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Abstract. In a breakthrough result, Reingold [17] showed that the Undi-
rected st-Connectivity problem can be solved in O(log n) space. The next
major challenge in this direction is whether one can extend it to directed
graphs, and thereby lowering the deterministic space complexity of RL or
NL. In this paper, we show that Reingold’s algorithm, the O(log4/3 n)-
space algorithm by Armoni et al. [3] and the O(log3/2 n)-space algorithm
by Nisan et al. [14] can all be carried out on the RAM-NNJAG model
[15] (a uniform version of the NNJAG model [16]). As there is a tight
Ω(log2 n) space lower bound for the Directed st-Connectivity problem on
the RAM-NNJAG model implied by [8], our result gives an obstruction
to generalizing Reingold’s algorithm to the directed case.

1 Introduction

The st-Connectivity problem is one of the most widely studied problems in
computer science. It is a fundamental problem with many applications and yet
is simple to state: Given a directed graph G together with two vertices s and
t, the (directed) st-connectivity problem stcon is to determine if there is a
directed path from s to t. In the special case when the graph G is undirected,
we denote the problem by ustcon.

stcon is important in complexity theory as it is complete for the complexity
class Non-deterministic Logspace NL under Deterministic Logspace reductions.
Thus determining its (deterministic) space complexity is to answer the question
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whether nondeterminism helps in space bounded computation—a space analog
of the “NP = P?” question. The special case ustcon is also important for the
dual reasons of being the core problem in many applications as well as being
complete for the complexity class Symmetric Logspace SL [11].

To solve stcon, a natural approach is to perform a Depth-First Search or
Breadth-First Search from node s trying to discover node t. This requires Ω(n)
bits of storage in the worst case. Currently, the best known space upper bound
is O(log2 n) using Savitch’s algorithm [19]. Proving any non-trivial (ω(log n))
space lower bound on a general Turing machine is beyond the reach of current
techniques, let alone proving that Savitch’s algorithm is optimal. Thus Cook and
Rackoff [6] proposed a model called “Jumping Automata for Graphs” (JAG), in
order to abstract away certain inessential features of existing st-connectivity al-
gorithms, and to focus on its essential feature of moving from vertices to vertices.
Briefly, the JAG model can only examine the input graph by a set of pebbles
that traverse the graph from s. Moreover, it can only tell which pebbles are
on the same nodes but cannot see the node names. Other than that, a JAG is
unrestricted. Although Savitch’s algorithm needs to cycle through all nodes in
the graph, which is generally impossible for a JAG, Cook and Rackoff adapted
the algorithm to run on a JAG in O(log2 n) space. Moreover, they proved a
space lower bound of Ω(log2 n/ log log n) for directed stcon on this model. The
lower bound was then extended to a randomized JAG (i.e., a JAG that can flip
random coins to determine its moves) by Berman and Simon [5].

Later, Immerman [10] and Szelepcsényi [20] discovered a surprising non-
deterministic logspace algorithm for st-nonconnectivity which seems to require
node names in an essential way and is not known to be implementable on a
nondeterministic JAG (i.e., a JAG that can make nondeterministic moves).
Then Poon [16] proposed the NNJAG model which is more natural as it can
see the names of the pebbled nodes. Further, he showed how to implement the
Immerman-Szelepcsényi algorithm on a non-deterministic NNJAG while extend-
ing the lower bounds of Cook and Rackoff, and Berman and Simon to the deter-
ministic and randomized NNJAG model. The lower bound is further improved
to Ω(log2 n) for a randomized NNJAG by Edmonds et al. [8]. Other major newer
algorithms for stcon, including the time-space tradeoff [4] by Barnes et. al., and
the randomized stcon algorithm [9] by Gopalan et. al., can all be implemented
on a deterministic or randomized NNJAG as appropriate. Thus the NNJAG
model seems to be general enough to capture all existing stcon algorithms.

For ustcon, Aleliunas et al. [1] showed that a random walk from any node
s will hit all other nodes in its connected component in expected O(nm) steps,
m being the number of edges in the graph. This puts ustcon in Randomized
Logspace RL and also implies the existence of a polynomial length Universal
Traversal Sequence (UTS), i.e., a sequence of edge labels following which one
can reach every node in a connected component from any starting node in that
component. A deterministic JAG can trivially simulate such UTS using one peb-
ble and O(mn) states as it is a non-uniform computation device. A randomized
JAG can also easily simulate a random walk in the same O(log n) space.
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Restricting our attention to uniform deterministic computation, we witnessed
a decrease in the space complexity of ustcon from O(log2 n) of Savitch [19] and
Nisan [13] to O(log3/2 n) by the NSW algorithm [14] and to O(log4/3 n) by
the ATWZ algorithm [3]. Finally, Reingold [17] settled the deterministic space
complexity of ustcon by discovering a (deterministic) O(log n) space algorithm.
It follows that SL = L. Given the success of NNJAG in simulating algorithms
for stcon, it is natural to ask if it can simulate those algorithms for ustcon as
well. To our knowledge, no one has carefully investigated this question.

In this paper, we show that all the three algorithms: the NSW algorithm,
the ATWZ algorithm and Reingold’s algorithm can be implemented on a RAM-
NNJAG which is the uniform counterpart of an NNJAG. Note that it is impor-
tant to consider the simulation on a uniform model since a non-uniform one can
follow a UTS to visit all nodes in the connected component of s and so ustcon
in logspace becomes trivial.

As mentioned, a central focus in this area is the deterministic space com-
plexity of stcon. One possible direction is to extend Reingold’s algorithm to
the directed case. In fact, Dinur et. al. [7] has extended Reingold’s algorithm to
directed graphs which are bi-regular. However, the feasibility of these three algo-
rithms on a RAM-NNJAG model implies an obstruction to generalizing them to
the directed case: Since Edmonds et. al. [8] proved a tight space lower bound of
Ω(log2 n) for solving stcon on the NNJAG model (and hence the RAM-NNJAG
model), our result implies that Reingold’s algorithm does not immediately ap-
ply to directed graphs and, if we are to make progress on improving the space
complexity for stcon, some new algorithmic techniques need to be developed.

In the next section, we will introduce the JAG and related models. Section 3
is an overview of the simulations followed by the details in Section 4 and 5.

2 The JAG and Related Models

A JAG as introduced in [6] is a non-uniform model. It consists of a sequence
of automata {J1, J2, . . .} where the n-th automaton J = Jn consists of a set of
p distinguishable pebbles numbered 1 to p, a set of q states and a transition
function δ. In general, p and q will be functions of n and the transition function
δ also depends on n.

The input to J is a triple (G, s, t) where G is an n-node graph containing
nodes s and t. For every node in G, its out-edges are labelled by consecutive
integers starting from 0. The nodes in G are also labelled from 0 up to n − 1.
We define the instantaneous description (id) of J as the pair (Q, Π) where Q is
the current state and Π is a mapping of pebbles to nodes specifying the current
location of each pebble in the graph. When J is in id (Q, Π), the transition
function δ determines the next move for J based on: (1) the state Q, and (2)
which pebbles are on the same node and which are not, according to Π (i.e.,
for each pair of pebbles P and P ′, whether Π(P ) = Π(P ′)). A move is either a
walk or a jump. A walk (P, i, Q′) consists of moving the pebble P along the edge
labelled i that comes out of the node Π(P ) and then assuming state Q′. (If there
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is no such edge, the pebble just remains on the same node.) A jump (P, P ′, Q′)
consists of moving pebble P to the node Π(P ′) and then assuming state Q′. The
automaton J is initialized to have state Q0 and with pebbles P1, . . . , Pp−1 on
node s and pebble Pp on node t (which makes node t distinguishable from the
rest). It is said to accept an input (G, s, t) if it enters an accepting state on this
input. It solves stcon for n-node graphs if for every input (G, s, t) where G is
an n-node directed graph, it accepts the input iff there is a directed path from
s to t in G. The definition for ustcon is similar.

It is easy to see that an id of a JAG can be specified using p logn + log q
bits by any ordinary computation model such as a Turing machine or a Random
Access Machine. Thus we heuristically define this quantity as the space used by
a JAG. The time used is the number of moves it made.

An NNJAG [16] is similar to a JAG except that the transition function de-
pends on Q and Π . In other words, in NNJAG the transition function δ can use
the actual names Π(Pi). Due to its ability to see and work with node names,
we need not put a pebble on t to make it distinguishable from the others. So we
can put all pebbles on s initially and the definition would guarantee that every
node that has ever been pebbled are reachable from s.

The RAM-JAG [15] consists of a finite state control together with p pebbles and
a number of O(log n)-bit registerswhich in total require O(log q) bits of storage. Its
storage is defined as (p log n+log q) bits. It can perform the usual RAM operations
on the registers and also three special instructions:walk, jump and compare. The in-
structions walk(P,j) and jump(P,P’) are the same as that in a JAG. The instruction
compare(P,P’,R) checkswhether pebbles P and P ′ are on the same node and stores
the result (T or F) in a register R. ARAM-NNJAG is similar to aRAM-JAG except
that the instruction compare(P, P ′, R) is replaced by copy(P, R) which copies the
name of the node pebbled by P to the register R.

It is straightforward to show that a RAM-JAG (resp. RAM-NNJAG) can
be simulated by an ordinary JAG (resp. NNJAG) with O(p) pebbles and qO(1)

states. Thus, any lower bound on the JAG (resp. NNJAG) carries over to the
RAM-JAG (resp. RAM-NNJAG) model.

3 Overview of the Simulations

At the highest level, all three algorithms are to (conceptually) construct a se-
quence of graphs G1, G2, . . . , G� from the input graph G = G0 such that con-
nectivity between s and t in G is the same as that between two nodes s′ and t′

in G�.
For the NSW algorithm, Gk is obtained by choosing at most |Gk−1|/f repre-

sentative nodes in Gk−1 and putting in edges so that two nodes u and v in Gk−1

are connected if and only if their representatives in Gk are connected. Setting
f = 2

√
log n and � =

√
log n, G� contains at most a constant number of nodes

and hence st-connectivity can be trivially determined, say, by a DFS or BFS
from the representative of s in G�. The ATWZ algorithm is similar except that
it chooses f = 2log2/3 n and � = log1/3 n.



Simulating Undirected st-Connectivity Algorithms 771

For Reingold’s algorithm, Gk is obtained from Gk−1 by performing a zigzag
product with an expander graph H , followed by a graph powering operation.
The number of nodes actually increases by a constant factor but the degree
remains constant while the graph becomes more expanding. After � = O(log n)
levels, the diameter is guaranteed to be O(log n). Thus st-connectivity is solved
by exhausting all the (polynomially many) paths of length L = O(log n) on G�

from one of the nodes corresponding to s in G�.
Due to the space limitation, one cannot store all the graphs. Instead, these

algorithms just find out if an arbitrary pair of nodes u, v are connected by an edge
in Gk (or which node is connected to a node u via its x-th edge) when necessary;
and they achieve this by recursively asking for the appropriate edges and nodes
in Gk−1. To carry out this on-demand scheme on a RAM-JAG/NNJAG, we show
how an edge traversal in Gk can be effected by traversing appropriate edges in
Gk−1. Specifically, we take the following approach:

1. Design a way to store a node of Gk in a RAM-JAG/NNJAG.
2. Design a procedure that, given a node u in Gk stored in a RAM-JAG/NNJAG

and an edge label x, simulates the traversal of the x-th edge emanating from
u in Gk such that the node thus reached is stored.

A natural idea to store a node u is to have a pebble on u. This is sufficient for
the NSW and ATWZ algorithm since nodes in Gk are also nodes in the original
graph G. In contrast, Reingold’s algorithm blows up the number of nodes by a
constant factor for each level. So we need a more generalized concept of storing
a node and traversing an edge in Gk (to be given in next section).

4 Simulating Reingold’s Algorithm

4.1 Reingold’s Algorithm

In Reingold’s algorithm, a preliminary step transforms the input graph G into a
D-regular non-bipartite graph for some well chosen constant D. This is done in
Logspace by replacing each node with a cycle and adding self-loops if necessary.
Furthermore, it assumes that the graph G is specified by a rotation map RotG :
[n]× [D] → [n]× [D] such that RotG(u, a) = (v, b) if the a-th edge incident to u
is e = {u, v} which leads to v and this edge is the b-th edge incident to v.

Given an n-node, D-regular graph G and a D-node, d-regular graph H , the
zig-zag product G z©H ([18]) is a graph with vertex set [n]× [D] such that every
vertex has d2 edges labelled by (x, y) ∈ [d] × [d]. Its rotation map RotG z©H is
defined as:

RotG z©H((u, a), (x, y)) = ((v, b), (y′, x′)),

where RotH(a, x) = (a′, x′), RotG(u, a′) = (v, b′), and RotH(b′, y) = (b, y′),
see Figure 1 for an illustration. Note that in reverse, RotG z©H((v, b), (y′, x′)) =
((u, a), (x, y)).
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Fig. 1. Zigzag graph product: (Left) An edge in G, (Middle) Two edges in H , (Right)
A path of 3 edges in the cross product of G and H . It corresponds to the edge labelled
by (x, y) from node (u, a) in G z©H .

In [18] a remarkable property concerning the spectral gap (i.e., the difference
between 1 and its second largest eigenvalue of the normalized adjacency matrix)
is proved which has the following direct consequence [17]:

1 − λ(G z©H) ≥ 1
2
(1 − λ(H)2)(1 − λ(G))

where λ(G) denotes the second largest eigenvalue of the normalized adjacency
matrix of graph G. Essentially this shows that if H is chosen to be a good
expander (i.e., a graph with a small second largest eigenvalue), then G z©H will
have a spectral gap not much smaller than that of G. Meanwhile a powering of
G z©H will increase the spectral gap of G z©H . Reingold chose D = d16 and an
appropriate H with D vertices. Then (G z©H)8 is D-regular again, and has an
increased spectral gap than G.

The main part of Reingold’s algorithm is to repeatedly apply in turn the zig-
zag product and graph powering to the input graph: For k > 0, define Gk =
(Gk−1 z©H)8 where z© is the zig-zag operator and H is a fixed D-node, d-regular
expander graph. Thus, Gk will be a d16-regular graph of size D|Gk−1|. As D =
d16, Gk is D-regular again. For example, one can use the construction by Alon
and Roichman [2] which gives a d16-node, d-regular expander graph H for some
constant d, with λ(H) ≤ 1/2.

The effect of one step of the above transformation from Gk−1 to Gk is to turn
the (connected components of the) previous graph Gk−1 into a more expanding
one in Gk, measured in terms of the spectral gap. At the same time, the number
of nodes of the transformed graph increases by a factor of D while its degree
remains to be D = d16. Each node u in G = G0 corresponds to Dk nodes in Gk,
for k > 0. They are connected among themselves (in Gk) and we denote them by
(u, a0, . . . , ak−1) where (a0, . . . , ak−1) ∈ [D]k. The transformation ensures that
two nodes u and v in G are connected iff (u, a0, . . . , ak−1) and (v, b0, . . . , bk−1)
are connected in Gk, for each (a0, . . . , ak−1) and (b0, . . . , bk−1) in [D]k.

Reingold showed that after � = O(log n) steps, (any connected component
of) G� has a spectral gap greater or equal to 1/2. That means any pair of
nodes in the same connected component in G� are joined by a path of length
L = O(log n). Thus, on G�, we simply enumerate all possible paths of length L
from, say, (s, 1, 1, . . . , 1) and see if we can reach (t, 1, 1, . . . , 1).
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4.2 Simulation on a RAM-JAG

In this section, we will actually describe our simulation on a RAM-JAG as we
do not need the power of an NNJAG to see the node names.

Since a node in Gk is of the form uk = (u, a0, a1, . . . , ak−1) where u is a node
in G and (a0, a1, . . . , ak−1) ∈ [D]k, we store a node uk by having a pebble P on
the node u in G and storing the values a0, . . . , ak−1 in k registers, A0, . . . , Ak−1,
each of size log D bits. Note that the RAM-JAG initially has pebbles on node
s in G. Therefore it is easy to store node (s, 1, . . . , 1) in G� by initializing �
registers appropriately.

Next, consider the traversal of an edge labelled ak from a node uk in Gk. Let
RotGk

(uk, ak) = (vk, bk). We will prove by induction on k ≥ 0 that if uk and ak

are stored by the RAM-JAG, it can traverse the ak-th edge of uk so that vk and
bk are stored.

For k = 0, assume that the RAM-JAG stores uk in pebble P (i.e., pebble P
is on node uk) and ak is stored in a register A. Then the RAM-JAG can easily
move pebble P from uk to vk by walking along the edge labelled ak in Gk, i.e.,
the original input graph G. To compute the reverse label bk, we try all possible
edges from vk and see which one brings us back to node uk. That is, we first
mark the node uk with an extra pebble P ′. Then we move P from node vk along
its first edge and see if it meets P ′. If not, we jump P to P ′ (so P is at uk again)
and walk along the ak-th edge so that P arrives at vk again. Then we try the
second edge of vk and so on. In this way, the RAM-JAG can compute and store
bk in a register and have node vk pebbled.

For k > 0, recall that Gk = (Gk−1 z©H)8. Therefore, an edge in Gk corre-
sponds to a path of length eight in Gk−1 z©H . Thus, we write ak as a sequence of
8 edge labels, (xk,1, yk,1), (xk,2, yk,2), . . . , (xk,8, yk,8) in Gk−1 z©H . This in turn
can be viewed as a path of 8 edges in Gk−1 beginning from node uk−1 but with
edge labels “permuted” by the expander H . Suppose uk = (uk−1, ak−1) and
RotH(ak−1, xk,1) = (a′

k−1, x
′
k−1). Then the first edge label in Gk−1 to follow is

a′
k−1. Note that the RAM-JAG can figure out (a′

k−1, x
′
k−1) without traversing

Gk−1 since H is fixed. Let RotGk−1(uk−1, a
′
k−1) = (vk−1, b

′
k−1). Since uk stored

in the RAM-JAG implies uk−1 is also stored, we can assume (by induction hy-
pothesis) that the RAM-JAG can traverse the a′

k−1-th edge of uk−1 in Gk−1

so that vk−1 and b′k−1 is stored. Suppose RotH(b′k−1, yk,1) = (bk−1, y
′
k,1). Then

again, the RAM-JAG can compute bk−1 and y′
k,1 from b′k−1 and yk,1 using the

fixed structure of H only. In terms of Gk−1 z©H , the first edge leads to the node
(vk−1, bk−1). Note that since the reverse edge bk−1 is known, one can traverse the
next edge (xk,2, yk,2) in Gk−1 z©H . Thus, the RAM-JAG can repeat the traversal
for the remaining seven edges, (xk,2, yk,2), . . . , (xk,8, yk,8) in order to complete
the traversal of one edge in Gk. Finally, observe that the 8 reverse edge labels on
the path of length 8 in Gk−1 z©H arranged in the order (y′

k,8, x
′
k,8), . . . , (y

′
k,1, x

′
k,1)

is nothing but the reverse edge label, bk, for the single edge just traversed in Gk.
Thus, the RAM-JAG is also able to store bk.

Thus our induction statement is proved and it follows that the traversals of
the DL paths in G� can be carried out on a RAM-JAG.
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Now consider the storage per level. Storing the 8 reverse edge labels takes
O(log D) space. To store a node uk = (u, a0, . . . , ak−1) in Gk, note that the
storage for uk−1 = (u, a0, . . . , ak−2) can be charged to level k − 1 or below. So
we just charge O(log D) bits for storing ak−1 in level k. Hence, the total storage
for all the levels is O(log n).

5 Simulating the NSW and ATWZ Algorithms

5.1 The NSW and ATWZ Algorithms

The core of the algorithms is the shrink procedure which takes a graph Gk−1 as
input and return Gk. It computes the set of representatives of Gk−1, i.e., the node
set of Gk, as follows. First, it computes a set Lk of landmark nodes which includes
s and t together with some nodes drawn from a pairwise independent space. This
can be implemented as Lk = {s, t}∪{u ∈ Gk−1|1 ≤ uak +bk ≤ q/(6f)} for some
pair (ak, bk) drawn from a field Fq of size polynomial in n.

Then for any u in Gk−1, we find a neighbourhood, N(u), of u. In NSW, we
follow a short universal traversal sequence (UTS) of length 2O(log2 f) from u and
define N(u) as the set of all nodes encountered in the UTS as well as their
immediate neighbours. In ATWZ, we run a number of pseudo-random walks of
length 2O(log2 f) from u to approximate the average number of such walks hitting
each node v or its immediate neighbors. Any node v with approximate average
at least 1/n is put into N(u).

With N(v), we define the representative, repLk
(u), of u as follows. If N(u)

contains the whole component of u, then u is not represented in Gk (component
too small). Otherwise, u is either represented by the minimum v in N(u)∩Lk or
by itself in case N(u)∩Lk is empty. (We will always treat s and t as the minimum
nodes in Lk. This ensures that they are always represented by themselves unless
their components are too small.) It was shown in [14] that |Gk−1|/|Gk| ≥ f for
a constant fraction of (ak, bk)’s, i.e., the size reduction is guaranteed if we go
over the polynomially many (ak, bk)’s. Finally, for all (u, v) ∈ Gk−1, we have
(repLk

(u), repLk
(v)) ∈ Gk.

5.2 Simulation on a RAM-NNJAG

Since a RAM-NNJAG cannot cycle through all the nodes in Gk, it cannot imme-
diately see if the choice of (ak, bk) achieves the required size reduction factor f .
However, a RAM-NNJAG can try all possible sequences of (a1, b1), (a2, b2), ...(a�,
b�). At the end, at least one choice of the sequence will be good enough.

Now fix a sequence of (a1, b1), . . . , (a�, b�). We will store a node u by having a
pebble on it. We will (conceptually) assign labels to edges in Gk such that the x-
th edge of node u will lead to its x-th smallest neighbour in Gk. Suppose node u in
Gk is stored and we are to traverse its x-th edge. In other words, we need to find
the x-th smallest neighbours of u in Gk, To this end, we compute all those nodes
u′ in Gk−1 represented by u in Gk (to be described in next paragraph). Then
we compute all nodes v′ which is an immediate neigbour of some u′, followed
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by their representatives, repLk
(v′), using a forward UTS. Finally, we choose the

x-th smallest representative.
The most difficult step is to compute those u′ in Gk−1 represented by u in

Gk For NSW, we make use of a reversible UTS. The idea is to convert the graph
Gk−1 into one with edges symmetrically labelled, i.e if the ith neighbor of vertex
v is the vertex u, then the ith neighbor of vertex u is also the vertex v. Suppose
this is done and suppose u is the i-th node along a short UTS from u′ and let the
sequence of edge labels in the UTS be σ1σ2 · · ·σi. Then the i-th reverse UTS,
σi · · ·σ2σ1, starting from u will bring us to u′. Thus to find all u′ represented by
u, we try, for each possible i, to walk from u using the i-th reverse UTS to reach
a candidate node u′. Then we walk from u′ using the (forward) UTS to verify
if u is the minimum node in Lk. For ATWZ, the idea is similar except that we
try for each pseudorandom walk and for each i, the i-th reverse pseudorandom
walk from u to arrive at a candidate u′. Note that checking for v ∈ Lk is easily
done by checking if 1 ≤ akv+ bk ≤ q/(6f). Note also that when u = s and in the
process of discovering those u′ represented by u, we hit t, then we can stop and
answer: “s, t connected”. Thus if N(s) contains the whole component of s and
we have not discovered t, we can stop and answer: “s, t not connected”. More
detail will be given in our technical report [12].

To convert the graph into a symmetrically labelled one, we expand a degree-d
node v into a cycle of d nodes v0, . . . , vd−1 if d is even; or d + 1 nodes v0, . . . , vd

if d is odd. The edges on the cycles are labelled such that the edge (vi, vi+1)
(where for the vertex indices, we take modulo d if d is even; or modulo d + 1 if
d is odd) is labelled with 0 (or 1) if i is even (or odd respectively). For arbitrary
edge (u, v) in the original graph, if u is the k-th neighbor of v and v is the l-th
neighbor of u, then connect vk and ul using an edge labelled 2 at both ends.
Finally for each node v of odd degree, add a self-loop to vd with edge label 2.

As for the storage, storing the sequence (a1, b1), . . . , (a�, b�) requires O(� ×
log n) space. For the NSW algorithm, each of the � levels requires O(1) peb-
bles and O(log2 f) bits to generate and follow the short UTS. Thus O(log3/2 n)
space is needed. For the ATWZ algorithm, each level requires O(log n) space
and overall it also needs O(log2 f + � log n) = O(log4/3 n) space to generate the
pseudorandom walks. Hence in total O(log4/3 n) space is needed.
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