
On the Approximation Ratio of k-Lookahead Auction

Xue Chen1,�, Guangda Hu2,�, Pinyan Lu3, and Lei Wang4

1 Department of Computer Science, University of Texas at Austin
xchen@cs.utexas.edu

2 Department of Computer Science, Princeton University
guangdah@cs.princeton.edu

3 Microsoft Research Asia
pinyanl@microsoft.com

4 Georgia Institute of Technology
lwang@cc.gatech.edu

Abstract. We consider the problem of designing a profit-maximizing single-
item auction, where the valuations of bidders are correlated. We revisit the k-
lookahead auction introduced by Ronen [6] and recently further developed by
Dobzinski, Fu and Kleinberg [2]. By a more delicate analysis, we show that the

k-lookahead auction can guarantee at least e1−1/k

e1−1/k+1
of the optimal revenue,

improving the previous best results of 2k−1
3k−1

in [2]. The 2-lookahead auction
is of particular interest since it can be derandomized [2, 5]. Therefore, our re-
sult implies a polynomial time deterministic truthful mechanism with a ratio of√

e√
e+1

≈ 0.622 for any single-item correlated-bids auction, improving the previ-
ous best ratio of 0.6. Interestingly, we can show that our analysis for 2-lookahead
is tight. As a byproduct, a theoretical implication of our result is that the gap
between the revenues of the optimal deterministically truthful and truthful-in-
expectation mechanisms is at most a factor of 1+

√
e√

e
. This improves the previous

best factor of 5
3

in [2].

1 Introduction

Optimal auction design is an important subject that has been heavily studied in both
economics and theoretical computer science. Among the accomplished research in this
area, a solid part is focused on single-item auction, which serves as a basic that pro-
vides insight to other more complicated problems. In the seminal paper [4], Myerson
gave a complete characterization of the optimal single-item auction in the setting where
bidders’ valuations are drawn from independent distributions. However, the design of
optimal auction with correlated bidders was left open.

From the economics aspect, a natural attempt for solving this problem is to generalize
Myerson’s characterization. Unfortunately, most results obtained via this approach are
for restricted special cases, see [3] for a survey. One exception is [1] by Cremer and
McLean where they relax the individually rational constraint and obtain mechanisms
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that extract the full social welfare. On the other hand, from a computer science aspect,
two research directions (see [2]) were suggested.

The first one is the introduction of approximation algorithms into optimal auction
design. In other word, instead of providing a characterization of the optimal auction,
which might not even exist, one would look for efficient algorithms that guarantee the
approximate optimality.

Along this direction, two computational models were considered-the explicit model
[5] and the oracle model [6]. In the explicit model, the running time of an algorithm has
to be polynomial in the support size of the distribution. However, in the oracle model,
the algorithm is only allowed to make polynomial in the number of bidders queries to
an oracle that returns the conditional distribution of a set of bidders given the values of
the remaining ones. Ronen [6] gave the first efficient mechanism in the oracle model
called 1-lookahead that 2-approximates the optimal revenue. In [7], Ronen and Saberi
further proved that no deterministic efficient ascending auction can do better than 3

4 . On
the other hand, in the explicit model, Papadimitriou and Pierrakos [5] showed that al-
though there is an optimal deterministic auction among optimal truthful-in-expectation
auctions for two bidders and this auction can be computed efficiently, it is NP-hard to
find the optimal deterministic one for more than three bidders. The understanding the
approximability of the optimal auction remains as a major challenge.

The second direction suggested is to relax the solution concept to truthfulness-in-
expectation. One advantage of such relaxation is that the optimal truthful-in-expectation
auction can be described as a linear program [2, 5] whose size is polynomial in the
support of the distribution, hence can be computed efficiently in the explicit model.

Based on this observation, Dobzinski et.al. [2] studied a class of truthful-in-
expectation mechanisms called k-lookahead. To be precise, for any fixed constant k, the
k-lookahead mechanism runs the linear program among the k bidders with the highest
bids, conditioning on the remaining bidders. Since k is a constant, the linear program
can be solved efficiently in the oracle model.

In [2], the authors showed that the k-lookahead mechanism has approximation ra-
tio 2k−1

3k−1 . As usual in computer science, improving this approximation ratio would be
an important issue in this direction. Furthermore, a question that is of theoretical in-
terest itself is the task of evaluating the gap between truthful-in-expectation and deter-
ministically truthful mechanisms. Obviously, one would expect truthful-in-expectation
mechanisms to achieve more revenue than the deterministic ones. Dobzinski et.al. [2]
showed the gap is existed by providing an example of truthful-in-expectation mecha-
nism that cannot be implemented as an universally truthful mechanism. At the same
time, Papadimitriou et.al. [5] and Dobzinski et.al. [2] showed that there is an elegant
derandomization of the 2-lookahead mechanism. In [2], Dobzinski showed that the gap
is at most a factor of 5/3 between truthful-in-expectation and the optimal determin-
istically truthful. Closing the gap further requires either better truthful-in-expectation
mechanisms that can be derandomized, or simply tighter analysis of the 2-lookahead
mechanism.

Our results. In this paper, we contribute to both research directions mentioned earlier by
providing more delicate analysis of the k-lookahead mechanisms in the oracle model.

We show that the approximation ratio of k-lookahead mechanism is at least e1−1/k

1+e1−1/k ,
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which improves the ratio given in [2]. In particular, our result implies that 2-lookahead
mechanism is at least

√
e

1+
√

e
-approximate and interestingly, we prove that our analysis

is tight by showing an example in which 2-lookahead mechanism obtains exactly
√

e
1+

√
e

fraction of the optimal revenue.
Our analysis is based on the clever idea from [2] of comparing the revenue obtained

by k-lookahead mechanism to the t-fixed-price and t-pivot auctions. The novelty of
our approach is that instead of picking only one threshold t, we consider a series of
thresholds t1, . . . , tm and choose the best series. Apparently, our analysis will lead to
better ratio but become more complicated. Therefore, new idea and technique will be
introduced for our analysis.

2 Preliminary

In this section, we formally define our problem and provide some useful facts that will
be needed in the future discussion.

In a single-item auction, a seller wishes to sell one item to a group of n self-interested
bidders. Each bidder has a private valuation vi ∈ R

+. We assume that there is a publicly
known distribution D on the valuation space of the bidders. In this paper, we make no
assumption on the distribution. In particular, bidders’ valuations could be correlated.
Since we only consider truthful mechanisms in this paper, we will equalize the notions
of bid and valuation.

An auction M is a mechanism that takes a bid vector v and then decides who wins
the item and for what price. We use (x, p) to denote the allocation and payment where
xi(v) is the probability that bidder i gets the item and pi(v) is her expected payment.
Here, the goal of each bidder i is to maximize her own utility defined as xivi − pi.

A mechanism is deterministically truthful if reporting the true valuation is a domi-
nant strategy for each agent and xi(v) ∈ {0, 1} for every bidder i and every bid vector
v, and we say that a randomized mechanism is universally truthful if the mechanism is
a probability distribution over deterministically truthful mechanisms. At last, truthful-
in-expectation is a weaker notion in which an agent maximizes her expected utility
by being truthful. It is easy to see that every deterministically truthful mechanism is
universally truthful and every universally truthful mechanism is truthful in expectation.

In this paper, we are interested in designing truthful-in-expectation mechanisms.
From now on, without particular specification, we will simply say a mechanism is
truthful if it is truthful-in-expectation and an optimal auction is referred to a truthful-
in-expectation mechanism that maximizes the seller’s expected profit ED[M ] =
Ev∼D(

∑n
i=1 pi(v)) on input distribution D.

An useful observation is that the optimal auction can be described as a linear program
[2, 5] that its size is polynomial in the support size of distribution. Therefore we can
obtain an optimal auction in polynomial time in the size of distribution, which implies
that the optimal auction can be computed efficiently in the explicit model. But the linear
program is not generally efficient in the oracle model unless the number of bidders is
a constant. This motivates the study of k-lookahead mechanisms [6, 2]. Due to the lack
of space, we omit this linear program.
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In a k-lookahead mechanism, we find the k bidders with the highest values. We
denote the set of these k bidders by K . Next we get the conditional distribution DK

on vi ≥ max{vj |j �∈ K} for i ∈ K and vj is fixed for all j /∈ K . Then we reject the
bidders not in K and use the mentioned linear program for distribution DK to get the
allocation vector xK and payment vector pK .

In this paper, we will investigate the approximation ratio of the k-lookahead mech-
anism. Here, we say an auction M is a c-approximation mechanism if ED[M ]

ED[OPT ] ≥ c

where OPT is the revenue-maximizing valid auction on distribution D.
Finally, the following theorem provides a characterization of deterministic mech-

anisms for single item auctions, which will be useful in the analysis of 2-lookahead
mechanism.

Theorem 1. [4] A deterministic mechanism, with allocation and payment rule q, p
respectively, is truthful if and only if for each bidder i and each v−i, the following
conditions hold:

1. Monotone Allocation: qi(vi, v−i) ≤ qi(v′i, v−i) for all vi ≤ v′i;
2. Threshold Payment: There exists a threshold ti(v−i) such that pi(vi, v−i) =

ti(v−i) · qi(vi, v−i).

3 The Approximation Ratio

In this section, we present our main result. From now on, we fix a constant k and let K
be the agents with the highest k bids. Let DK be the conditional distribution of bidders
in K conditioned on the remaining bidders. We show that the approximation ratio of
k-lookahead mechanism is at least e1−1/k

1+e1−1/k .
Our high-level idea is to partition the optimal revenue into different components.

Then we design several auctions that only sell the item in K and each of them approxi-
mately realizes part of the components. The revenues of these auctions provide a lower
bound on the revenue of k-lookahead since it is the optimal auction that only sells the
item to bidders in K . Without lose of generality, we assume K = {1, · · · , k} and vk+1

is the highest valuation not in K .
In the following, we always assume that the optimal revenue is 1. Now we consider

the expected revenue of the optimal auction. As we mentioned before, we first partition
the optimal revenue into four parts.

Definition 1. Fix the optimal auction, for any t > 1, we define L(t), L̃(t), M(t), H(t)
as follows:

1. L(t):the expected revenue from bidders in N\K for instances where no bidder in
K has value at least t · vk+1.

2. L̃(t):the expected revenue from bidders in N\K for instances where there are some
bidders in K whose valuations are at least t · vk+1.

3. M(t):the expected revenue from bidders in K for instances where no bidder in K
has value at least t · vk+1.

4. H(t):the expected revenue from bidders in K for instances where there are some
bidders in K whose valuations are at least t · vk+1.
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Let the expected revenue from K in the optimal auction be α(α ≤ 1). By our definition,
M(t) + H(t) = α and L(t) + L̃(t) = 1 − α for all t ≥ 1.

Lemma 1. The expected revenue of k-lookahead auction is at least α.

Proof. Consider the following auction: If the optimal auction sells the item to bidder i
in K with probability xi and pi, we still sell the item to i with probability xi and ask for
a payment pi. Otherwise no one gets the item. This mechanism might not be truthful
because it is possible that some bidders in N\K raises her bid so that she becomes a
bidder in K and has a chance to get the item. To make this mechanism truthful, we raise
the expected payment of each bidder i by max{0, (vk+1−pi(vk+1, v−i))· xi(vk+1,v−i)

xi(v) }.
This is then a truthful mechanism with expected revenue at least α. Furthermore, one
can see that the mechanism only sells the item to bidders in K , therefore, the expected
revenue of k-lookahead auction is at least α.

The above lemma provides a lower bound on the revenue of k-lookahead auction re-
lated to the components of M and H in the optimal auction. To get more such bounds,
we need the following auctions first introduced by Dobzinski, Fu and Kleinberg [2].
Suppose there is a threshold t ≥ 1:

t-Fixed Price Auction: Select a bidder j uniform from K at random. If any bidders in
K\{j} have valuations no less than t ·vk+1 then he gets the item with payment t ·vk+1.
If there are several bidders satisfy this condition, break ties arbitrary. Otherwise, bidder
j gets the item with payment vk+1.

t-Pivot Auction: Select a bidder j uniform from K at random. If any bidders in K\{j}
have valuations no less than t ·vk+1, we choose the bidder i with the smallest index. We
run the k-lookahead auction on the conditional distribution D′

k that fix the valuations
of bidders not in K , and require v′l ≥ vk+1(l ∈ K) and v′i ≥ t · vk+1. Otherwise, we
allocate the item to bidder j with a payment vk+1.

It is easy to verify that t-Fixed Price Auction is truthful. To check that t-Pivot Auction
is truthful, the only case we should be careful is that a bidder i raises her valuation and
let the mechanism run the k-lookahead auction. However, bidder i must be the only
bidder whose valuation is not less than t · vk+1 in this case. So k-lookahead auction
runs under the conditional distribution that vi ≥ t · vk+1. As a result, her payment must
be at least t · vk+1, which exceeds her actual valuation. Therefore, t-Pivot auction is
truthful.

In the following, we will choose a series of s threshold values t1 < t2 < · · · < ts
(whose values will be determined later) and relate the revenue of each ti-Fixed Price
Auction and ti-Pivot Auction to the four components of the optimal revenue defined
earlier.

To be precise, assume that t0 = 1 and we define Mi = M(ti) − M(ti−1) ≥ 0
which is the revenue from K in the optimal auction when the highest valuation is in
[ti−1 · vk+1, ti · vk+1).

Lemma 2. The expected revenue of ti-Fixed Price Auction is at least Pi = L(ti) +
∑i

j=1
Mj

tj
+ (k−1

k ti + 1
k )(L̃(ti) +

∑s
j=i+1

Mj

tj
).
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Proof. We consider two cases. In the first case, there is no bidder in K whose valuation
is greater or equal than ti · vk+1. So the auction allocates the item to the selected bidder
j with payment vk+1. The corresponding expected revenue in the optimal auction is
L(ti) +

∑i
j=1 Mj . From the definition of Mi, the revenue of our auction is at least

L(ti) +
∑i

j=1
Mj

tj
.

In the second case, there are some bidders whose valuations are at least ti · vk+1. In
our auction, the auction will obtain ti · vk+1 with probability at least k−1

k . Otherwise
the auction will obtain at least vk+1. Therefore the expected revenue of this auction
is at least (k−1

k ti + 1
k )L̃(ti) when the optimal auction allocates the item to bidders

not in K . At the same time, the expected revenue of this auction is at least (k−1
k ti +

1
k )

∑s
j=i+1

Mj

tj
when the optimal auction allocates the item to K .

From all discussion above, the expected revenue of ti-Fixed Price Auction is at least
Pi = L(ti) +

∑i
j=1

Mj

tj
+ (k−1

k ti + 1
k )L̃(ti) + (k−1

k ti + 1
k )

∑s
j=i+1

Mj

tj
.

Similarly, we can prove the following:

Lemma 3. The expected revenue of ti-Pivot Auction is at least Qi = L(ti) +
∑i

j=1
Mj

tj
+ k−1

k H(ti) + 1
k (L̃(ti) +

∑s
j=i+1

Mj

tj
).

Let Ri = max{Pi, Qi} and we can see that max1≤i≤s Ri is a lower bound on the
revenue of k-lookahead. From the above lemma, this lower bound is explicitly related
to the components M, H, L and L̃. In the following, we will choose s large enough and
t1, . . . , ts appropriately to obtain a lower bound on max1≤i≤s Ri that is only related to
α. Together with Lemma 1, we will get the desired approximation ratio. Now we prove
this lower bound:

Lemma 4. max1≤i≤s Ri ≥ 1 − e−(1−1/k)α.

Proof. To prove this lemma, we need to eliminate the explicit dependency of
max1≤i≤s Ri to the components of M, H, L and L̃.

First of all, for each ti, we can replace L̃(ti), H(ti) by 1−α−L(ti), α−M(ti) and
simplify Pi, Qi as:

Pi = (ti +
1
k

)(1−α)− (
k − 1

k
ti +

1
k
− 1)L(ti)+

i∑

j=1

Mj

tj
+

s∑

j=i+1

(
k − 1

k
ti +

1
k

)
Mj

tj

Qi = α +
1
k

(1 − α) +
k − 1

k
L(ti) +

i∑

j=1

(
1
tj

− k − 1
k

)Mj +
s∑

j=i+1

1
k

Mj

tj

Now we are ready to eliminate L(ti). Since Ri = max{Pi, Qi}, we have

Ri ≥ 1
ti

Pi +
ti − 1

ti
Qi = 1 − (

k − 1
kti

+
1
k
)α +

s∑

j=1

Mj

tj
− k − 1

k
(1 − 1

ti
)

i∑

j=1

Mj.

At last, we will eliminate Mj for all j. Observe that max1≤i≤s Ri is lower bounded by
the average, we have the following:
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max
1≤i≤s

Ri ≥
s∑

i=1

Ri ≥ s −
s∑

i=1

(
k − 1
kti

+
1
k
)α +

s∑

j=1

[ s

tj
−

s∑

i=j

k − 1
k

(1 − 1
ti

)
]
Mj

Therefore, in order to eliminate Mj for all j, we only need to choose numbers t1, . . . , ts
such that

s

tj
−

s∑

i=j

k − 1
k

(1 − 1
ti

) = 0, for all 1 ≤ j ≤ s. (1)

As long as we can find such t1, . . . , ts, we have:

max
1≤i≤s

Ri ≥ 1 − [k − 1
k

· 1
s

s∑

i=1

1
ti

+
1
k

]
α. (2)

At first, we use β to denote k−1
k and have s

ts
−β(1− 1

ts
) = 0 when j = s. So 1− 1

ts
=

s
s+β . Then, comparing the equations of j and j +1, we obtain (1− 1

tj
) = ( s

s+β )s−j+1.

Therefore
∑s

i=1
1
ti

= s − ∑s
i=1(

s
s+β )i = s − s

β (1 − ( s
s+β )s). At the same time, we

know lims→∞( s
s+β )s = e−β = e−

k−1
k

Together with (2), we have max1≤i≤s Ri ≥ 1 − e−(1−1/k)α.

Finally, we are ready to prove:

Theorem 2. The approximation ratio of k-lookahead mechanism is at least e1−1/k

1+e1−1/k .

Proof. Let revk be the revenue of the k-lookahead mechanism. From Lemma 4, we
know that revk ≥ 1 − e−(1−1/k)α. Together with Lemma 1, we have

revk ≥ max{α, 1 − e−(1−1/k)α}.
Simple calculation shows that for all positive value x, max{α, 1− xα} ≥ 1

1+x . There-

fore, we have revk ≥ e1−1/k

1+e1−1/k . This completes our proof.

4 Tightness of Analysis

In the previous section, we showed that the approximation ratio of k-lookahead is
e1−1/k

1+e1−1/k . In particular, the 2-lookahead mechanism, which is of special interest, has

an approximation ratio of at least
√

e
1+

√
e
. In this section, we design an example to show

that our analysis for 2-lookahead is tight.
First of all, we need some definitions. Because 2-lookahead auction can be made de-

terministically [2, 5], it either allocates the item, or does not allocate to anyone. So we
only consider the 2-lookahead mechanisms that are deterministic from now on. We will
consider the empty instances that a 2-lookahead mechanism doesn’t allocate the item.
We use empt(D) to denote the maximal empty probability over 2-lookahead mech-
anism that empty instances occur on a distribution D. In the following, we will use
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E2(D) to denote the 2-lookahead mechanism with the maximum empty probability for
distribution D.

In a setting where there are only three bidders, we say that a distribution D is valid, if
the third bidder always has valuation v3 = 1 and the valuations of the other two bidders
are at least 1.

We first prove a property of valid distributions. Let rev2(D) and opt(D) denote the
revenue of the 2-lookahead and the optimal auction for a distribution D respectively.

Lemma 5. Let D be a valid distribution on three bidders, then opt(D) ≥ rev2(D) +
empt(D).

Proof. Consider this auction A: run the 2-lookahead auction E2(D) and if it allocates
the item to bidder i in K = {1, 2} with payment p, we still allocate the item to i with
payment p. Otherwise we allocate the item to bidder 3 with payment 1. It is easy to
see that A is truthful, and its revenue is rev2(D) + empt(D). Therefore, opt(D) ≥
rev2(D) + empt(D).

The above lemma provides a lower bound of opt. In the following, we will explicitly
construct a valid distribution D such that empt(D) ≥ rev2(D)√

e
, hence prove our desired

ratio.
In our example, there are three bidders and the third bidder’s valuation is always 1.

Now we construct the distribution D2 for the first two bidders explicitly. We assume that
there are m possible valuations p0, p1, · · · , pm(m is an odd number). Then we define
x0 = 1 and xi = (1 + p)i − (1 + p)i−1 = p(1 + p)i−1 for 1 ≤ i ≤ m where p is a
parameter. We will set the value of p and choose p1, . . . , pm later. One can see that a
property of our construction is

∑
0≤i≤j xi = (1 + p)j for all j ≤ m.

Now we consider this following distribution D2 where D2(i, j) denotes the proba-
bility of v1 = pi, v2 = pj:

D2(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

xixj i + j < m
xi(

∑
j≤k≤m xk) (i + j = m) and (i < j)

(
∑

i≤k≤m xk)xj (i + j = m) and (i > j)
0 i + j > m

In fact, D2 should be normalized to become a distribution. However, since we only
care about the ratio between empt(D) and rev2(D), we will simply use D2 as the
distribution without normalizing. From now on, we will simply use E2, rev2 and empt
to denote E2(D), rev2(D) and empt(D).

Now we choose p0 = 1 and pi =
∑

0≤j≤m xj/
∑

i≤j≤m xj for all 1 ≤ i ≤ m.
Therefore, we have p0 ≤ p1 ≤ · · · ≤ pm. Furthermore,we obtain the following charac-
terization of the event that E2 allocates the item:

Lemma 6. Let pi, pj be the bid of bidder 1 and 2 respectively, then E2 allocates the
item if and only if i + j = m.

Proof. First of all, by our choice, it is easy to verify the following:

Property 1. If i < m/2, then: p0(
∑m−i

k=0 D2(i, k)) = · · · = pj(
∑m−i

k=j D2(i, k)) =
· · · = pm−iD2(i, m − i) = xi

∑
l xl.
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Basically, this property can be interpreted as follows: fix v1 = pi, the expected revenue
obtained by offering bidder 2 a threshold price pj is a constant when 0 ≤ j ≤ m− i. As
a result, recall that by Theorem 1, the winner in a single item auction pays the threshold
price, we have:

Corollary 1. In E2, t2(v1) ≥ pm−i when v1 = pi for all i < m/2. Similarly, t1(v2) ≥
pm−j when v2 = pj for all j < m/2.

The proof of the corollary is straightforward: Suppose v1 = pi for some i < m/2.
If t2(v1) < pm−i, then we can always increase the threshold price to pm−i without
decreasing the revenue. By doing this, we only increase the empty probability. This is a
contradiction to our assumption that E2 maximizes the empty probability.

Now we are ready to prove the lemma. If it is not true, suppose i + j < m but E2

allocates the item to either bidder 1 or 2. Consider the smallest sum of i+j that satisfies
the above. Without lose of generality, we may assume i < m/2. From Corollary 1, since
i + j < m, we know that bidder 2 can not get the item. Therefore, bidder 1 gets the
item when v1 = pi and v2 = pj . At the same time, j > m/2 otherwise we can get a
contradiction from Corollary 1. So bidder 1 still gets the item when v1 = pm−j > pi

and v2 = pj .
Now we show that we can modify the allocation of E2 when v2 = pj to get more

empty probability and the expected revenue of modified auction is not less than the
original one. Let E′

2 be an auction as follows: (1) it performs exactly the same as E2

when v2 �= pj and (2) when v2 = pj , E′
2 allocates the item to bidder 2 only when

v1 = pm−j and otherwise allocates nothing.
Obviously, E′

2 has a larger empty probability than E2. To get a contradiction, we
only need to prove that its expected revenue is at least as large as E2. In other words,
we want to show:

pjDK(m − j, j) ≥ pi

m−j∑

k=i

DK(k, j) (3)

By our construction, simple calculation shows that (3) is equivalent to the following

p(1 + p)m−j−1
(
(1 + p)j−1 −

i−1∑

l=0

xl

) ≥ p(1 + p)j−1
(
(1 + p)m−j−1 −

i−1∑

l=0

xl

)
,

which always holds when j > m/2. This is a contradiction.

By the above characterization, we can easily calculate rev2 and empt. We will show
that by choosing the parameter p appropriately, rev2 ≤ √

e · empt, which implies:

Theorem 3. The approximation ratio of 2-lookahead auction is at most
√

e√
e+1

.

Proof. By Lemma 6 and our construction, we first estimate rev2 as follows:

rev2 ≤
∑

i,j:i+j=m

max{pi, pj}D2(i, j) = 2(
∑

0≤i<m/2

xi)(
m∑

l=0

xl) = 2(1 + p)3m/2.
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Now we compute the empty probability empt. Again, by Lemma 6, we have empt =∑
i,j:i+j<m xixj , which can be calculate as follows:

∑

i,j:i+j<m

xixj =
m−1∑

j=0

xj +
m−1∑

i=1

m−1−i∑

j=0

xixj

= (1 + p)m−1 + (m − 1)p(1 + p)m−2.

We set p = 1/m and let m → ∞, we have rev2 ≤ 2e3/2 and empt ≥ 2e. Therefore,
rev2 ≤ √

e · empt. Therefore, by our previous argument, the approximation ratio of
2-lookahead auction is at most

√
e√

e+1
.

5 Discussion and Open Questions

Perhaps the first question that every theoretical computer scientist would ask here is
whether the analysis of the k-lookahead mechanism can be improved in general. An
important open problem is whether the approximation ratio of k-lookahead mechanism
tends to 1 when k tends to positive infinity. A nature attempt for this question from
the negative aspect is to generalize our tight instance for 2-lookahead mechanism
in section 4 to the k-lookahead mechanism for general k. In particular, one might
consider the following distribution DK(i1, ..., ik) for the set K of the highest k bidders:

1.DK(i1, · · · , ik) = 0: there exists p, q ∈ [k] such that p �= q and ip + iq > m.
2.DK(i1, · · · , ik) =

∏
j∈K xij : for all p, q ∈ [k](p �= q), we have ip + iq < m.

3.DK(i1, · · · , ik) =
∏

j∈K\{l} xij · ∑m
j=il

xj : maxp,q∈[k](p	=q){ip + iq} = m, where
il = max{i1, · · · , ik}.

Again, we assume that the highest bid outside K is vk+1 = 1. Similar to the analysis for
2-lookahead, we can prove that k-lookahead allocates to some bidder in K if and only if
i1, i2, · · · , ik is such that maxp,q∈[k](p	=q){ip + iq} = m. However, simple calculation
implies that the ratio between the empty probability and the revenue of the k-lookahead
is at most 2/k when k tends to infinity. This only implies a k

k+2 upper bound on the
approximation ratio of the k-lookahead mechanism. Therefore, to obtain better upper
bound, if possible, one might need new ideas and techniques.

From the positive aspect, one might improve the analysis via the following approach:
Instead comparing the revenue of k-lookahead to t-fixed price and t-pivot auctions, we
could compare to more delicate auctions such as a hybrid of t1-fixed price and t2-pivot
auctions for distinct values of t1, t2.

Another interesting open question is to further close the gap between the rev-
enues of the optimal deterministically truthful and truthful-in-expectation mechanisms.
Our analysis of 2-lookahead implies that the gap is at most a factor of 1+

√
e√

e
. As

we mentioned, our analysis is tight, hence closing the gap further requires better
truthful-in-expectation mechanisms which can be derandomized.
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