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Abstract. In this paper, we study randomized truthful mechanisms for
scheduling unrelated machines. We focus on the case of scheduling two
machines, which is also the focus of many previous works [12,13,6,4].
For this problem, [13] gave the current best mechanism with an ap-
proximation ratio of 1.5963 and [14] proved a lower bound of 1.5. In
this work, we introduce a natural technical assumption called scale-free,
which says that the allocation will not change if the instance is scaled by
a global factor. Under this assumption, we prove a better lower bound of
25
16

(= 1.5625). We then study a further special case, namely scheduling
two tasks on two machines. For this setting, we provide a correlation
mechanism which has an approximation ratio of 1.5089. We also prove
a lower bound of 1.506 for all the randomized scale-free truthful mecha-
nisms in this setting.

1 Introduction

Mechanism design has become an active area of research both in Computer Sci-
ence and Game Theory. In the mechanism design setting, players are selfish and
wish to maximize their own utilities. To deal with the selfishness of the play-
ers, a mechanism should both satisfy some game-theoretical requirements such
as truthfulness and some computational properties such as good approximation
ratios. The study of their algorithmic aspect was initiated by Nisan and Ro-
nen in their seminal paper “Algorithmic Mechanism Design” [15]. The focus of
this paper was on the scheduling problem on unrelated machines, for which the
standard mechanism design tools (e.t. VCG mechanisms [5,7,16]) do not suffice.
They proved that no deterministic mechanism can have an approximation ratio
better than 2 for this problem. This bound is tight for the case of two machines.
However if we allow randomized mechanisms, this bound can be beaten. In par-
ticular they gave a 1.75-approximation randomized truthful mechanism for the
case of two machines. This bound has since been improved to 1.6737 [12] and
then to 1.5963 [13] by Lu and Yu. In [14], Mu’alem and Schapira proved a lower
bound of 1.5 for this setting. The focus of this paper is to explore the exact
bound between 1.5 and 1.5963.

In [13], Lu and Yu also proved a lower bound of 11
7 (≈ 1.5714) for all the

task independent truthful mechanisms. A recent work [6] by Dobzinski and Sun-
dararajan showed that any truthful mechanism for two machines with a finite
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approximation ratio is task-independent. However the definitions of these two
“task-independence” are not identical. The lower bound of [13] requires a strong
version of “task-independence” and the characterization theorem in [6] only
works for a weak version of “task-independence”. Formal definitions of these
two versions of “task independence” are given in the next section. This gives an
interesting open problem: is there any weak task-independent mechanism which
can beat all the strong task independent ones (In particular has an approxima-
tion ratio which is better than 11

7 )? We note that all the previous know mech-
anisms in this setting are strong task-independent[15,12,13]. Roughly speaking,
in a strong task-independent mechanism, the random bits used by the allocation
algorithm for different tasks are independent, while in weak task-independent
mechanisms, they may have some correlation. In section 4, we provide such a
correlation mechanism. This is the first truthful mechanism for this problem
which is not strong task-independent. This mechanism provides an approxima-
tion ratio of 1.5089 for the case of two task, which is strictly better than all the
strong task independent mechanisms in the same setting. We note that the lower
bound of 11

7 already holds even for the special case of scheduling two tasks in
two machines.

The main focus of this paper is on the lower bound side. We introduce a natu-
ral assumption called scale-free, which says that the allocation will not change if
a instance of the problem is scaled by a global factor. The property of scale-free
is very natural for an allocation algorithm since a global factor only reflects the
unit used for the running times. For example, if we change the unit from “hour”
to “min”, we will scale the instance by a factor of 60, a reasonable allocation
algorithm should be identical on these two instances (since they are in fact the
same instance). We provide a refined characterization for all the scale-free truth-
ful mechanisms with finite approximation ratio. Based on this characterization,
we prove a lower bound of 1.5625 using Yao’s min-max principle [17]. We design
a distribution of instances and argue that any scale-free deterministic truthful
mechanisms cannot get an expected approximation ratio which is better than
1.5625. In order to get a better lower bound, we use a limitation argument and
this value of 1.5625 holds when the number of tasks approaches infinity. So this
lower bound only works for instances with a sufficiently large number of tasks.
As we have a better mechanism for scheduling 2 tasks, we also study the lower
bound of this special case under the assumption of scale-free. The instances used
in the general lower bound cannot give a bound which is better than 1.5 when
each of them only contains 2 tasks. So we choose a more carefully designed in-
stances distribution to get a lower bound of 1.506. All these lower bound suggests
that the lower bound of 1.5 may not be tight. However, it remains open to prove
a better lower bound without any assumption.

A lot of technical effort in this work is given to parameter optimization both
for the mechanism design part and lower bound proof part. Such optimization
is also critical in this problem since the gap between the known upper bound
and lower bound is already quite tiny. For example, for the 2 task case, the
approximation ratio of the correlation mechanism we provided is 1.5089, while
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the lower bound is 1.5. There is only a gap of 0.0089. A very carefully designed
instance distribution gives a better lower bound of 1.506.

Despite the fact that our lower bounds rely on a technical assumption, we feel
it is interesting for several reasons. First we think the assumption of scale-free
is very natural, it is hard to imagine that some scale dependant mechanism can
beat all the scale free mechanisms. So we conjecture that these lower bounds
are also true for all the randomized truthful mechanisms. On the other hand,
if one believes that a better mechanism exists, one has to look for really new
mechanisms which are not scale-free. In both cases, we believe that our work in
this paper is an important step toward the exact bound.

1.1 Related Work

Scheduling unrelated machines is one variant of the most fundamental scheduling
Problems. For this NP-hard optimization problem, there is a polynomial-time
2-approximation algorithm, and unless P = NP , it is impossible to approximate
the optimum within a factor less than 3/2 in polynomial time[11]. However there
is no corresponding payment strategy to make the above allocation algorithm
truthful.

In the mechanism design setting, Lavi and Swarmy considered a restricted
variant, where each task j only has two values of running time (small time Lj or
big time Hj), and gave a 3-approximation randomized truthful mechanism [10].
They first use the cycle monotonicity in designing mechanisms and applied the
LP rounding idea based on [9].

For the lower bounds side, Christodoulou, Koutsoupias and Vidali improved
the lower bound from 2 to 1 +

√
2 when the number of machines is at least 3

[3], and then to 2.618 when the number of machines is sufficiently large [8]. In a
recent beautiful work by Ashlagi, Dobzinski and Lavi, an optimal lower bound
(m) was proved for all anonymous truthful mechanisms[1].

Christodoulou, Koutsoupias and Vidali gave a characterization for all truthful
mechanisms in the same setting as this paper, including those with unbounded
approximation ratio [4].

In [2], Christodoulou, Koutsoupias and Kovács considered the fractional ver-
sion of this problem, in which each task can be split among the machines. For this
version, they gave a lower bound of 2− 1/m and an upper bound of (m+ 1)/2,
where m is the number of machines. We remark that these two bounds are closed
for the case of two machines as in the integral deterministic version. So to ex-
plore the exact bound for the randomized version seems very interesting and
desirable.

2 Notations and Preliminaries

In this section we review some definitions and results on mechanism design and
the scheduling problem. In the following, for a generic matrix a = (aij), we use
ai to denote the i-th row of the matrix, and a−i to denote the matrix obtained
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from a deleting ai. We also use (v,a−i) to denote the matrix obtained from a
by replacing ai with vector v. We use R+ to denote the set of non-negative real
numbers.

In a scheduling problem, there are n tasks and m machines (in this paper,
we mainly consider the case where m = 2), where each machine i ∈ [m] needs
tij units of time to perform task j ∈ [n]. We usually use the matrix t = (tij)
to denote an instance of the scheduling problem. In this paper, we consider
that each machine is controlled by a strategic player. We assume that player i
privately knows ti, and we call the vector ti player i’s type. After each player i
declares his/her type, an allocation algorithm X will decide an allocation of all
the tasks. We assume that all the players are selfish and want to perform the
least amount of tasks as possible, so players may misreport their types. We use
bi ∈ Rn

+ to denote player i’s reported type, and call it player i’s bid. Obviously
bi may not equal to ti if that helps player i’s interest. To avoid this lying issue,
we introduce the payment algorithm P into a mechanism. Formally, a mechanism
M = (X,P ) consists of two parts:

– An allocation algorithm: the allocation algorithm X , given the input of
players bid matrix b = (b1, · · · ,bm), outputs an allocation denoted by a
matrix x = (xij). xij is 1 if task j is assigned to machine i, and 0 otherwise.
Every task must be completely assigned, hence

∑
i∈[m] xij = 1, ∀j ∈ [n].

– A payment algorithm: the payment algorithm P , given the input of play-
ers bid matrix b, outputs a vector p = (p1, · · · , pm), where pi denotes the
money that player i receives from the mechanism.

A mechanism is deterministic if both its allocation and payment algorithms are
deterministic. If at least one of the algorithms uses random bits, the mechanism
is called randomized.

Now we specify the utility of each player. We use the quasi linear utility, which
means the utility ui of player i with type ti over an allocation x and money pi

is defined as:
ui(x, pi|ti) = pi −

∑
j∈[n]

xijtij .

In deterministic mechanisms, both x and pi are functions of bid matrix b, we
can also write the utility as

ui(b|ti) = pi(b)−
∑
j∈[n]

xij(b)tij .

Recalling that we want to solve the issue of lying about types, we are interested
in truthful mechanisms. A mechanism M = (X,P ) is truthful if for each player
i, reporting his/her true type will maximize his/her own utility. Formally, for
any i, any bids b−i of all other players, we have

ui((ti,b−i)|ti) ≥ ui((bi,b−i)|ti), ∀bi ∈ Rn
+

In randomized mechanisms, both xij and pi are random variables. There are
two versions of truthfulness for randomized mechanisms. The stronger version
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is universally truthful, which requires the mechanism to be truthful when fixing
all the random bits. The weaker version is truthful in expectation, which only
requires that for each player, reporting his/her true type will maximize his/her
own expected utility. In this paper, we focus on the stronger version, universally
truthful.

For a truthful mechanismM = (X,P ), we may assume that all the players will
report their true types, hence b = t. Now, how can we evaluate the performance
of the mechanism’s allocation algorithm X? We consider the makespan, which is
the maximum load of all the machines. Given input t, the makespan of mecha-
nism M is denoted by lM (t), and lM (t) = maxi∈[m]

∑
j∈[n] xijtij . We use lopt(t)

to denote the optimum, and lopt(t) = minx maxi∈[m]
∑

j∈[n] xijtij . A mecha-
nism M is called a c-approximation mechanism if for any instance t, we have
lM (t) ≤ c·lopt(t). For randomized mechanismM , we requireE[lM (t)] ≤ c·lopt(t),
where the expectation is over the random bits used in the mechanism.

Definition 1 (Task-Independent Mechanisms). A deterministic mechanism M
is task-independent, if for any two bid matrices b, b′ such that bij = b′ij for all
i ∈ [m], the allocation of task j is identical, i.e. xij(b) = xij(b′), ∀i ∈ [m].

For randomized mechanisms, there are also two versions of task-independence.
One is a weak task-independent mechanism, which is a distribution of sev-
eral task-independent deterministic mechanisms. The other is a strong task-
independent mechanism, which satisfies that not only does the allocation of task
j not change as long as j’s column of b does not change, but also all the random
variables xij are independent between different tasks.

We quote a theorem from [6] (Theorem 4.5 in [6] ), which gives a characteri-
zation for truthful mechanisms for scheduling two machines.

Theorem 1 ([6]). Let M be a mechanism for minimizing the makespan for 2
machines that provides a finite approximation ratio. Then M is task independent.

This theorem implies that any randomized truthful mechanism with a finite
approximation ratio is weak task-independent. In [13], Lu and Yu proved a lower
bound of 11

7 (≈ 1.5714) for all the strong task-independent truthful mechanisms.
Given these two facts, we have the following interesting open question:

Question 1. Does there exist a weak task-independent randomized truthful
mechanism which provides a better approximation ratio (< 11

7 )?

Definition 2 (Scale-Free Mechanisms). We call an allocation algorithm scale-
free if for any instance b and any non-zero constant λ, the outputs of the algo-
rithm on the input b and λb are identical. A mechanism is called scale-free if its
allocation algorithm is scale-free. A randomized mechanism is called scale-free if
it is a distribution of deterministic scale-free mechanisms.

Together with the properties of scale-free and task-independent, the allocation
of a task j only depends on the ratio of the two bids b1j

b2j
for this task. Then

using the monotone theorem of truthful mechanism [15], we have the following
characterization of scale-free task-independent truthful mechanisms.
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Theorem 2. A deterministic scale-free task-independent truthful mechanism
for scheduling two unrelated machines is of the following form: there are n thresh-
olds αj (j ∈ [n]) for n tasks. For every task j ∈ [n], the mechanism allocates it
to the first machine iff b1j < αjb2j (or b1j ≤ αjb2j ).

For randomized mechanisms, these thresholds are random variables that do not
depend on player’s bid. In strong task-independent mechanisms, these random
variables are further required to be independent. While in weak task-independent
mechanisms, they may have some correlation.

Our lower bounds in this paper are proved by Yao’s min-max principle [17],
which is a typical tool used to prove lower bounds of randomized mechanisms
(algorithms, protocols, etc). Based on the characterization Theorem 1, We state
the principle in our setting as following.

Lemma 1. Given a distribution of instances, if any (scale-free) task indepen-
dent deterministic mechanism cannot have an expected approximation ratio bet-
ter than α, then α is a lower bound for all the (scale-free) universal truthful
randomized mechanisms.

3 A Lower Bound of 1.5625

In this section, we prove a lower bound of 1.5625 for all the randomized scale-free
truthful mechanisms. Let k be an integer and a > 1 be a parameter specified
later. We consider the following instances distribution. There are k+1 instances,
each containing k+1 tasks. All the instances have equal probability, i.e. a proba-
bility of 1

k+1 . The i-th (1 ≤ i ≤ k+1) instance is as following: the running times
of the i-th task are ka and ka2 for the first and second machines respectively;
and the running times of the other k tasks are 1 and a for the first and second
machines respectively.

For the i-th instance, the optimal solution is to allocate the i-th task to the first
machine and the remaining k tasks to the second machine; the optimal makespan
is ka for every instance. Now we consider the performance of a deterministic
scale-free task independent mechanism on these instances. Since in every instance
and for every task, the ratio of two running times is the same (i.e. equal to a),
every deterministic scale-free task-independent mechanism will allocate the same
task (tasks with the same number) in different instances in the same way. This
means that if the mechanism assigns task 1 to the first machine in the first
instance, then it must assigns task 1 to the first machine in all the instances.
Now we assume that the mechanism assign t tasks in the first instance to the first
machine, then the behavior of the mechanism on all these instances is completely
fixed. By the symmetry of the tasks, w.o.l.g, we can assume that the mechanism
assigns the first t tasks to the first machine. Now we can calculate the expected
approximation ratio of the mechanism on this distribution of instances.

For the first t instances, the makespan is the load of the first machine, which
is ka+(t−1)×1 = ka+ t−1. For the other k+1− t instances, the makespan is
the load of the second machine, which is ka2 + (k+ 1− t− 1)a = ka2 + (k− t)a.
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Therefore the expected approximation ratio R of the mechanism on these in-
stances is

t(ka+ t− 1)
ak(k + 1)

+
(k + 1− t)(ka2 + (k − t)a)

ak(k + 1)
=

a+ 1
ak(k + 1)

(t2−(ak+1)t+a(k2+k)).

For any fixed k and a > 1, this value R is a quadratic polynomial of t. So we
have

R ≥ a+ 1
ak(k + 1)

(a(k2 + k)− (ak + 1)2

4
).

For a sufficiently large k, the ratio in the RHS approachs the ratio of the k2

terms which is a+1− a(a+1)
4 . When a = 3

2 , this expression reaches its maximum
value 25

16 = 1.5625.
By Yao’s min-max principle, this instance’s distribution gives a lower bound

of 1.5625. We remark that this lower bound only occurs for a sufficiently large
number of tasks.

Theorem 3. Any randomized scale-free truthful mechanism for scheduling two
unrelated machines can not have an approximation ratio which is better than
1.5625.

4 Correlation Gives Better Mechanisms

In this and the next sections, we study a further restricted case, namely schedul-
ing two tasks on two unrelated machines. This seems a very special setting, but
we believe it is still very interesting for several seasons. First, we will prove that
previous lower bounds (1.5 in general and 1.57 for strong task-independent mech-
anisms) both hold even for this special case. Second, from a pure mathematical
point of view, this is the simplest non-trivial setting, however the exact bound
for this simplest case is still unclear. Third, the techniques and ideas developed
here for studying this special setting may extend to more general settings. For
example, the characterization in [4] is first proved for the 2 task case and then
extends to many tasks.

The proof for the lower bound of 1.5 in [14] requires at least 3 tasks. Here we
prove that this is also true for two tasks.

Lemma 2. Any randomized truthful mechanisms for scheduling two tasks on
two machines cannot have an approximation ratio that is better than 1.5.

Proof. We consider a distribution of the following two instances, each with prob-
ability of 1

2 .

task 1 task 2
machine 1 1 1
machine 2 1 2

,
task 1 task 2

machine 1 1 2
machine 2 1 1

.
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Any deterministic task-independent mechanism will assign task 1 in these two
instances in the same way. By symmetry, we can assume that the mechanism
assigns task 1 to machine 1. Then the makespan of the mechanism for the first
instance is at least 2 no matter how it allocates task 2. However, the optimal
makespan is 1; therefore, the expected approximation ratio of this mechanism
on these two instances is at least 2+1

2 = 1.5. By Yao’s min-max principle, 1.5 is
a lower bound for all the randomized truthful mechanisms.

The proof for a lower bound of 11
7 in [13] only uses instances with 2 tasks, so

this bound also holds for the this special setting.

Lemma 3. Any strong task-independent randomized truthful mechanism schedul-
ing two tasks on two machines cannot have an approximation ratio that is better
than 11

7 (≈ 1.5714).

Given these two lower bounds. It is interesting to see if this bound of 11
7 can be

beaten. The answer is affirmed by the following correlation mechanism, which
also partially answers Question 1.

Let f : R+ ⇀ [0, 1] be a non-decreasing monotone function, where R+ = {x ∈
R|x ≥ 0}, f(0) = 0, limx→∞ f(x) = 1 and f(x) + f(1/x) = 1. The correlation
mechanism for scheduling two tasks on two machines is described in Figure 1.

Input: The reported bid matrix b.
Output: A randomized allocation x
and a payment p = (p1, p2).
Allocation and Payment Algorithm:
x1j ← 0, x2j ← 0, j = 1, 2.
p1 ← 0; p2 ← 0.
Choose α ∈ R+ randomly according to function f .
if b11 < αb21,

x11 ← 1, p1 ← p1 + αb21;
else

x21 ← 1, p2 ← p2 + α−1b11.
if b22 < αb12,

x22 ← 1, p2 ← p2 + αb12;
else

x12 ← 1, p1 ← p1 + α−1b22.

Fig. 1. The Correlation Mechanism

It is easy to show that this mechanism is universally truthful for any function
f with the properties listed above. When the random variable α is fixed, it is
a task-independent mechanism and for each task it is simply a weighted VCG
mechanism. The main new idea in this mechanism is that there are some cor-
relation of randomness for different tasks. Here the random variable α is used
both in the mechanisms for the first task and the second task. The intuitive
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argument is like this. If α > 1, then the mechanism is biased to the first machine
for the first task and to the second machine for the second task. If α < 1, it is
the other way round. The different bias for different tasks makes the allocation
more balanced. Here the requirement of f(x)+f(1/x) = 1 makes the mechanism
symmetrical for the two machines and for the two tasks.

Now we analyze the performance formally. We consider the following generic
instance.

task 1 task 2
machine 1 b11 b12
machine 2 b21 b22

.

The expected makespan t of the correlation mechanism on this instance is

t = (b11 + b12)Pr(α >
b11
b21

, α ≤ b22
b12

) + (b21 + b22)Pr(α ≤
b11
b21

, α >
b22
b12

)

+ max(b11, b22)Pr(α >
b11
b21

, α >
b22
b12

) + max(b12, b21)Pr(α ≤
b11
b21

, α ≤ b22
b12

).

Since all the probabilities in the above expression can be expressed by function
values of f , its performance can be estimated at least numerically (and by com-
puter) when the function is given. Here we specify the following simple function
f so that the analysis can be done analytically (and by hand). It is a case-by-case
analysis and is omitted here due to space limitation.

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x ≥ A,

1
2

+
x− 1

2(A− 1)
, 1 ≤ x < A,

1
2
−

1
x − 1

2(A− 1)
,

1
A
≤ x < 1,

0, 0 ≤ x <
1
A

.

(1)

Despite the complicated appearance in the above expression, this function is a
simple and natural one. A is a threshold, when input is beyond that, the function
value is always 1. f(x)+f(1/x) = 1 requires that f(1) = 1

2 . The function between
1 and A is simply the the line segment connecting these two end points (1, 1

2 )
and (A, 1). The function below 1 is determined by the function above 1 and the
requirement f(x) + f(1/x) = 1 .

Theorem 4. By using the function as (1) , where A = − 1
2 +
√

3+ 1
2

√
25− 12

√
3

(≈2.26), the approximation ratio of the Correlation Mechanism is 1
6 (
√

25−12
√

3
+7) (≈ 1.5089).

We remark that the function of (1) is only used to illustrate the idea of correlation
mechanisms. It is by no means the best choice. However its bound (1.5089) is
already very close to the lower bound (1.506) we will prove in the next section.
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5 The Ratio of 1.5 Is Not Achievable

Given the succuss of using correlation in the previous section, and also noticing
that the instances used to prove the lower bound in Section 3 cannot get any
thing beyond 1.5 for the case of two tasks, one may make a point that we
can choose some suitable function f in the correlation mechanism to achieve
an approximation ratio of exactly 1.5. In this section, we prove that this is
impossible.

Theorem 5. For any non-decreasing monotone function f : R+ ⇀ [0, 1] which
satisfies ∀x ∈ R+, f(x) + f(1/x) = 1, there exists c, d ∈ R+ such that c ≥ 1,
c ≥ d and

c+ f(c) + df(c)− cf(c)− df(d) > 1.5.

Proof. We assume for contradiction that there exists a function f such that for
all c, d ∈ R+ satisfying c ≥ 1, c ≥ d, we have

c+ f(c) + df(c)− cf(c)− df(d) ≤ 1.5. (2)

For any fixed d, let c→∞, we have c+ f(c) + df(c)− cf(c) ≥ 1 + d. So for any
x ∈ R+, we have

f(x) ≥ 1− 1
2x

.

Using this and the fact that ∀x ∈ R+, f(x) + f(1/x) = 1, we have

f(x) ≤ x

2
.

Let d = 1/c in (2), we have

c+ f(c) +
f(c)
c

− cf(c)− 1
c
(1− f(c)) ≤ 1.5.

This implies
(c− 2)(c+ 1)f(c) ≥ (c− 2)(c+ 1/2).

So for c > 2 we have f(c) ≥ 1 − 1
2(c+1) and for 1 ≤ c < 2 we have f(c) ≤

1 − 1
2(c+1) . Together with the fact that f is a non-decreasing monotone, these

two inequalities enforce that f(2) = 1− 1
2×(2+1) = 5

6 .
Now let c = 2 in (2), we have

2 +
5
6

+
5
6
d− 2× 5

6
− df(d) ≤ 1.5.

This implies that for any x ≤ c = 2, f(x) ≥ 5
6−

1
3x . But f cannot simultaneously

satisfy this and f(x) ≤ x
2 . For example choosing x = 4

5 , f(4
5 ) ≥ 5

6 −
1
3x = 5

12 ,
but on the other hand f(4

5 ) ≤ x
2 = 2

4 <
5
12 , a contradiction.

We can improve this theorem by proving that any scale-free mechanisms cannot
achieve 1.5 even for this very special cases.
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Theorem 6. Any randomized scale-free truthful mechanism for scheduling two
tasks on two unrelated machines cannot have an approximation ratio that is
better than 1.506.

Proof. We use a matrix
[
b11 b12
b21 b22

]
to denote the following instance with two

machines and two tasks
task 1 task 2

machine 1 b11 b12
machine 2 b21 b22

.

Now we consider the following distribution of 12 instances:

–
[
1 1
a 1

]
,
[
1 1
1 a

]
,
[
a 1
1 1

]
,
[
1 a
1 1

]
, each with probability p1;

–
[
1 b
1
b 1

]
,
[
1 1

b
b 1

]
,
[
b 1
1 1

b

]
,
[ 1

b 1
1 b

]
, each with probability p2;

–
[
1 b
1
a 1

]
,
[
1 1

a
b 1

]
,
[
b 1
1 1

a

]
,
[ 1

a 1
1 b

]
, each with probability p3.

a, b, p1, p2, p3 are parameters to be specified later and satisfy 1 ≤ b ≤ 2 ≤ a and
p1 + p2 + p3 = 1/4.

For these instances, the possible running-time-ratios of tasks are only 1/a,1/b,
1,a,b. For each task, the mechanism can choose a threshold (only 6 possible dif-
ferent thresholds). But by symmetry, we can always assume that the thresholds
for the first task are above 1 (so there are 3 possible different thresholds). Over-
all of there are 18 possible different mechanisms. We can choose the parameters
such that the expected approximation ratios of them are all larger than a given
value, then this is our lower bound.

By choosing a = 2.125, b = 1.88, p1 = 0.1346, p2 = 0.0796, p3 = 0.0358, we
can get a lower bound of 1.506. We can prove this formally and also argue that
these are the best parameters we can choose. The details are omitted.

6 Conclusion and Discussion

The main results of this paper are two new lower bounds and one new upper
bound. Two direct interesting open questions are to get rid of the technical
assumption for these lower bounds and to generalize the correlation mechanism
to general cases. It is quite surprising that the exact bound for this simple 2-
player mechanism has not been settled after a couple of work. We recall that
quite simple mechanisms and relatively easy lower bound proofs already match
both in the corresponding deterministic and fraction version. We believe that
our work in this paper is an important step toward the final answer.

In the general case (m machines), the gap between the best lower bounds
(constants) and the best upper bounds (Θ(m)) is huge both in deterministic and
randomized versions. Any improvement in either direction is highly desirable. We
hope that the technique and ideas we and others developed for this special case
can extend to the general case.
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