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Abstract. A two-state spin system is specified by a matrix
Ao,o Ao B1
A= ’ T = 1
[Al,o A1,1} [17 )

where 8,7 > 0. Given an input graph G = (V, E), the partition function
Za(G) of a system is defined as

ZA(G) = Z H Aa(u),o‘(v)~ (2)

o:V—{0,1} (u,v)€EE

We prove inapproximability results for the partition function Za (G) in
the region specified by the non-uniqueness condition from phase transi-
tion for the Gibbs measure. More specifically, assuming NP # RP, for
any fixed 8,7 in the unit square, there is no randomized polynomial-
time algorithm that approximates Za (G) for d-regular graphs G with
relative error € = 107%, if d = 2(A(B,7)), where A(B,7) > 1/(1 — B7)
is the uniqueness threshold. Up to a constant factor, this hardness result
confirms the conjecture that the uniqueness phase transition coincides
with the transition from computational tractability to intractability for
Za(G). We also show a matching inapproximability result for a region
of parameters (3,7 outside the unit square, and all our results generalize
to partition functions with an external field.

Introduction

Spin systems are well studied in statistical physics and applied probability. We
focus on two-state spin systems. An instance of a spin system is a graph G =
(V,E). A configuration o : V' — {0, 1} assigns to each vertex one of two states.
The contributions of local interactions between adjacent vertices are quantified
by ), a 2 x 2 matrix with 3, > 0. The partition function Za (G) of a system

is defined by (), and we use w(G, o) to denote the weight of o:

w(G,0) = luwer Ao(w),o()
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Given a fixed A, we are interested in the complexity of computing Za (G),
where GG is given as an input. Many natural combinatorial counting problems
can be formulated as two-state spin systems. For example, with (5,v) = (0,1),
Za(G) is exactly the number of independent sets (or vertex covers) of G. The
definition of Za (G) in (@) can also be generalized to larger matrices A, and the
problem is known as counting (weighted) graph homomorphisms [1, [2]. On the
other hand, the so-called Ising model is the special case where g = +.

The ezact complexity of computing Za (G) has been completely solved for any
fixed symmetric A [346] and even for not necessarily symmetric A
[tH12] as part of the dichotomy theorems for general counting constraint sat-
isfaction problems (#CSP). When specialized to two-state spin systems, Za (G)
is #P-hard to compute exactly, except for the two restricted settings of Sy =1
or f =« = 0 for which cases Za(G) is polynomial-time computable. Conse-
quently, the study on two-state spin systems has focused on the approximation
of Za (@), and this is the subject of the present paper.

Following standard definitions, a fully polynomial-time approximation scheme
(FPTAS) for Za(G) is an algorithm that, given as input a graph G as well as a
parameter € > 0, outputs a number Z that satisfies

(1—€)-Za(G)<Z<(1+¢€)-Za(G) (3)

in time poly (|G|, 1/¢€). A fully polynomial-time randomized approximation sch-
eme (FPRAS) is a randomized algorithm that, with probability 1 — §, outputs
a number Z satisfying [B) in time poly (|G|, 1/€,log(1/0)).

In a seminal paper |13] Jerrum and Sinclair gave an FPRAS for Za(-) with
B =~ > 1. It was then further extended to the entire region of gy > 1 by Gold-
berg, Jerrum and Paterson |14]. We call a two-state spin system ferromagnetic if
B~ > 1 and anti-ferromagnetic if v < 1. The approximability of Za (-) for anti-
ferromagnetic systems is less well understood. Starting with counting indepen-
dent sets in sparse graphs [15], the approximability of Za(-) in bounded degree
graphs is also widely studied. Significant progress has been made recently on the
algorithmic side, and approximation algorithms for anti-ferromagnetic two-state
spin systems have been developed [16-19], based on the technique of correlation
decay introduced by Bandyopadhyay and Gamarnik [20] and Weitz [16]. Finally
a unified FPTAS was found [19] to approximate Za (-) for all anti-ferromagnetic
two-state spin systems of either bounded degree graphs or general graphs, when
the system satisfies a uniqueness condition.

The uniqueness condition is named for, and closely related to, phase transi-
tions that occur for the Gibbs measure. It depends on not only 3, but also the
degree of the underlying graph. Such phase transitions from statistical physics
are believed to frequently coincide with the transitions of computational com-
plexity from tractability to intractability. However, there are only very few ex-
amples where this conjectured link is rigorously proved. One notable example
is for the hardcore gas model (or independent set, with 5 = 0 and v = 1), for
which such a conjecture was rigorously proved (for almost all degree bounds)
both for the algorithmic side [16] and for the hardness side [21,22]. As discussed
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above [16-19], for general anti-ferromagnetic two-state spin systems, the algo-
rithmic part of the conjecture has recently been established. In this paper, we
make substantial progress on the hardness part of the conjecture.

Our Results. For 0 < 38,7 < 1 except at (8,v) = (0,0) and (1,1), Goldberg,
Jerrum and Paterson proved that the problem does not admit an FPRAS for
general graphs (when there is no degree bound), unless NP = RP [14]. In their
reduction, the degrees of the hard instances are unbounded. This is consistent
with the uniqueness threshold conjecture. However, for any fixed g and 7 in the
unit square, the uniqueness condition states that there exists a finite threshold
degree A(B,7y) [17H19], which satisfies

L+VBy _ (I+vB)? 1
1— /By =By —1-py

such that the system satisfies the uniqueness condition if the degree d < A(3,7)
and the non-uniqueness condition if d > A(, ). The paper [19] gives an FPTAS
for graphs with degree bounded by A(S, ). The conjectured coincidence of phase
transition with hardness in complexity suggests that as soon as the degree of the
input graph goes beyond A(8,v), Za () becomes hard to approximate. Towards
this direction, we show that for any fixed £, in the unit square, the problem
does not have an FPRAS if the degree of the input graph is 2(A(S,7)), unless
NP = RP. Our hardness result also holds when restricted to input graphs that
are regular. Formally, we prove the following theorem:

A(B,v) > (4)

Theorem 1. There exists a positive constant h with the following property. For
any B,v: 0 < B,y <1 such that (8,7) # (0,0), (1,1) and for any integer d >
h/(1—B7), there is no randomized polynomial-time algorithm that approzimates
Za(G) in d-reqular graphs G with relative error € = 10™%, unless NP = RP.

Note the relation between our degree bound h/(1 — 8v) and A(B,~) from @).
We also make progress on (3, outside the unit square. While the uniqueness
condition is monotone inside the unit square, its behavior outside is significantly
different. (See more discussions on this difference in the appendix of the full
version [23].) Without loss of generality, we consider the region defined by Sy < 1
with 0 < 8 < 1 < ~. There is a uniqueness curve (see Figure [Il), connecting the
point (1,1) and the ~-axis. Above the curve, the system satisfies the uniqueness
condition for any graph [18, [19]. Hence, hardness is only possible below the
uniqueness curve. Furthermore, when (3, ) is outside the unit square but below
this uniqueness curve, there is only a finite range of degrees d for which the sy-
stem does not satisfy the uniqueness condition. This makes it very challenging
to prove a hardness result for them. Previously, the hardness was only obtained
in [14] for a very tiny square 0 < § < n and 1 < v < 14 n where 7 is roughly
1077, near (0,1) corresponding to the hardcore gas model (independent set).
We prove the following hardness result for (3,+) outside the unit square:

Theorem 2. Given 8 and v such that 0 < <1,y >1 and By < 1, let



Inapproximability after Uniqueness Phase Transition 339

Open
area .
-.____ Uniqueness

threshold

New hardness
region

By=1

Y

New hardness ™.
region Open
area

Fig. 1. The new hardness region of Theorem

A'=[-1/Inf+1n7)| and A" =[1/Iny]|. (5)

When A* > 80004, there exists no randomized polynomial-time algorithm that
approzimates Za (G) in reqular graphs of degree A* with relative error e = 1074,
unless NP = RP.

The new hardness region is pictured in Figure ml above. Here the two white
squares are the hardness regions acquired by Goldberg, Jerrum, and Paterson
ﬂﬁ] Beyond the uniqueness threshold, we know that FPTAS exists. Our hard-
ness result, Theorem 2] applies to the region between the vertical line with v = 1
and the curve to the left of the uniqueness threshold. Let us describe this new
curve in more details. We focus on the region with 0 < § < 1 < v and gy < 1.
There is a symmetric curve for 0 < v < 1 < . Near the point (1, 1), the con-
dition imposed by Theorem [] is almost linear. So the new curve is roughly a
line with slope —8000 around (1,1). When it approaches the line of 5 = 0, A’
becomes 1 and the condition requires v to be between 1 and roughly 1+ 1/8000.
Moreover, using a standard translation (see the appendix of the full version
ﬂﬁ]), we can generalize both Theorem [Il and Bl to two-state spin systems with
an external field. Formally, let p > 0, we have the following two corollaries for

ZA,H(G) = Z M|{v€V:a(v):O}| H Ao(u),o(v)~
o:V—{0,1} (u,v)EE

! The reader should be aware that, for illustration purposes, the picture is not drawn
to actual scale.
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Corollary 1. There is a positive constant h with the following property. Given
any non-negative 8,7y and p with By < 1, if d is a positive integer that satisfies
v < pi < 1/8 and d > h/(1 — B~), then there exists no randomized polynomial-
time algorithm that approzimates Za ,,(G) in d-reqular graphs with relative error
e =10"%, unless NP = RP.

Corollary 2. Given any non-negative B3,, i and a positive integer d such that
1 _1 1 1 1 1
ed <y-p d<ed-1 or ed <fF-pud <ed1,

if d also satisfies d > 8000 [—1/(In 8 + In~)], then there is no randomized poly-
nomial-time algorithm that approzimates Za ,,(G) in d-regular graphs with rela-
tive error € = 10™%, unless NP = RP.

Proof Outline. In the proofs of both Theorem [I] and Theorem 2 we use the
phase transition that occurs in the non-uniqueness region to encode a hard-to-
approximate problem. This approach has been used in previous hardness proofs
for the hardcore gas model [15, 121, 124]. To this end, we reduce the approximation
of E2LIN2 to the approximation of partition function in a two-state spin system.
Here an instance of E2LIN2 consists of a set of variables x1,...,x, and a set
of equations of the form x; + z; = 0 or 1 over Zy. From [25], it is NP-hard to
approximate the number of satisfiable equations for E2LIN2 within any constant
factor better than 11/12.

Given an E2LIN2 instance with variables z1,...,x,, we use a random bipar-
tite regular graph to encode each variable x;. Due to the phase transition and
the fact that we are in a non-uniqueness region, each of these bipartite regular
graphs would be in one of two types of configurations with high probability, if
sampled proportional to its weight in the partition function. This can be used to
establish a correspondence between the configurations of these bipartite graphs
and the assignment of the n boolean variables x1, ..., x,. Furthermore, we also
add external connections between the random bipartite graphs according to the
set of equations in the E2LIN2 instance. They contribute exponentially to the
total weight in the partition function, according to the total number of equations
that an assignment satisfies. Thus, a sufficiently good approximation to the par-
tition function can be used to decode approximately the maximum number of
equations that an assignment can satisfy.

Our gadget is also randomly constructed, so the probability should also be
over the distribution of the gadgets. It is not hard to show that things work out
beautifully if we simply substitute the expectation for the actual weight. But to
make the proof rigorous, one must first obtain a sufficiently good concentration
result. Such a result is unknown and could be very difficult to prove (assuming
it is true), as it is already a tour-de-force in the special case for the hardcore gas
model [21, 22, 24].

Instead, we use a detour: (1) We prove a lower bound for the weights of the
two types of configurations we expect, guided by the phase transition; and (2)
We prove that the total weight of other configurations is exponentially smaller
compared to the lower bound proved in (1), with probability exponentially close
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to 1. The way we establish the lower bound in (1) is similar to the approach of
Dyer, Frieze, and Jerrum [15]. To prove (2), they [15] used the expectation and
Markov’s inequality. If we use the same approach, we could not get the hardness
result for bounded degree graphs in the same order of the uniqueness bound.
Instead, we use a new approach for (2).

Indeed we first show a high concentration result for an expander property of
the gadgets we use. Then we show that the total weight of other configurations
must be exponentially small, given that the gadgets satisfy that property. This
circumvented our inability to prove a complete concentration result. But we do
need to prove some limited concentration results regarding the random gadget.
This then led us to the hardness results for degrees in the right order conjectured
according to the uniqueness threshold. It remains open whether one can use a
refined version of this reduction along with the proof by Sly [21] to get the exact
right bound. As discussed in the appendix of the full version [23], this random
regular graph follows quite closely the property of phase transition in infinite
d-ary trees, when the parameter is below or beyond the uniqueness condition.

While the high-level idea of our proofs for both Theorem [I] and Theorem
are quite clear and similar, it remains a challenge to work out the estimation for
all ranges of parameters and at the same time, make sure that the degree is in
the same order of the uniqueness bound. To this end, technically we need to use
very different approaches for Theorem [I] and Theorem 2l Even within Theorem
[ itself, we need to do the estimation differently for three different subcases.

2 Proof of the Main Theorems

From now on, we will use Z(G) to denote Za (G) whenever it is clear from the
context. Given positive integers N and A, we use H(N, A) to denote the follow-
ing probability distribution of A-regular bipartite graphs H = (U UV, E) with
bipartition U,V and |U| = |V| = N: H is the union of A perfect matchings be-
tween U and V each selected independently and uniformly at random. (Because
these perfect matchings are drawn independently, H may have parallel edges.)

In the proofs of both Theorem [l and ], we give a polynomial-time reduction
from E2LIN2 to the approximation of Z(G). An instance of E2LIN2 consists of
m equations over Zs in n variables z1,...,x,. Each equation has exactly two
variables and is of the form z; + z; = b € {0,1}. Without loss of generality we
may always assume m > n/2; otherwise one of the variables does not appear in
any equation. Given an assignment S of the n variables z1, ..., x,, we use 6(5)
to denote the number of equations that S satisfies and let §* = maxg 6(S5). In
[25] Hastad showed that it is NP-hard to estimate 8* within any constant factor
better than 11/12.

Given an E2LIN2 instance, we construct a random (A + A’)-regular graph G
as follows, with the two parameters A, A’ to be specified later. This construction
is used in the proofs of both Theorem [l and

Construction of G from an instance of E2LIN2. For each variable x;,
i € [n], we let U; and V; denote two sets of d;m vertices each, where d; > 1
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denotes the number of equations in which x; appears (thus, >, d; = 2m).
Moreover, U; and V; can be decomposed into

Ui=U;jpU---UU;q, and V,=V1U---UVg,

where each U; ;, and V;j, contains exactly m vertices. Now enumerate all
the m equations in the E2LIN2 instance one by one. For each of the m
equations do the following:

(1) Let x; +x; = b € {0,1} denote the current equation. Assume
this is the kth time that x; appears in an equation, and the /th
time that z; appears in an equation so far, where k € [d;] and
¢ € [d;]. Denote the m vertices in U; , by {u1,...,um}, vertices in
Vi by {v1,...,vm}, vertices in U; ¢ by {u],...,u],} and vertices in
Vje by {vi,..., v, }. All these vertices have degree 0 at this
moment. If b = 0, we add A’ parallel edges between (us,v’,) and
(vs,ul), for each s € [m]; or if b = 1, we add A’ parallel edges

between (us,u}) and (vs,v)), for each s € [m].

By the end of this step, every vertex has degree A’. In the next step,

(2) For each i € [n], we add a bipartite graph H; = (U; UV}, E;)
drawn from H(d;m, A).

This finishes the construction and we get a (A + A’)-regular graph G with 4m?
vertices.

We need the following notation. Given an assignment o : V(G) — {0,1}, we
use U;(o) to denote the number of vertices v € U; with o(u) = 0, and use V(o)
to denote the number of v € V; with o(v) = 0.

Proof (of Theorem [l). Without loss of generality, assume 3,7 :0 < 8 <~ < 1.
We can also assume § > 0, as the tight hardness to the exact uniqueness bound
for § = 0 has been shown in [18], by generalizing the tight hardness result for
the hardcore model |21, 22].

Given an assignment S of the n variables, we let Z(G,.S) denote the sum of
w(G, o) over assignments o : V(G) — {0, 1} that satisfy for each i € [n],

Ui(o) <Vi(o) ifx;=0in S;or U(o) >Vi(o) ifz;=1inS.  (6)

From definition we have Z(G,S) < Z(G) < Y 4 Z(G,S). We need the following
key lemma. Its proof can be found in the full version [23]:

Lemma 1. There exists a positive constant h with the following property: For
any B and v:0 < B <~ <1 with (8,7) # (1,1) and for any A* > h/(1 - Bv),
there are D > 1, C > 0 and positive integers A and A" with A + A" = A*,
that satisfy the following property: given any input instance of E2LIN2 with n
variables x1, ..., x, and m equations, except for probability < exp(—§2(m)), the
A*-regular graph G constructed with parameters A and A’ satisfies
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Cm2 ) DmQ(S) < Z(G, S) < sz _l)m(9(,5')—‘,-0.03m)7 (7)
for any assignment S of the n variables.

Given 3,7 and A*, we let C', D, A and A’ denote the constants that satisfy the
condition in Lemma [Il Then given an input instance of E2LIN2, () holds with
probability 1 — exp(—12(m)).

Now assume ([7]) holds. We use 0* to denote the maximum number of consistent
equations and use S* to denote an assignment that satisfies 8* equations. We
also use Y to denote an estimate of Z = Z(G), where |Y/Z — 1] < e = 107
From (@) and Z(G,S5*) < Z(G) < >4 Z(G, S), we get

(1+¢)-2"- Cm2 . pm(07+0.03m) >Y>(1-¢) .sz _pme* ®)
Using Y, we set

Y —-In(1+¢€ —nln2-m?mnC —0.03m?>InD

Y/
minD

and we get Y’ < 0* since In D > 0. We finish the proof by showing that Y’ >
(11/12) - 6*. By (8) we get

In(1+¢)—In(1l —¢€)+nln2+0.03m?In D
mlnD

As 60* > m/2 and m > n/2, when m is large enough, Y’ > (11/12) - 6* and the
theorem is proven.

Y' > 0" —

Next, we prove Theorem

Proof (of Theorem[3). For 8,y with 0 < 8 <1 < v and 8y < 1, let A’ and
A* be the two positive integers defined in (Bl which satisfy A* > 80004’. We
set A = A* — A’. Given any input instance of E2LIN2 with n variables and m
equations, we let G denote the A*-regular graph constructed using A and A’.
First we show that to get a good approximation of Z(G), with high probabi-
lity it suffices to sum w(G, o) only over assignments o satisfying the following:

min (Ui(a)7 Vi(a)) < Mdym, foralli€ [n], where \=9x107°.  (9)
We let X denote the set of all such assignments. Formally we prove the following

key lemma in Section [3

Lemma 2. Let G be the graph constructed from an E2LIN2 instance with n var-
iables x1,. .., T, and m equations, with parameters A, A’. Then with probability
1 — exp(—$2(m!/3)), it satisfies

D w(G,0) < Z(G) < (140(1) > w(G, o). (10)

cex A<
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Next, given an assignment S over the n variables we use Zx (G, S) to denote the
sum of w(G, o) over all assignments o € X' that satisfy (@) for all ¢ € [n]. We
prove the following lemma in the full version |23):

Lemma 3. There are C' > 0 and D > 1 satisfying the following property: given
any instance of E2LIN2 with n variables and m equations, the A*-regular graph
G constructed with parameters A and A’ satisfies

sz . pmo(s) < ZE(G,S) < sz . l)m(9(,5')-"—0.04m)7 (11)
for any assignment S of the n variables.

Let 6* > m/2 denote the maximum number of consistent equations, and let S*
denote an assignment that satisfies 6* equations. From these two lemmas we
have with high probability that

Cc™ . D™ < Z5(G,5%) < Z(G) < (14 0(1)) - > Zx(G.9)
< (1+o0(1)) - 2" . ™" . pm(eT+0.04m)

Theorem [2 then follows from the same argument used in Theorem [l

3 Proof of Lemma

Recall that S and v satisfy 8,7:0< 8 <1<~ and By < 1. Let A" and A* be
the two positive integers defined in Theorem Bl with A* > 80004'. From their
definitions, we have (ﬁ'y)A/ < 1/e and 72" > e Set A =A* — A > 7999A" >
7999. By the definition of A*, we have e > ¥4 = > 44 and thus, v < 1.001.

Given an E2LIN2 instance with n variables x1,...,x, and m equations, we
use G to denote the A*-regular graph constructed with parameters A and A’,
where A* = A+ A’. We let H; denote the bipartite graph in G that corresponds
to x; and use U; UV, to denote its vertices, with |U;| = |V;| = d;m.

Before working on G and H;, we start by proving a property that a biparti-
te graph sampled from the distribution H(N, A) satisfies with very high proba-
bility. Let H be a bipartite graph drawn from H (N, A) for some N > 1 and A
defined above, with 2N vertices UUV. We also use p: UUV — {0, 1} to denote
an assignment and call it an (a, b)-assignment for some a,b € Ty, where

Ty ={0,1/N,2/N,...,(N —1)/N,1}
if lueU:p(u)=0]=aN and |v eV :p(v) =0| = bN. We also use Zn(a,b),
where a,b € T, to denote the set of all such (a,b)-assignments, and let
Zap(H)= > w(H,p)-y*C7o7IN (12)
pEIN (a,b)

with A’ as defined above. We are interested in the expectation of Z, y(H) when
min(a,b) > A =9 x 1075
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Lemma 4. For large enough N and a,b € Ty such that min(a,b) > A\, we have

Efgc nn,a) [Za,b(H)} <exp (1.21-N).

The proof of Lemma [ can be found in the full version |23]. By Lemma [ we
can impose the following condition on the graph G constructed from the input
instance of E2LIN2: For all 4 € [n] and all a,b € Ty,, with min(a,b) > A,

Za,b(Hi) S exp(l.?? . d,m) (13)

Using Lemma 4l Markov’s inequality and the union bound, it is easy to show
that G satisfies this condition with probability 1 — exp(—£2(m)).

In the rest of the proof, we prove that G satisfies (I0) whenever it satisfies
([@3). Lemma[2 then follows immediately.

We assume that G satisfies (I3). Then to prove ([IT), we randomly sample an
assignment o with probability proportional to w(G, o). ([I0) follows if we can
show that o satisfies (@) with probability 1 — o(1). For this purpose we need the
following lemmas that give us properties that o satisfies with high probability.
Given any set L of vertices in G, we let

No(L)={v € L:o(v)=0}.

Also recall the definition of U; ;. and V;j in the construction of G. Let z; be a
variable and let k € [d;], then we have

Lemma 5. Let o be an assignment drawn according to its weight. Then for any
i € [n] and any k € [d;], except for probability exp(—§2(m*/3)), we have

L (1+m*1/3) Uik

|N0(Ui’k)| < 1te

Proof. Pick any partial assignment o’ over vertices of G except those in U, j.
Conditioned on ¢’, it is easy to see that the values of vertices in U; j are inde-
pendent. Each vertex in U; x has A + A’ neighbors, each of which contributes a
vertex weight of either 8 or 1 if it is assigned 0, and either 1 or « if it is assigned
1. Since v < 1/, the total weight for assignment 1 is at least yA+A" > ¢ times
the weight for assignment 0. The lemma follows from the Chernoff bound.

Given an assignment o, we use o; to denote its restriction over vertices in H;,
and o_; to denote its partial assignment over vertices in G except H;. We let
M,_,(U;) denote the subset of U; whose unique neighbor outside of H; is assigned
1. Using Lemma [3] and the union bound, we have

Corollary 3. Let o be an assignment drawn according to its weight. Except for
probability exp(—2(m'/3)), we have

(&

A ET

O(m_1/3)> U], for alli € [n]. (14)
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It is also clear that Lemma [5l and Corollary [3 also hold for V; ; and V;, respec-
tively, by symmetry. Now we are ready to prove Lemma 2 Let o = (0y,0_;)
be an assignment drawn from this distribution. Recall the definition of X~ below
@)). Then by Corollary [ we have

Prioc ¢ ¥] < exp(—2(m*/?)) + (15)
Pro ¢ X | o_; satisfies () for both U; and V; and for all i € [n] ]

To prove an upper bound for (I5]) we fix o_; to be any partial assignment over
the vertices of G except those of H;, which satisfies (I4]) for both U; and V;. Then
it suffices to prove that the sum of w(G, o) over all ¢ € X' that are consistent
with o_;, denoted by Z7, is exponentially larger than the sum of w(G, o) over
all o ¢ X that are consistent with o_;, denoted by Zs.

Let w(o—;) denote the product of the edge weights in o_; over all edges that
have no vertex in H;. By the definition of Z, ;,(H) in (I2), we have

Zy <w(o—;) Z Zap(H;) <w(o-) - (dim)? - exp(1.22 . dim) (16)
a,b€Ty;m: a,b>A

where the second inequality follows from ([I3]). To get a lower bound for Z;, let
L=|M, (U;)] and R=|M,_ (Vi)
Consider all the o that are consistent with o_; and U;(0) = 0. This gives us
Zy 2 w(o=) AT (L AR (B8 gy B)tim R,
Plugging in 'yA+A/ > e, 72 > e7999/8000 and the lower bound in @), we get
Zy > w(o_;) - exp (1.22897 - d;ym)

and the lemma follows from (IG]).
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