )\mu \scrC Xu\leftarrow c (\sigma )

= \mu \scrC Xu\leftarrow c (\sigma )
\sum 

\scrS \prime | =Xu\leftarrow c

q(\scrS \prime )

= \mu \scrC Xu\leftarrow c (\sigma )\mu CX
(Xu\leftarrow c)

= \mu \scrC X (\sigma ),

where in the second line we use (3.2), and in the fourth line we use (3.1). The claim
follows.

Therefore, the output of Algorithm 3.1 is a coupling of two pre-Gibbs measures
such that they are defined on the same set of vertices Vcol. We use \mu cp(\cdot , \cdot ) to denote
this joint distribution.

It is possible to show that the final size of | V1| is O(log | V | ) with high probability.
This fact will not be directly used, and is indeed not strong enough for the algorithm
and its analysis in the next section. We will omit its proof. What we will show
eventually is that, conditioned on a randomly chosen coloring from \scrC 1 or \scrC 2, the

4We note that actually Vcol and V1 are completely determined by X and Y , but we do not need
this fact here. The reason for Vcol is obvious, and V1 can be deduced from X,Y by simulating the
whole process from the start.
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probability that the coupling process terminates decays exponentially with the depth.
There are two levels of randomness here, and they will be separated, since the LP
later will only be able to certify the second kind randomness.

Later, in section 6, when we do sampling, we will consider a similar procedure,
Algorithm 6.1, and we will show that the connected components produced by Algo-
rithm 6.1 are O(log | V | ) with high probability (Lemma 6.1). This is in the same vein
as | V1| being size O(log | V | ) with high probability in Algorithm 3.1.

4. Computing the marginals. In the previous section, we introduced a ran-
dom process to generate a joint distribution of partial colorings \mu cp(\cdot , \cdot ), whose mar-
ginal distributions are pre-Gibbs. Recall that we fixed X(v) = c1 and Y (v) = c2. Let
qi denote the marginal probability in \mu \scrC of v being colored by ci for i = 1, 2. That

is, qi =
| \scrC i| 
| \scrC | for i = 1, 2. The coupling naturally induces an (imaginary) sampler to

uniformly sample from \scrC 1 \cup \scrC 2 as follows:
Step 1: Sample (X,Y ) = (x, y) using Algorithm 3.1.
Step 2: Let v \leftarrow c1 with probability q1

q1+q2
and v \leftarrow c2 otherwise.

Step 3: If v is colored by c1, uniformly output a coloring in \scrC x; otherwise, uni-
formly output a coloring in \scrC y.

We denote this sampler by \BbbS . The output of \BbbS is uniform over \scrC 1 \cup \scrC 2 because
by Lemma 3.1, the output distribution of Algorithm 3.1, projected to either side, is
pre-Gibbs. Then we choose the final coloring proportional to the correct ratio.

One can represent the coupling process (Algorithm 3.1) as traversing a (deter-
ministic) coupling tree \scrT constructed as follows: each vertex in \scrT represents a pair
of partial colorings (x, y)5 defined on some Vcol that have appeared in the coupling.
We write (x, y) \in \scrT if (x, y) is a pair of partial colorings represented by some vertex
in \scrT . Although the intermediate state of Algorithm 3.1 consists of partial colorings
x, y together with Vcol and V1, we can actually deduce Vcol from x, y, as well as V1,
by simulating Algorithm 3.1 from the start given x and y. Thus the pair (x, y) either
determines that the coupling should halt, or it determines to which vertex the u will
next extend. In the coupling tree \scrT , (x, y) either is a leaf or has q2 children, which
correspond to the q2 possible ways to extend (x, y) by coloring u. The root of the
tree is the initial pair (x0, y0) defined on \{ v\} .

In the following, we identify a collection of conditional marginal probabilities that
keeps the information of the coupling process.

First, consider a pair of partial colorings (x, y) \in \scrT which is a leaf, and any two
proper colorings \sigma x, \sigma y such that \sigma x | = x and \sigma y | = y. In the probability space induced
by the sampler introduced above, define

pxx,y := Pr(X,Y )\sim \mu cp
[X = x, Y = y | \BbbS outputs \sigma x] ;

pyx,y := Pr(X,Y )\sim \mu cp
[X = x, Y = y | \BbbS outputs \sigma y] .

These quantities are well defined and independent of the particular choices of \sigma x and
\sigma y. Essentially we only condition on the random choice at Step 2 of \BbbS . Once that
choice is made, the output is uniform over \scrC x or \scrC y.

Perhaps a clearer way of seeing this independence is to give more explicit expres-

5We use small letters x, y to denote particular partial colorings and reserve capital X,Y to denote
random ones.
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1406 HENG GUO, CHAO LIAO, PINYAN LU, AND CHIHAO ZHANG

sions to pxx,y and pyx,y. By Bayes' rule,

pxx,y =
Pr(X,Y )\sim \mu cp

[\BbbS outputs \sigma x | X = x, Y = y]\mu cp(x, y)

Pr [\BbbS outputs \sigma x]

= q1 \cdot 
| \scrC 1 \cup \scrC 2| 
| \scrC x| 

\cdot \mu cp(x, y);(4.1)

pyx,y =
Pr(X,Y )\sim \mu cp

[\BbbS outputs \sigma y | X = x, Y = y]\mu cp(x, y)

Pr [\BbbS outputs \sigma y]

= q2 \cdot 
| \scrC 1 \cup \scrC 2| 
| \scrC y| 

\cdot \mu cp(x, y).(4.2)

Combining the two identities above, we obtain

q1 \cdot pyx,y \cdot | \scrC y| = q2 \cdot pxx,y \cdot | \scrC x| .(4.3)

A crucial observation is that, for every pair of partial colorings (x, y) that is a

leaf of \scrT with corresponding Vcol, V1, V2, the ratio | \scrC x| | \scrC y| can be computed in q| V1\setminus Vcol| 

time. This is because when Algorithm 3.1 terminates, all edges intersecting V1 and
V2 \setminus Vcol are satisfied by both x and y. The numbers of ways coloring blank vertices
in V2 cancel out, and we only need to enumerate all colorings for blank vertices inside

V1. Let rx,y = | \scrC x| 
| \scrC y| .

Next, consider an internal (x, y) in the coupling tree \scrT . We interpret pxx,y and
pyx,y as the probability that the coupling process has ever arrived at an internal pair of
partial colorings (x, y) conditioned on the output of \BbbS being \sigma x and \sigma y for any \sigma x, \sigma y

such that \sigma x | = x and \sigma y | = y, respectively. Note that the definition is consistent with
our previous definition when (x, y) is a leaf of \scrT . Recall that (x0, y0) is the root of \scrT ;
namely, x0 or y0 only colors v with c1 or c2, respectively. For (x0, y0), we have that

px0
x0,y0

= py0
x0,y0

= 1.(4.4)

Moreover, for an internal (x, y) whose children are defined on V \prime col = Vcol \cup \{ u\} , it
holds that

for every c \in [q], pxx,y =
\sum 
c\prime \in [q]

px
u\leftarrow c

xu\leftarrow c,yu\leftarrow c\prime ;(4.5)

for every c \in [q], pyx,y =
\sum 
c\prime \in [q]

py
u\leftarrow c

xu\leftarrow c\prime ,yu\leftarrow c ,(4.6)

where we use xu\leftarrow c to denote the partial coloring that extends x by assigning color
c to the vertex u. To see why (4.5) holds, we note that conditioned on the event
that \BbbS outputs some \sigma x | = x, the coloring on u is \sigma x(u) and all the randomnesses are
from the choice of colors in Y on u. The identity (4.6) holds for the same reason by
reversing the roles of x and y.

In fact, when the coupling process is at some internal node of the coupling tree,
say (x, y), defined on Vcol, and the next step is to sample the color on a vertex u, one
can recover the distribution of the color on u in the next step from the values\Bigl\{ 

px
u\leftarrow c

xu\leftarrow c,yu\leftarrow c\prime ,p
yu\leftarrow c

xu\leftarrow c\prime ,yu\leftarrow c : c, c\prime \in [q]
\Bigr\} 

by solving linear constraints using Bayes' rule. Therefore, the collection\bigl\{ 
pxx,y,p

y
x,y : (x, y) \in \scrT 

\bigr\} 
encodes all information of the coupling process.
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4.1. The LP. The values pxx,y and pyx,y are unknown, and we are going to impose
a few necessary linear constraints on them. The basic constraints are derived from
(4.3), (4.4), (4.5), and (4.6). To this end, for every node (x, y) in \scrT , we introduce two
variables px

x,y
and py

x,y
, aiming to mimic pxx,y and pyx,y.

The full coupling tree \scrT is too big, and we will truncate it up to some depth L > 0.
The quantity L will be set later. We will perform a binary search to estimate the ratio
q1

q2
using the truncated coupling tree. Thus we introduce two variables r and r as our

guesses for upper and lower bounds of q1

q2
. Let \scrT L be the coupling tree truncated at

depth L, and denote by \scrL (\scrT ) the leaves of a tree \scrT . Since the coupling procedure
colors one vertex at a time, for any node (x, y) \in \scrT L, we have that | Vcol| \leq L, where
Vcol is determined by (x, y). Formally, we have three types of constraints.

Constraints 1: For every leaf (x, y) \in \scrL (\scrT L) with corresponding | Vcol| < L, we
have the constraints

r \cdot py
x,y
\leq px

x,y
\cdot rx,y;

px
x,y
\cdot rx,y \leq r \cdot py

x,y
;

0 \leq px
x,y

, py
x,y
\leq 1.

Constraints 1 are relaxed versions of identity (4.3). It will be clear soon that these
constraints are the most critical ones, as they guarantee that we can recover the
marginal probability on v from these variables. However, in order to compute rx,y,
one needs exp(L) amount of time. This forces us to truncate at only logarithmic
depth in the coupling tree in order to get a polynomial time algorithm, but we will
show later that this is enough.

Constraints 2: For the root (x0, y0) \in \scrT , we have

px0

x0,y0
= py0

x0,y0
= 1.

Moreover, for every nonleaf (x, y) \in \scrT with corresponding | Vcol| < L, let u be the
next vertex to couple. We have the following constraints:

for every c \in [q], px
x,y

=
\sum 
c\prime \in [q]

px
u\leftarrow c

xu\leftarrow c,yu\leftarrow c\prime ;

for every c \in [q], py
x,y

=
\sum 
c\prime \in [q]

py
u\leftarrow c

xu\leftarrow c\prime ,yu\leftarrow c ;

0 \leq px
x,y

, py
x,y
\leq 1.

These constraints faithfully realize the properties (4.4), (4.5), and (4.6).

Constraints 3: For every c, c\prime \in [q] that c \not = c\prime , we add the following constraints:

px
u\leftarrow c

xu\leftarrow c,yu\leftarrow c\prime \leq 
5

t\ast 
\cdot px

x,y
;

py
u\leftarrow c\prime 

xu\leftarrow c,yu\leftarrow c\prime \leq 
5

t\ast 
\cdot py

x,y
.

We will eventually set t\ast = 5
\bigl( 
e2k3\Delta 3

\bigr) 1
1 - \beta in Lemma 4.10, where the parameter

0 < \beta < 1 will become clear in Definition 4.7.
These constraints reflect the fact that the coupling at individual vertices is very

likely to succeed due to Lemma 2.5. Assume the conditions of Lemma 2.5 are met
with t = t\ast . We claim the following property of those true values \{ pxx,y\} .
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Claim 4.1.
px

u\leftarrow c

xu\leftarrow c,yu\leftarrow c

pxx,y
\geq 1 - 5

t\ast 
.

The claim implies that these true values satisfy Constraints 3 since they also
satisfy Constraints 2. We use (4.1) to show the claim. By Lemma 2.5,

| Cx| 
| Cxu\leftarrow c | 

=
1

Pr\sigma \sim \mu \scrC x [\sigma (u) = c]
\geq qt\ast 

t\ast + 4
.

Again by Lemma 2.5, the coupling at u with any color c succeeds with probability at

least 1
q

\bigl( 
1 - 1

t\ast 

\bigr) 
. Thus the ratio

\mu cp(x
u\leftarrow c,yu\leftarrow c)

\mu cp(x,y)
, which can be viewed as the probabil-

ity of coupling u successfully with color c conditioned on reaching (x, y), is at least
1
q

\bigl( 
1 - 1

t\ast 

\bigr) 
. Combine these facts with (4.1):

pxu\leftarrow c

xu\leftarrow c,yu\leftarrow c

px
x,y

=
| Cx| 

| Cxu\leftarrow c | \cdot 
\mu cp(x

u\leftarrow c, yu\leftarrow c)

\mu cp(x, y)
\geq qt\ast 

t\ast + 4
\cdot 1
q

\biggl( 
1 - 1

t\ast 

\biggr) 
= 1 - 5

t\ast + 4
\geq 1 - 5

t\ast 
.

Similar inequalities hold for \{ pyx,y\} due to (4.2).

4.2. Analysis of the LP. In this subsection, we show that the LP can be used
to obtain an efficient and accurate estimator of marginals.

Theorem 4.2. Let \Delta \geq 2 and k > 0 be two integers. Let 0 < \beta < 1 be a constant.
Let 0 < k2 < k1 \leq k be integers. Let H = (V, \scrE ) be a hypergraph with pinnings \scrP and
maximum degree \Delta such that k1 \leq | e| \leq k for every e \in \scrE . If

q > max
\Bigl\{ 
(ek\Delta )

1
k1 - 2 , \beta 

 - 1
k2 - 1 , C\Delta 

3
\beta (k2 - 1) , C\Delta 

4 - \beta 
(1 - \beta )(k1 - k2 - 1)

\Bigr\} 
,

where

C > max

\Biggl\{ \biggl( 
e\beta +3k3

\beta \beta 
\cdot 
\biggl( 
k

k2

\biggr) \biggr) 1
\beta (k2 - 1)

,
\Bigl( 
5e
\bigl( 
e2k3

\bigr) 1
1 - \beta 

\Bigr) 1
k1 - k2 - 1

\Biggr\} 
,

then there is a deterministic algorithm that, for every v \in V , c \in [q], and \varepsilon > 0,
computes a number \widehat p satisfying

e - \varepsilon \cdot \widehat p \leq Pr\sigma \sim \mu \scrC [\sigma (v) = c] \leq e\varepsilon \cdot \widehat p
in time poly( 1\varepsilon ).

Before diving into the proof details, let us first imagine that we set up the LP for
the whole coupling tree. To do this would require an exponential amount of time, but
we show that this indeed can be used to estimate the marginals to arbitrary precision.
We use

\bigl\{ \widehat pxx,y, \widehat pyx,y\bigr\} (x,y)\in \scrT to denote a solution of this LP. Due to Constraints 2, a

simple induction shows that for every L \leq | V | and \sigma \in \scrC 1,\sum 
(x,y)\in \scrL (TL): \sigma | =x

\widehat pxx,y = 1.

In particular, when L = | V | , this means that\sum 
(x,y)\in \scrL (T ): \sigma | =x

\widehat pxx,y = 1.D
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Similar equalities hold on the Y side. Using this, we rewrite the ratio | \scrC 1| | \scrC 2| as follows:

| \scrC 1| 
| \scrC 2| 

=

\sum 
\sigma \in \scrC 1 1\sum 
\sigma \in \scrC 2 1

=

\sum 
\sigma \in \scrC 1

\sum 
(x,y)\in \scrL (\scrT ):\sigma | =x \widehat pxx,y\sum 

\sigma \in \scrC 2
\sum 

(x,y)\in \scrL (\scrT ):\sigma | =y \widehat pyx,y
=

\sum 
(x,y)\in \scrL (\scrT )

\sum 
\sigma | =x \widehat pxx,y\sum 

(x,y)\in \scrL (\scrT )

\sum 
\sigma | =y \widehat pyx,y

=

\sum 
(x,y)\in \scrL (\scrT ) \widehat pxx,y | Cx| \sum 
(x,y)\in \scrL (\scrT ) \widehat pyx,y | Cy| 

.

Recall rx,y = | Cx| 
| Cy| . By Constraints 1, we know that for any (x, y) \in \scrL (\scrT ),

r \leq 
\widehat pxx,y | Cx| \widehat pyx,y | Cy| 

\leq r.

It implies that

r \leq | \scrC 1| 
| \scrC 2| 
\leq r.

Unfortunately, as the size and the computational cost of setting up the LP are
exponential in L, we have to truncate the tree at a suitable place. The rest of our
task is to show that the error caused by the truncation is small. One may notice that
in the analysis above we do not use Constraints 3. Indeed, these constraints are
used to bound the truncation error.

Intuitively, the truncation error comes from the proper colorings so that the cou-
pling does not halt at depth L (since we cannot impose Constraints 1 for these
nodes). A naive approach would then try to show that conditioned on any proper
coloring as the final output, the coupling will terminate quickly. This is unfortunately
not true, and there exist ``bad"" colorings so that the coupling does not terminate at
level L with high probability. For example, given a predetermined ordering of vertices
and edges, a proper coloring \sigma \in \scrC 1 may render all vertices encountered in Algorithm
3.1 with the same color. Hence conditioned on this \sigma on the X side, Algorithm 3.1
will not stop until all edges are enumerated.

We will show, nonetheless, that the fraction of ``bad"" colorings is small. Let us
formally define bad colorings first. We need to use the notion of \{ 2, 3\} -trees. This
notion dates back to Alon's parallel local lemma algorithm [Alo91].

Definition 4.3 (\{ 2, 3\} -tree). Let G = (V,E) be a graph. A set of vertices
T \subseteq V is a \{ 2, 3\} -tree (1) if for any u, v \in T , distG(u, v) \geq 2; (2) if one adds an edge
between every u, v \in T such that distG(u, v) = 2 or 3, then T is connected.

We will need to count the number of \{ 2, 3\} -trees later for union bounds. The
following lemma, due to Borgs et al. [BCKL13], counts the number of connected
induced subgraphs in a graph.

Lemma 4.4. Let G = (V,E) be a graph with maximum degree d and v \in V be a
vertex. The number of connected induced subgraphs of size \ell containing v is at most
(ed)\ell  - 1

2 .

Corollary 4.5. Let G = (V,E) be a graph with maximum degree d and v \in V
be a vertex. Then the number of \{ 2, 3\} -trees in G of size \ell containing v is at most
(ed3)

\ell  - 1

2 .
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1410 HENG GUO, CHAO LIAO, PINYAN LU, AND CHIHAO ZHANG

Proof. Let G\prime = (V,E\prime ) be the graph with vertex set V and (u, v) \in E\prime if
distG(u, v) = 2, 3. The degree of G\prime is at most d3, and any \{ 2, 3\} -tree in G is a
connected set of vertices in G\prime . Therefore, the number of \{ 2, 3\} -trees in G containing
v of size \ell can be bounded by the number of induced subgraphs in G\prime containing v of
size \ell . Lemma 4.4 then concludes the proof.

Recall that Lin(H) is the line graph of H, that is, vertices in Lin(H) are hyper-
edges in H and two hyperedges are adjacent if they share some vertex in H. Let
L2(H) be a graph whose vertices are hyperedges in H and two hyperedges are adja-
cent in L2(H) if their distance is at most 2 in Lin(H). Any connected subgraph in
L2(H) contains a large \{ 2, 3\} -tree in Lin(H).

Lemma 4.6. Let B be a set of hyperedges which induces a connected subgraph in
L2(H), and let e\ast \in B be an arbitrary hyperedge. There exists a \{ 2, 3\} -tree T \subseteq B

such that e\ast \in T in Lin(H) and | T | \geq | B| k\Delta .

Proof. We construct T greedily starting from T0 := \{ e\ast \} . Given Ti, let B \leftarrow 
B \setminus \Gamma (Ti), and then let Ti+1 be Ti plus the first hyperedge in B which has distance
\leq 3 from Ti. If no such hyperedge exists, the process stops.

We claim that when the process stops, all hyperedges in B are removed. If
there is a nonempty subset B\prime \subset B remaining, choose an arbitrary e \in B\prime . Since
B is connected in L2(H), there is a shortest path P \subset B from e to some e\prime \in T
in L2(H). Assume that P is e \rightarrow \cdot \cdot \cdot \rightarrow e1 \rightarrow e2 \rightarrow e\prime (where e1 is possible to be
e). The minimality of | P | implies that e1, e2 \not \in T . If distLin(H)(T, e2) = 1, then
distLin(H)(T, e1) \leq 1 + distLin(H)(e1, e2) \leq 3 and it contradicts the construction of T
as e1 would be added to T . Otherwise, distLin(H)(T, e2) = 2, and again it contradicts
the construction of T as e2 would be added to T .

For the size of T , notice that in every step of the process, at most k\Delta hyperedges

are removed. Hence | T | \geq | B| k\Delta .

We now define bad colorings. Let e0 be the first edge in \Gamma (v). Recall that in the
coupling process we would attempt to color at most k2 vertices in an edge, where
0 < k2 < k1. We will have another parameter 0 < \beta < 1, which denotes the fraction
of (partially) monochromatic hyperedges6 in a bad coloring. All parameters will be
set in section 7.

Definition 4.7 (bad colorings). Let \ell > 0 be an integer and \beta > 0 be a constant.
A coloring \sigma \in \scrC 1 is \ell -bad if there exist a \{ 2, 3\} -tree T in Lin(H) and vertices Vcol

such that
1. | T | = \ell and e0 \in T ;
2. for every e \in T , | e \cap Vcol| = k2;
3. the partial coloring of \sigma restricted to Vcol makes at least \beta \ell hyperedges in T

(partially) monochromatic.
We say \sigma \in \scrC 1 is \ell -good if it is not \ell -bad.

Note that since T is a \{ 2, 3\} -tree in Lin(H) in Definition 4.7, all hyperedges in T
are disjoint.

We show that the fraction of bad proper colorings among all proper colorings in
\scrC 1 is small. This allows us to throw away bad colorings in the estimates later.

Lemma 4.8. Let \Delta \geq 2 and 0 < k2 < k1 \leq k all be integers. Let 0 < \beta < 1 be a
constant. Let H(V, \scrE ) be a hypergraph with pinnings \scrP , where the maximum degree is

6A hyperedge is (partially) monochromatic if every vertex in the hyperedge is either of the same
color or not colored.
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COUNTING HYPERGRAPH COLORINGS 1411

\Delta and k1 \leq | e| \leq k for every e \in \scrE . If q1 - k2 < \beta , q > (ek\Delta )
1

k1 - 2 , and q > C\Delta 
3

\beta (k2 - 1) ,

where C\beta (k2 - 1) \geq e\beta +3k3

\beta \beta \cdot 
\bigl( 
k
k2

\bigr) 
, then we have

| \{ \sigma \in \scrC 1 : \sigma is \ell -bad\} | 
| \scrC 1| 

\leq e - \ell .

Proof. Fix a \{ 2, 3\} -tree T = \{ e1, e2, . . . , e\ell \} in Lin(H) of size \ell and Vcol such that
for every e \in T , | e \cap Vcol| = k2. We say \sigma is \ell -bad with respect to T and Vcol if \sigma , T ,
and Vcol satisfy the requirements in Definition 4.7. Denote by ZVcol

or simply Z the
number of (partially) monochromatic hyperedges by first drawing from \mu \scrC 1 and then
revealing the colors of vertices in Vcol. We use Theorem 2.2 to bound the probability
that Z \geq \beta \ell .

Indeed, \mu \scrC 1 can be viewed as the uniform distribution over proper colorings of an
instance where v is pinned to color c1. In this instance, we have that k1 - 1 \leq | e| \leq k
for every e \in \scrE . Hence in the product distribution Pr [e is monochromatic] \leq q2 - k1 \leq 
1

ek\Delta for every e \in \scrE by assumption. We set x(e) = 1
k\Delta in Theorem 2.2 and verify

(2.1):

x(e)
\prod 

e\prime \in \Gamma (e)

(1 - x(e\prime )) \geq 1

k\Delta 

\biggl( 
1 - 1

k\Delta 

\biggr) k\Delta  - 1

\geq 1

ek\Delta 
\geq Pr [e is monochromatic] .

In the product distribution (where all vertices are independent), for e \in T , the
vertices in e \cap Vcol are monochromatic with probability p\ast := q1 - k2 < \beta . Since T is
a \{ 2, 3\} -tree in Lin(H), all edges are disjoint and these events are independent in the
product distribution. Hence, by a multiplicative Chernoff bound with mean p\ast \ell and
\gamma = \beta 

p\ast  - 1 > 0,

Pr [Z \geq \beta \ell ] = Pr [Z \geq (1 + \gamma )p\ast \ell ] \leq 
\biggl( 

e\gamma 

(1 + \gamma )1+\gamma 

\biggr) p\ast \ell 

\leq 
\biggl( 
ep\ast 

\beta 

\biggr) \beta \ell 

.

For each edge e \in T , there are at most k(\Delta  - 1) + 1 \leq k\Delta  - 1 edges that intersect
with e (including itself). The random variable Z thus depends on at most (k\Delta  - 1)\ell 
hyperedges in \mu \scrC 1 . By Theorem 2.2 with x(e) = 1

k\Delta ,

\mu \scrC 1(Z \geq \beta \ell ) \leq Pr [Z \geq \beta \ell ] \cdot 
\biggl( 
1 - 1

k\Delta 

\biggr)  - (k\Delta  - 1)\ell 
\leq 

\biggl( 
ep\ast 

\beta 

\biggr) \beta \ell 

\cdot e\ell =
\biggl( 
e1+1/\beta p\ast 

\beta 

\biggr) \beta \ell 

.

To finish the argument, we still need to account for all \{ 2, 3\} -trees and Vcol by
a union bound. Since the maximum degree in Lin(H) is k\Delta , the total number of

\{ 2, 3\} -trees containing e0 of size \ell , by Corollary 4.5, is at most
(e(k\Delta )3)

\ell 

2 . For a fixed

T , since all edges in T are disjoint, the number of possible Vcol is at most
\bigl( 
k
k2

\bigr) \ell 
.

Putting everything together, we have that

Pr
\sigma \sim \mu \scrC 1

[\sigma is \ell -bad] \leq 
\biggl( 
e1+1/\beta p\ast 

\beta 

\biggr) \beta \ell 

\cdot 
\bigl( 
e(k\Delta )3

\bigr) \ell 
2

\cdot 
\biggl( 
k

k2

\biggr) \ell 

\leq 
\biggl( 
e\beta +1

\beta \beta 
\cdot ek3 \cdot 

\biggl( 
k

k2

\biggr) 
\cdot q\beta  - \beta k2\Delta 3

\biggr) \ell 

.
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1412 HENG GUO, CHAO LIAO, PINYAN LU, AND CHIHAO ZHANG

By assumption,

q\beta k2 - \beta \geq C\beta (k2 - 1)\Delta 3 \geq e\beta +2

\beta \beta 
\cdot ek3 \cdot 

\biggl( 
k

k2

\biggr) 
\cdot \Delta 3.

Combining these two inequalities finishes the proof.

Let (x, y) \in \scrT be a pair of partial colorings defined on Vcol. We are now going to
prove some structural properties of (x, y). Say an edge e \in \scrE such that e \cap Vcol \not = \varnothing 
is blocked by (x, y) if one of the following holds:

1. x(u) \not = y(u) for some u \in e.
2. | e \cap Vcol| = k2, and e is not satisfied by both x and y.

These two cases are called type 1 and type 2 errors, respectively, in [Moi19]. Notice
that all edges in \Gamma (v) are always blocked, and, in particular, e0 is always blocked.

Let us denote the set of edges blocked by (x, y) as \scrB x,y. Then \scrB x,y always contains
a large \{ 2, 3\} -tree.

Lemma 4.9. Let (x, y) \in \scrT be a pair of partial colorings in the coupling tree
defined on Vcol with corresponding V1. Assume | Vcol| = L. There exists a \{ 2, 3\} -tree
T \subseteq \scrB x,y in Lin(H) of size at least L

k3\Delta 2 containing e0.

Proof. We first claim that \scrB x,y is connected in L2(H) by inducting on L. Once
an edge is blocked during Algorithm 3.1, it will remain blocked until the end. If u
is the next vertex to be colored in Algorithm 3.1, then u must be adjacent to some
vertex u\prime \in V1, and u\prime is in some edge e blocked by the current (x, y). Therefore, any
newly blocked edge caused by coloring u has distance at most 2 to e.

Since e0 is always blocked, e0 \in \scrB x,y. By Lemma 4.6, there exists a \{ 2, 3\} -tree
T \subseteq \scrB x,y in Lin(H) such that | T | \geq | \scrB x,y| 

k\Delta . Next, we claim that | \scrB x,y| \geq L
k2\Delta . This

is because every vertex in V1 belongs to some blocked edge. Hence | V1| \leq k | \scrB x,y| .
By item (1) of Lemma 3.1, Vcol \subseteq \Gamma ver(V1). It implies that L = | Vcol| \leq | \Gamma ver(V1)| \leq 
k\Delta | V1| . Combining these facts yields the lemma.

Recall that \scrT L is the tree obtained from \scrT by truncating at depth L, and \scrL (\scrT L)
is its leaves. Because of Constraints 2, for every proper coloring \sigma \in \scrC 1, it holds
that

(4.7)
\sum 

(x,y)\in \scrL (\scrT L): \sigma | =x

pxx,y = 1.

However, in Constraints 1, our LP only contains constraints for those px
x,y

and py
x,y

whose Vcol is of size strictly smaller than L. The next lemma shows that, for an \ell -good
coloring \sigma , solving px

x,y
, py

x,y
provides a good approximation for the identity (4.7).

Lemma 4.10. Let 0 < \beta < 1 be a constant. Let H = (V, \scrE ) be a hypergraph with
pinnings \scrP and maximum degree \Delta such that | e| \leq k for all e \in \scrE . Let \sigma \in \scrC 1 be
\ell -good where \ell is an integer. If

\bigl\{ \widehat pxx,y\bigr\} is a collection of values satisfying all our linear

constraints, with t\ast = 5
\bigl( 
e2k3\Delta 3

\bigr) 1
1 - \beta in Constraints 3 up to level L = k3\Delta 2\ell , then

it holds that \sum 
(x,y)\in \scrL (\scrT L): | Vcol| <L

and \sigma | =x

\widehat pxx,y \geq 1 - e - \ell .(4.8)
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Proof. We construct a new coupling process similar to Algorithm 3.1 and show
that the left-hand side of (4.8) is the probability of an event defined by the new process.
We modify \BbbS in the following two ways: (1) condition on the final output being \sigma ; (2)
use probabilities induced by

\bigl\{ \widehat pxx,y\bigr\} instead of
\bigl\{ 
pxx,y

\bigr\} 
. To be more specific, consider

each step where one needs to extend (x, y) defined on Vcol to a new vertex u. Call the
new colorings (x\prime , y\prime ). Since the output \sigma is fixed, we simply reveal x\prime (u) = \sigma (u). In
the original \BbbS , the color of y\prime (u) is drawn according to an optimal coupling of (x\prime , y\prime )

on u. Here we set y\prime (u) to color c with probability
\widehat pxu\leftarrow \sigma (u)

xu\leftarrow \sigma (u),yu\leftarrow c\widehat px
x,y

. This is well-defined

since
\bigl\{ \widehat pxx,y\bigr\} satisfies Constraints 2. If this process reaches depth L, then it stops.

The output of the new coupling defines a distribution over pairs of partial colorings
(x, y) such that \sigma | = x, and we denote it by \widehat \mu . We claim that

(4.9)
\sum 

(x,y)\in \scrL (\scrT L): | Vcol| =L
and \sigma | =x

\widehat pxx,y \leq \sum 
\{ 2, 3\} -tree T :
| T | =\ell , e0\in T

Pr
(X,Y )\sim \widehat \mu [T \subseteq \scrB X,Y ] .

Each summand on the left-hand side of (4.9) is the probability that our new
coupling reaches some (x, y) with | Vcol| = L. Lemma 4.9 implies that the set \scrB x,y of
blocked edges contains a \{ 2, 3\} -tree T of size at least L

k3\Delta 2 = \ell . Thus the probability
of reaching vertices of depth L is upper bounded by the right-hand side of (4.9).

Fix a \{ 2, 3\} -tree T of size \ell . Since \sigma is \ell -good, whatever the choice of Vcol is, at
least a (1 - \beta ) fraction of hyperedges in T must not be monochromatic on the X side.
However, if T \subseteq \scrB X,Y , then (1) at least \lfloor (1 - \beta ) | T | \rfloor hyperedges satisfy \sigma (v) \not = Y (v)
for some v \in e \cap Vcol, or (2) | e \cap Vcol| = k2 and \sigma | Vcol

= X| Vcol
satisfies e but Y does

not satisfy e. It is clear that case (2) implies case (1) since if one partial coloring
satisfies e and another one does not, then they must differ at some v \in e \cap Vcol. We
use T \prime =

\bigl\{ 
e1, e2, . . . , e| T \prime | 

\bigr\} 
to denote these hyperedges in T . For each hyperedge in

T \prime , there must be at least one vertex on which the (modified) coupling fails, which
happens with probability at most 5/t\ast due to Constraints 3. Since T is a \{ 2, 3\} -
tree in Lin(H), all of these failed couplings are for distinct vertices and thus happen
independently. Hence, in this new coupling, the probability that every edge in T \prime is

blocked due to at least one failed vertex is at most
\bigl( 

5
t\ast 

\bigr) | T \prime | \leq \bigl( 
5
t\ast 

\bigr) \lfloor (1 - \beta )\ell \rfloor 
.

We still need to apply a union bound. The number of \{ 2, 3\} -trees of size \ell in

Lin(H) and containing e0 is, by Corollary 4.5, at most
(ek3\Delta 3)

\ell 

2 . Therefore, the right-
hand side of (4.9) is at most

\sum 
\{ 2, 3\} -tree T :
| T | =\ell , e0\in T

Pr
(X,Y )\sim \widehat \mu [T \subseteq \scrB X,Y ] \leq 

\biggl( 
5

t\ast 

\biggr) \lfloor (1 - \beta )\ell \rfloor 
\cdot 
\bigl( 
ek3\Delta 3

\bigr) \ell 
2

\leq e - \ell (4.10)

since we have chosen t\ast = 5
\bigl( 
e2k3\Delta 3

\bigr) 1
1 - \beta in Constraints 3. The lemma follows by

combining (4.7), (4.9), and (4.10).

Note that in Lemma 4.10 we do not explicitly require a lower bound of q or a
lower bound on the size of the edges. However, these requirements are implicit since
we have set t\ast to be large in Constraints 3.

Lemmas 4.8 and 4.10 also hold for any \sigma \in \scrC 2. Now we can prove that any
solution to the LP provides accurate estimates.
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Lemma 4.11. Assume the settings of Lemmas 4.8 and 4.10. If the LP up to level

L has a solution
\bigl\{ \widehat pxx,y, \widehat pyx,y\bigr\} with guessed bounds

\Bigl\{ \widehat r,\widehat r\Bigr\} , then it holds that

e - \gamma \widehat r \leq | \scrC 1| 
| \scrC 2| 
\leq e\gamma \widehat r,

where \gamma = 4e - 
L

k3\Delta 2 .

Proof. Let \ell = L
k3\Delta 2 . Let

Z1 :=
\sum 
\sigma \in \scrC 1

\sum 
(x,y)\in \scrL (\scrT ): | Vcol| <L

and \sigma | =x

\widehat pxx,y.
Exchange the order of summation:

Z1 =
\sum 

(x,y)\in \scrL (\scrT ): | Vcol| <L

\sum 
\sigma \in \scrC 1: \sigma | =x

\widehat pxx,y =
\sum 

(x,y)\in \scrL (\scrT ): | Vcol| <L

\widehat pxx,y \cdot | \scrC x| .
A similar quantity Z2 can be defined and bounded by replacing \widehat pxx,y with \widehat pyx,y. Con-
straints 1 impose that for any (x, y) \in \scrL (\scrT ) such that | Vcol| < L,

\widehat r \leq \widehat pxx,y \cdot | \scrC x| \widehat pyx,y \cdot | \scrC y| \leq \widehat r.
Hence

\widehat r \leq Z1

Z2
\leq \widehat r.(4.11)

We will relate | \scrC 1| with Z1. It is easy to see, by (4.7), that

| \scrC 1| =
\sum 
\sigma \in \scrC 1

1 =
\sum 
\sigma \in \scrC 1

\sum 
(x,y)\in \scrL (\scrT L): \sigma | =x

\widehat pxx,y \geq Z1.(4.12)

The lower bound is more complicated:

| \scrC 1| =
\sum 
\sigma \in \scrC 1

1 \leq 
\bigl( 
1 - e - \ell 

\bigr)  - 1 \sum 
\sigma \in \scrC 1:

\sigma is \ell -good

1

\leq 
\bigl( 
1 - e - \ell 

\bigr)  - 1\bigl( 
1 - e - \ell 

\bigr)  - 1 \sum 
\sigma \in \scrC 1:

\sigma is \ell -good

\sum 
(x,y)\in \scrL (\scrT ): | Vcol| <L

and \sigma | =x

\widehat pxx,y
\leq e\gamma 

\sum 
\sigma \in \scrC 1

\sum 
(x,y)\in \scrL (\scrT ): | Vcol| <L

and \sigma | =x

\widehat pxx,y = e\gamma Z1,(4.13)

where in the first line we use Lemma 4.8 and in the second line we use Lemma 4.10.
Similar bounds hold with | \scrC 2| and Z2. Combining (4.11), (4.12), (4.13), and their
counterparts for | \scrC 2| and Z2, we have that

e - \gamma \widehat r \leq | \scrC 1| 
| \scrC 2| 
\leq e\gamma \widehat r.D

ow
nl

oa
de

d 
10

/2
1/

19
 to

 2
19

.2
20

.1
45

.1
83

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COUNTING HYPERGRAPH COLORINGS 1415

We then set up a binary search, to find r and r that are close enough to the true
ratio.

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.2. Take L = k3\Delta 2
\bigl\lceil 
log

\bigl( 
4
\varepsilon 

\bigr) \bigr\rceil 
so that \gamma = 4e - 

L
k3\Delta 2 \leq \varepsilon . We

claim the true values of
\bigl\{ 
pxx,y, p

y
x,y

\bigr\} 
always satisfy our LP. This is trivial for Con-

straints 1 and 2. For Constraints 3, recall that t\ast = 5
\bigl( 
e2k3\Delta 3

\bigr) 1
1 - \beta > k and we

only need to verify the conditions of Lemma 2.5 with t = t\ast . At any point of Al-
gorithm 3.1, the size of an edge is at least k1  - k2. Hence we set k\prime = k1  - k2 in
Lemma 2.5. By our assumption,

q > C\Delta 
4 - \beta 

(1 - \beta )(k1 - k2 - 1) \geq 
\Bigl( 
5e
\bigl( 
e2k3

\bigr) 1
1 - \beta 

\Bigr) 1
k\prime  - 1 \cdot \Delta 

4 - \beta 
(1 - \beta )(k\prime  - 1) = (et\ast \Delta )

1
k\prime  - 1 .

Fix the color c. It follows from Lemma 4.11 that for every c\prime \in [q], we can apply the

binary search algorithm to obtain a value pc\prime , which is an estimate of
\bfP \bfr \sigma \sim \mu \scrC [\sigma (v)=c\prime ]
\bfP \bfr \sigma \sim \mu \scrC [\sigma (v)=c]

satisfying

e - \varepsilon \cdot pc\prime \leq 
Pr\sigma \sim \mu \scrC [\sigma (v) = c\prime ]

Pr\sigma \sim \mu \scrC [\sigma (v) = c]
\leq e\varepsilon \cdot pc\prime .

We then use \widehat p :=
\bigl( \sum 

c\prime \in [q] pc\prime 
\bigr)  - 1

to estimate Pr\sigma \sim \mu \scrC [\sigma (v) = c].
For the running time, we treat \Delta , k, and q as constants. The size of the linear

program in the WHILE loop is exp(O(L)). This is because the coupling tree \scrT is
q2-ary, and therefore it has at most exp(O(L)) vertices up to depth L, and we have
a pair of variables px

x,y
and py

x,y
for each vertex. The number of variables and the

number of constraints is at most exp(O(L)). Note that for each set of constraints in
Constraints 1, we need to enumerate all the possible colorings in V1 to compute rx,y
for every leaf (x, y). This costs at most exp(O(L)) time. Hence it takes exp(O(L))
time to construct an LP of size exp(O(L)), which requires again exp(O(L)) time to
solve. Note that with our choice of L, exp(O(L)) = poly

\bigl( 
1
\varepsilon 

\bigr) 
. For the WHILE loop,

we use a binary search to find r and r. Thus the number of loops of the binary search
is at most log2

2
e\varepsilon = poly

\bigl( 
1
\varepsilon 

\bigr) 
. Therefore, the total running time of our estimator is

poly
\bigl( 
1
\varepsilon 

\bigr) 
.

5. Approximate counting. Now we give our FPTAS for the number of proper
q-colorings of a k-uniform hypergraph H with maximum degree \Delta . The next lemma
guarantees us a ``good"" proper coloring \sigma so that we can use the algorithm in Theorem
4.2 to compute the marginal probability of \sigma .

Lemma 5.1. Let kC1 be an integer such that 0 < kC1 < k  - 1. Let

q \geq 
\bigl( 
4(k  - kC1 )\Delta 

\bigr) 1

k - kC
1  - 1 .

Let v1, . . . , vn be an arbitrary ordering of the vertices of a k-uniform hypergraph H =
(V, \scrE ). There exists a proper coloring \sigma such that for every hyperedge e \in \scrE , the partial
coloring \sigma restricted to the first k  - kC1 vertices is not monochromatic. Moreover, \sigma 
can be found in deterministic polynomial time.

Proof. Let k\prime = k  - kC1 . Consider a new hypergraph H \prime = (V, \scrE \prime ) on the same
vertex set V , but for every e \in \scrE , we replace it with its first k\prime vertices. We set
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1416 HENG GUO, CHAO LIAO, PINYAN LU, AND CHIHAO ZHANG

x(e) = 1
k\prime \Delta in Theorem 2.1 and verify (2.1) for every e \in \scrE \prime :

x(e)
\prod 

e\prime \in \Gamma (e)

(1 - x(e\prime )) \geq 1

k\prime \Delta 

\biggl( 
1 - 1

k\prime \Delta 

\biggr) k\prime (\Delta  - 1)

\geq 1

ek\prime \Delta 
\geq q1 - k

\prime 
\geq Pr [e is monochromatic] .

Hence Theorem 2.1 implies that there exists a proper coloring \sigma in H \prime , which satisfies
the requirement of the lemma.

In order to find \sigma , we have left a bit of slack in our bound on q. Thus the
deterministic algorithm from [MT10] applies.

Theorem 5.2. Assume the conditions of Theorem 4.2 (on q, \Delta , k, k1, k2, and \beta )
with k1 = kC1 hold, together with the conditions of Lemma 5.1. There is an FPTAS for
the number of proper q-colorings of a k-uniform hypergraph H = (V, \scrE ) with maximum
degree \Delta .

Proof. Let n = | V | . Choose an arbitrary ordering of the vertices v1, . . . , vn of
V . Lemma 5.1 implies that we can find a proper coloring \sigma so that any hyperedge
is properly colored by the first k  - kC1 of its vertices. Let Z = | \scrC | be the number of
proper colorings of H. For every \varepsilon > 0, we will deterministically compute a number\widehat Z in time polynomial in n and 1/\varepsilon such that e - \varepsilon \widehat Z \leq Z \leq e\varepsilon \widehat Z.

As before, let \mu \scrC be uniform over \scrC , the set of all proper colorings of H. We
will actually estimate \mu \scrC (\sigma ) =

1
Z . To this end, we create a sequence of hypergraphs

\{ Hi\} with pinnings \{ \scrP i\} inductively. Let H1 = H, and let \scrP 1 be empty. Given
Hi = (Vi, \scrE i) and \scrP i, we find the next vertex ui under the orderings that are contained
in at least one hyperedge of Hi. We pin the color of ui to be \sigma (ui). This induces a
pinning \scrP i+1 on all hyperedges in \scrE i. Then, Hi+1 is obtained by removing ui from
Vi and removing all hyperedges that are properly colored under \scrP i+1 from \scrE i. We
also truncate the pinning \scrP i+1 accordingly. If for some n\prime \leq n, \scrE n\prime is empty, then
this process terminates. Notice that the construction above yields a subset of vertices
u1, . . . , un\prime , where n\prime \leq n. Their ordering is consistent with the given ordering.

We claim that for any i \in [n\prime ], for any e \in \scrE i, it satisfies that kC1 \leq | e| \leq k. This
is because an edge e shrinks in size in the process when vertices are pinned according
to \sigma . However, Lemma 5.1 guarantees that the edge e will be removed in the process
above before k  - kC1 vertices are colored. Therefore, together with our assumptions,
Theorem 4.2 applies with k1 = kC1 .

Let pi be the marginal probability of color \sigma (ui) at ui in Hi with pinning \scrP i. Let
pi = 1

q for all i \geq n\prime . It is easy to see that Z - 1 = \mu \scrC (\sigma ) =
\prod n

i=1 pi. Thus we can

obtain our desired estimate \widehat Z by approximating each pi within e\pm 
\varepsilon 
n . To this end, we

appeal to Theorem 4.2 with \varepsilon \prime = \varepsilon 
n .

6. Sampling. Finally, we give the algorithm to sample proper colorings almost
uniformly. As usual, let H(V, \scrE ) be a k-uniform hypergraph with maximum degree
\Delta , q be the number of colors, and \scrC be the set of proper colorings. Let n = | V | .
Algorithm 6.1 samples a coloring in \scrC within total variation distance \varepsilon from \mu \scrC .
Similar to the coupling process in section 3, we assume that there is an arbitrary
fixed ordering of all vertices and hyperedges. There is a parameter 0 < kS1 < k - 1 in
Algorithm 6.1, which will be set in section 7.

We first assume that at line 9, the oracle call to Theorem 4.2 is always within
the correct range. This simplification allows us to identify a threshold involving the
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COUNTING HYPERGRAPH COLORINGS 1417

Algorithm 6.1. An almost uniform sampler for proper colorings.

1: Input: A k-uniform hypergraph H(V, \scrE ) with maximum degree \Delta and 0 < \varepsilon < 1
2: Output: A coloring in \scrC 
3: Let X be the partial coloring that X(v) =  - for every v \in V initially;
4: while \scrE is nonempty do
5: Choose the first uncolored v \in V such that every e \in \Gamma (v) contains > kS1

uncolored vertex;
6: if no such vertex v exists then
7: break
8: end if
9: Apply the algorithm in Theorem 4.2 to compute the marginal distribution on v

with precision \varepsilon 
2n , and extend X with the color on v according to the distribution;

10: Remove from \scrE all hyperedges that are now satisfied.
11: end while
12: S \leftarrow uncolored vertices in V ;
13: Let HS = (S, \scrE S), where \scrE S := \{ e \cap S : e \in \scrE \} ;
14: if HS contains a connected component with size at least k2\Delta log

\bigl( 
2n\Delta 
\varepsilon 

\bigr) 
then

15: return an arbitrary x \in \scrC 
16: else
17: return a uniformly random proper coloring consistent with X by enumerating

all proper colorings of HS .
18: end if

parameter kS1 to guarantee small connected components, which will be put together
with the conditions of Theorem 4.2 later.

Lemma 6.1. Assume the oracle call to Theorem 4.2 at line 9 is within the desired

range. If q > (ek\Delta )
1

kS
1  - 1 and q > C\Delta 

3

k - kS
1  - 1 , where C(k - kS

1 ) - 1 > e7k3, the condition
in line 14 of Algorithm 6.1 holds with probability at most \varepsilon /2.

Proof. The proof idea is to show that the existence of a large component in HS

implies the existence of a large \{ 2, 3\} -tree in Lin(H) whose vertices are edges that are
not satisfied but k  - kS1 of their vertices are already colored. Then we show that the
probability of the latter event is small.

Now assume that the sampler ends the WHILE loop with a partial coloring X
and HS . We say an edge e \in \scrE is bad if X does not satisfy e and | e \cap S| = kS1 , namely
e is partially monochromatic under X but k  - kS1 vertices have been colored. Also,
we say a vertex v \in S is blocked by an edge e \in \scrE if v \in e and e is bad.

Fix an arbitrary hyperedge e0 that is bad, and e0 is contained in a connected
component of size at least L in HS . We denote the set of vertices of this component
by U and its induced hypergraph HU . It is clear that every vertex in S is blocked by
some bad edge. Let \scrF be the set of all bad edges incident to U . Then e0 \in \scrF . Since
every vertex in U is blocked by some edge in \scrF and every edge in \scrF contains at most
k vertices, | \scrF | \geq L

k .
We claim that \scrF is connected in L2(H). The reason is the following. For any two

edges, say e1, e2 \in \scrF , since HU is connected, there exists a path in HU connecting
e1 and e2. Every vertex along this path must be blocked by some edge in \scrF . Each
adjacent pair of vertices along this path corresponds to a pair of edges in \scrF that have
distance at most 2 in Lin(H).

Lemma 4.6 implies that \scrF contains a \{ 2, 3\} -tree of size at least \ell = L
k2\Delta containing
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1418 HENG GUO, CHAO LIAO, PINYAN LU, AND CHIHAO ZHANG

e0. Fix such a \{ 2, 3\} -tree T =
\bigl\{ 
e1, . . . , e| T | 

\bigr\} 
. Let \widehat \mu be the distribution of our sampler

at the end of the WHILE loop. It holds that

Pr
X\sim \widehat \mu [every ei \in T is bad] =

| T | \prod 
i=1

Pr
X\sim \widehat \mu 

\left[  ei is bad
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigwedge 
j<i

ej is bad

\right]  .

Since ei\cap ej = \varnothing for every i \not = j and Theorem 4.2 guarantees our estimated marginals
are within e\varepsilon /2n, for every 1 \leq i \leq | T | , we can apply Lemma 2.5 with k\prime = kS1 and
t = k:

Pr
X\sim \widehat \mu 

\left[  ei is bad
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigwedge 
j<i

ej is bad

\right]  \leq q \cdot q - (k - k
S
1 ) \cdot (1 + 8/t)k/2 \cdot e

\varepsilon (k - kS
1 )

2n \leq e5 \cdot q1 - (k - k
S
1 ).

Applying Lemma 2.5 requires that q > (ek\Delta )
1

kS
1  - 1 . By Corollary 4.5, the number of

\{ 2, 3\} -trees of size \ell in Lin(H) containing e0 in \scrF is at most
(ek3\Delta 3)

\ell 

2 . Then, by the
union bound, the probability that HS contains a component with size at least L is at
most

n\Delta 
\bigl( 
ek3\Delta 3

\bigr) \ell \Bigl( 
e5 \cdot q1 - (k - k

S
1 )
\Bigr) \ell 

,(6.1)

where the term | n\Delta | \geq | \scrE | accounts for the choice of e0. By assumption,

q(k - k
S
1 ) - 1 > C(k - kS

1 ) - 1\Delta 3 > e7k3\Delta 3.

As L = k2\Delta log
\bigl( 
2n\Delta 
\varepsilon 

\bigr) 
and \ell = L

k2\Delta , e - \ell \leq \varepsilon 
2n\Delta . Hence, by (6.1), the probability in

line 14 is at most

n\Delta 
\bigl( 
ek3\Delta 3

\bigr) \ell \Bigl( 
e5 \cdot q1 - (k - k

S
1 )
\Bigr) \ell 

\leq n\Delta \cdot e - \ell \leq \varepsilon 

2
.

Now we are ready to give the sampling algorithm.

Theorem 6.2. Assume the conditions of Theorem 4.2 (on q, \Delta , k, k1, k2, and
\beta ) with k1 = kS1 hold, together with the conditions of Lemma 6.1. For any k-uniform
hypergraph H = (V, \scrE ) with maximum degree \Delta and \varepsilon > 0, Algorithm 6.1 outputs a
proper coloring whose distribution is within \varepsilon total variation distance to the uniform
distribution, and the running time is poly(n, 1

\varepsilon ), where n = | V | .
Proof. First we check that the condition of Theorem 4.2 is met with k1 = kS1 when

it is called in Algorithm 6.1 in line 9. This is because whenever we color a vertex, we
make sure that all hyperedges have at least kS1 uncolored vertices afterwards. Hence
we apply Theorem 4.2 with the pinnings \scrP induced by the partial coloring X so far.

We use \widehat \mu (\cdot ) to denote the distribution of the final output of Algorithm 6.1. Recall
that \mu \scrC is the uniform distribution over \scrC . We shall bound the total variation distance
distTV (\mu \scrC , \widehat \mu ). To this end, we introduce two intermediate distributions: Let \mu 1(\cdot ) be
the distribution obtained from the output of Algorithm 6.1 but ignoring the condition
in line 14 in Algorithm 6.1. Namely, it never checks the size of connected components
in HS and proceeds to enumerate all the proper colorings on S in any case. This
is unrealistic since doing so would require exponential time. We also define another
distribution \mu 2(\cdot ), which is the same as \mu 1(\cdot ), except that in line 9, it uses the true
marginal instead of the estimate by calling Theorem 4.2.
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COUNTING HYPERGRAPH COLORINGS 1419

Denote by B the event that the condition in line 14 holds. Let pfail be the
probability of event B. By Lemma 6.1, pfail \leq \varepsilon /2.

First note that \mu 2 = \mu \scrC . Consider the distribution of the partial coloring obtained
immediately after the WHILE loop, i.e., the partial coloring X. One can apply
induction similar to the proof of Lemma 3.1 to show that it follows a pre-Gibbs
distribution. Therefore, conditioned on X, sampling a uniform proper coloring of the
remaining vertices results in a uniform proper coloring.

We then bound distTV (\mu 1, \mu 2). For a particular partial coloring x, we use Ex to
denote the event that the sampler produces x at the end of the WHILE loop, namely
X = x. It holds that

distTV (\mu 1, \mu 2)

=
1

2

\sum 
\sigma \in \scrC 

\bigm| \bigm| \bigm| \bigm| Pr
Z\sim \mu 1

[Z = \sigma ] - Pr
Z\sim \mu 2

[Z = \sigma ]

\bigm| \bigm| \bigm| \bigm| 
=

1

2

\sum 
\sigma \in \scrC 

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
x: \sigma | =x

\biggl( 
Pr

Z\sim \mu 1

[Z = \sigma | Ex] \cdot Pr
Z\sim \mu 1

[Ex] - Pr
Z\sim \mu 2

[Z = \sigma | Ex] \cdot Pr
Z\sim \mu 2

[Ex]

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| ,
where x runs over partial colorings.

The partial coloring x may never appear at the end of the WHILE loop in Algo-
rithm 6.1. In this case,

PrZ\sim \mu 1
[Ex] = PrZ\sim \mu 2

[Ex] = 0.

Otherwise, x can be the partial coloring at the end of the WHILE loop. Since the
enumeration steps are identical and correct in both \mu 1 and \mu 2 conditioned on Ex, we
have that

PrZ\sim \mu 1
[Z = \sigma | Ex] = PrZ\sim \mu 2

[Z = \sigma | Ex] =
1\sigma | =x

| \scrC x| 
,

where \scrC x is again the set of proper colorings consistent with the partial coloring x.
It implies that

(6.2) distTV (\mu 1, \mu 2) =
1

2

\sum 
\sigma \in \scrC 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

x: \sigma | =x

1

| \scrC x| 

\biggl( 
Pr

Z\sim \mu 1

[Ex] - Pr
Z\sim \mu 2

[Ex]

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Fix a partial coloring x defined on Vcol \subseteq V that is a possible output of the WHILE
loop. We note that the order of visiting Vcol is determined by the random choices of
x. Say this order is v1, . . . , vs. Let

pi := PrZ\in \mu C

\left[  Z(vi) = x(vi)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigwedge 

1\leq j<i

Z(vj) = x(vj)

\right]  .

Hence

Pr
Z\sim \mu 1

[Ex] - Pr
Z\sim \mu 2

[Ex] =

s\prod 
i=1

\widehat pi  - s\prod 
i=1

pi,

where \widehat pi is our estimate of pi using Theorem 4.2 with error \varepsilon 
2n . Theorem 4.2 implies

that
e - 

\varepsilon 
2n \widehat pi \leq pi \leq e

\varepsilon 
2n \widehat pi.
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Therefore, we have

(6.3)

\bigm| \bigm| \bigm| \bigm| Pr
Z\sim \mu 1

[Ex] - Pr
Z\sim \mu 2

[Ex]

\bigm| \bigm| \bigm| \bigm| \leq \varepsilon Pr
Z\sim \mu 2

[Ex] .

Plugging (6.3) into (6.2), we obtain

distTV (\mu 1, \mu 2) \leq 
1

2

\sum 
\sigma \in \scrC 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

x: \sigma | =x

\varepsilon 

| \scrC x| 
Pr

Z\sim \mu 2

[Ex]

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| = \varepsilon 

2

\sum 
\sigma \in \scrC 

\mu 2(\sigma ) =
\varepsilon 

2
.

Finally, we bound distTV (\widehat \mu , \mu 1). Since the behaviors of \widehat \mu and \mu 1 are identical
if B does not happen, we have that PrZ\sim \widehat \mu \bigl[ Z = \sigma 

\bigm| \bigm| B\bigr] 
= PrZ\sim \mu 1

\bigl[ 
Z = \sigma 

\bigm| \bigm| B\bigr] 
. It

implies that

distTV (\widehat \mu , \mu 1) =
1

2

\sum 
\sigma \in \scrC 

\bigm| \bigm| \bigm| \bigm| Pr
Z\sim \widehat \mu [Z = \sigma ] - Pr

Z\sim \mu 1

[Z = \sigma ]

\bigm| \bigm| \bigm| \bigm| 
=

1

2

\sum 
\sigma \in \scrC 

\bigm| \bigm| \bigm| \bigm| Pr
Z\sim \widehat \mu [Z = \sigma \wedge B] + Pr

Z\sim \widehat \mu 
\bigl[ 
Z = \sigma 

\bigm| \bigm| B\bigr] 
\cdot (1 - pfail)

 - Pr
Z\sim \mu 1

[Z = \sigma \wedge B] - Pr
Z\sim \mu 1

\bigl[ 
Z = \sigma 

\bigm| \bigm| B\bigr] 
\cdot (1 - pfail)

\bigm| \bigm| \bigm| \bigm| 
=

1

2

\sum 
\sigma \in \scrC 

\bigm| \bigm| \bigm| \bigm| Pr
Z\sim \widehat \mu [Z = \sigma \wedge B] - Pr

Z\sim \mu 1

[Z = \sigma \wedge B]

\bigm| \bigm| \bigm| \bigm| 
\leq 1

2

\sum 
\sigma \in \scrC 

\biggl( 
Pr
Z\sim \widehat \mu [Z = \sigma \wedge B] + Pr

Z\sim \mu 1

[Z = \sigma \wedge B]

\biggr) 
\leq pfail.

Combining the above and Lemma 6.1, we obtain

distTV (\widehat \mu , \mu \scrC ) \leq distTV (\widehat \mu , \mu 1) + distTV (\mu 1, \mu 2) + distTV (\mu 2, \mu \scrC )

\leq pfail +
\varepsilon 

2
\leq \varepsilon .

It remains to bound the running time of the sampler. The sampler calls subrou-
tines to estimate the marginal at most n times, and each time the subroutine costs
poly(n, 1

\varepsilon ). Finally, upon the condition in line 14 not holding, the sampler enumer-
ates proper colorings on connected components of size O(log

\bigl( 
n
\varepsilon 

\bigr) 
). Therefore, the

total running time is poly(n, 1
\varepsilon ).

The distribution \mu 1 has a small multiplicative error compared to the uniform
distribution \mu \scrC . We remark that there are standard algorithms to turn such a dis-
tribution into an exact sampler, dating back to [Bac88, JVV86]. However, since we
cannot completely avoid event B, we can only bound the error in the final distribution\widehat \mu in terms of total variation distance.

7. Settling all parameters. We have defined the following parameters through-
out the paper:

\bullet kC1 : the number of vertices in a hyperedge that are not fixed in approximate
counting, Theorem 5.2;

\bullet kS1 : the number of vertices in a hyperedge that are not fixed in sampling,
Theorem 6.2;
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COUNTING HYPERGRAPH COLORINGS 1421

\bullet k2: the number of vertices in a hyperedge Algorithm 3.1 would attempt to
couple;

\bullet \beta : the fraction of hyperedges that are monochromatic in Definition 4.7.

We want our bound for approximate counting to have the form C\Delta 
A1

k - B1 . By
Theorem 5.2, we want to make sure that, for any k > 0, subject to 0 < k2 < kC1 < k - 1,
and 0 < \beta < 1,

A1

k  - B1
\geq 3

\beta (k2  - 1)
;

A1

k  - B1
\geq 4 - \beta 

(1 - \beta )(kC1  - k2  - 1)
;

A1

k  - B1
\geq 1

k  - kC1  - 1
.

We assume kC1 and k2 are proportional to k. Minimizing A1 yields the following
solutions: A1 = 14, B1 = 14, kC1 =

\bigl\lfloor 
13k
14

\bigr\rfloor 
, k2 =

\bigl\lfloor 
3k
7

\bigr\rfloor 
, \beta = 1

2 . Plugging these values
into Theorem 5.2, we want to satisfy the following constraints:

k  - kC1  - 2 \geq 0, C \geq 
\Bigl( 
5e
\bigl( 
e2k3

\bigr) 1
1 - \beta 

\Bigr) 1

kC
1  - k2 - 1

,

qk2 - 1 >
1

\beta 
, C \geq 

\biggl( 
e\beta +3k3

\beta \beta 
\cdot 
\biggl( 
k

k2

\biggr) \biggr) 1
\beta (k2 - 1)

,

q > (ek\Delta )
1

kC
1  - 2 , C \geq 4(k  - kC1 )

1

k - kC
1  - 1 .

One can verify that k \geq 28 and C \geq 357 suffice. This yields Theorem 1.1.

Similarly, we want our bound for sampling to have the form C\Delta 
A2

k - B2 . By Theo-
rem 6.2, we want to make sure that, for any k > 0, subject to 0 < k2 < kS1 < k  - 1
and 0 < \beta < 1,

A2

k  - B2
\geq 3

\beta (k2  - 1)
;

A2

k  - B2
\geq 4 - \beta 

(1 - \beta )(kS1  - k2  - 1)
;

A2

k  - B2
\geq 3

k  - kS1  - 1
.

Similarly to the approximate counting case, minimizing A2 yields the following solu-
tions: A2 = 16, B2 = 16

3 , kS1 =
\bigl\lfloor 
13k
16

\bigr\rfloor 
, k2 =

\bigl\lfloor 
3k
8

\bigr\rfloor 
, \beta = 1

2 . Plugging these values into
Theorem 6.2, we want to satisfy the following constraints:

k  - kS1  - 2 \geq 0, C \geq 
\Bigl( 
5e
\bigl( 
e2k3

\bigr) 1
1 - \beta 

\Bigr) 1

kS
1  - k2 - 1

,

qk2 - 1 >
1

\beta 
, C \geq 

\biggl( 
e\beta +3k3

\beta \beta 
\cdot 
\biggl( 
k

k2

\biggr) \biggr) 1
\beta (k2 - 1)

,

q > (ek\Delta )
1

kS
1  - 2 , C >

\bigl( 
e7k3

\bigr) 1

(k - kS
1 ) - 1 .

One can verify that k \geq 28 and C \geq 931 suffice. This yields Theorem 1.2. We note
that these constraints also hold for k \geq 6 and C \geq 1.2\times 1011.
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8. Concluding remarks. In this paper, we give approximate counting and sam-
pling algorithms for hypergraph colorings when the parameters are in the local lemma
regime. One important open question is how to get an optimal constant in the expo-
nent of \Delta in Theorems 1.1 and 1.2. This constant comes from three places: to bound
the number of ``bad colorings"" (Lemma 4.8), to bound the error (in the LP) incurred
by ``good colorings"" (Lemma 4.10), and finally to leave some slack for either counting
(Theorem 5.2) or sampling (Theorem 6.2). It seems to us that the last slack is difficult
to reduce and that a tighter result, if possible, would come from improvements on the
first two parts, although our analysis has been pushed to the limit.

Another future direction is to generalize this approach for general constraint sat-
isfaction problems (CSPs) or, equivalently, the general setup of the (variable version)
local lemma. Our analysis relies on some crucial property of hypergraph colorings,
that all constraints can be satisfied by partial assignments, ideally with appropriate
probabilities. To be more specific, suppose a constraint C contains k variables. We
require a property that, when a subset of k\prime variables are randomly assigned, the
probability that C is still not satisfied is roughly c - k

\prime 
for some constant c > 1. This

property does not necessarily hold in general, even for symmetric constraints. One
such example is when the variables take values from [q], and the constraint is satisfied
unless the sum of all its variables is 0 modulo q. We can take q to be large so that
the strong local lemma conditions hold, and yet this constraint cannot be satisfied
by any subset of variables. In particular, it is problematic to bound our definition
of ``bad colorings"" (Definition 4.7) when constraints cannot be satisfied by partial
assignments. New ideas are required to handle more general settings.

Upon a closer look, the success of our approach does not truly rely on the fact that
the system is in the local lemma regime. What is essential is that the coupling tree
can be truncated at a suitable depth without incurring big error. This turns out to be
a special form of the spatial mixing property. In the settings of this paper, a strong
form of the local lemma condition guarantees that the coupling process succeeds with
sufficiently high probability at each step and therefore establishes the desired property.
A consequence is that we can use local linear constraints to certify the coupling. It
remains unclear whether a global correlation decay argument would suffice as well.

Acknowledgment. We thank the anonymous referees for many improvements
and, in particular, for pointing out the connection to spatial mixing properties.
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