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Abstract. Valiant’s theory of holographic algorithms is a novel method-
ology to achieve exponential speed-ups in computation. A fundamental
parameter in holographic algorithms is the dimension of the linear ba-
sis vectors. We completely resolve the problem of the power of higher
dimensional bases. We prove that 2-dimensional bases are universal for
holographic algorithms.

1 Introduction

Complexity theory has learned a great deal about the nature of efficient com-
putation. However if the ultimate goal is to gain a fundamental understanding
such as what differentiates polynomial time from exponential time, we are still
a way off. In fact, in the last 20 years, the most spectacular advances in the field
have come from discovering new and surprising ways to do efficient computa-
tions. The theory of holographic algorithms introduced recently by Valiant [18]
is one such new methodology which gives polynomial time algorithms to some
problems which seem to require exponential time.

To describe this theory requires some background. At the top level it is a
method to represent computational information in a superposition of linear vec-
tors, somewhat analogous to quantum computing. This information is manipu-
lated algebraically, but in a purely classical way. Then via a beautiful theorem
called the Holant Theorem [18], which expresses essentially an invariance of ten-
sor contraction under basis transformations [2], this computation is reduced to
the computation of perfect matchings in planar graphs. It so happens that count-
ing perfect matchings for planar graphs is computable in polynomial time by the
elegant FKT method [11,12,15]. Thus we obtain a polynomial time algorithm.
The whole exercise can be thought of as an elaborate scheme to introduce a cus-
tom made process of exponential cancellations. The end result is a polynomial
time evaluation of an exponential sum which expresses the desired computation.
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On a more technical level, there are two main ingredients in the design of a
holographic algorithm. First, a collection of planar matchgates. Second, a choice
of linear basis vectors, through which the computation is expressed and inter-
preted. Typically there are two basis vectors n and p in dimension 2, which
represent the bit values 0 and 1 respectively, and their tensor product will rep-
resent a combination of 0-1 bits. It is the superpositions of these vectors in
the tensor product space that are manipulated by a holographic algorithm in
the computation. This superposition gives arise to exponential sized aggregates
with which massive cancellations take place. In this sense holographic algorithms
are more akin to quantum algorithms than to classical algorithms in their design
and operation.

No polynomial time algorithms were known previously for any of the prob-
lems in [18,2,1,21], and some minor variations are NP-hard. These problems
may also appear quite restricted. Here is a case in point. Valiant showed [21]
that the problem #7Pl-Rtw-Mon-3CNF is solvable in P by this method. This
problem is a restrictive Satisfiability counting problem. Given a planar read-
twice monotone 3CNF formula, it counts the number of satisfying assignments,
modulo 7. However, it is known that even for this restricted class of Boolean
formulae, the counting problem without the modulo 7 is #P-complete. Also, the
counting problem modulo 2 (denoted as #2Pl-Rtw-Mon-3CNF) is ⊕P-complete
(thus NP-hard by randomized reductions). The ultimate power of this theory is
unclear.

It is then natural to ask, whether holographic algorithms will bring about
a collapse of complexity classes. Regarding conjectures such as P �= NP un-
dogmatically, it is incumbent for us to gain a systematic understanding of the
capabilities of holographic algorithms. This brings us closer to the fundamen-
tal reason why these algorithms are fascinating—its implication for complexity
theory. The fact that some of these problems such as #7Pl-Rtw-Mon-3CNF
might appear a little contrived is beside the point. When potential algorithmic
approaches to P vs. NP were surveyed, these algorithms were not part of the
repertoire; presumably the same “intuition” for P �= NP would have applied
equally to #7Pl-Rtw-Mon-3CNF and to #2Pl-Rtw-Mon-3CNF.

In holographic algorithms, since the underlying computation is ultimately
reduced to perfect matchings, the linear basis vectors which express the com-
putation are necessarily of dimension 2k, for some integer k. This k is called
the size of the basis. Most holographic algorithms so far [18,2,1,21] use bases of
size 1. Surprisingly Valiant’s algorithm for #7Pl-Rtw-Mon-3CNF used a basis of
size 2. Utilizing bases of a higher dimension has always been a theoretical possi-
bility, which may further extend the reach of holographic algorithms. Valiant’s
algorithm makes it realistic.

It turns out that for #7Pl-Rtw-Mon-3CNF one can design another holographic
algorithm with a basis of size 1 [4]. Subsequently we have proved [6] the surprising
result that any basis of size 2 can be replaced by a suitable basis of size 1 in
a holographic algorithm. In this paper we completely resolve the problem of
whether bases of higher dimensions are more powerful. They are not.
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Our starting point is a theorem from [6] concerning degenerate tensors of
matchgates. For bases of size 2 we were able to find explicit constructions of
certain gadgets from scratch. But this approach encountered major difficulties
for arbitrary size k. The underlying reason for this is that for larger matchgates
there is a set of exponential sized algebraic constraints called matchgate identi-
ties [17,1,3] which control their realizability. This additional constraint is absent
for small matchgates. The difficulty is finally overcome by deriving a tensor
theoretic decomposition. This reveals an internal structure for non-degenerate
matchgate tensors. We discover that for any basis of size k, except in a degen-
erate case, there is an embedded basis of size 1. To overcome the difficulty of
realizability, we make use of the given matchgates on a basis of size k, and “fold”
these matchgates onto themselves to get new matchgates on the embedded basis
of size 1. These give geometric realizations, by planar graphs, of those tensors
in the decomposition which were defined purely algebraically. Thus we are able
to completely bypass matchgate identities here. In the process, we gain a sub-
stantial understanding of the structure of a general holographic algorithm on a
basis of size k.

This paper is organized as follows. In Section 2, we give a brief summary of
background information. In Section 3, we give a structural theorem for valid
bases, the tensor theoretic decomposition, and prove two key theorems for the
realizability of generators. In Section 4, we prove a realizability theorem for
recognizers. This leads to the main theorem.

2 Background

Let G = (V, E, W ) be a weighted undirected planar graph. A generator match-
gate Γ is a tuple (G, X) where X ⊆ V is a set of external output nodes. A
recognizer matchgate Γ ′ is a tuple (G, Y ) where Y ⊆ V is a set of external input
nodes. The external nodes are ordered counter-clockwise on the external face.
Γ (or Γ ′) is called an odd (resp. even) matchgate if it has an odd (resp. even)
number of nodes.

Each matchgate is assigned a signature tensor. A generator Γ with n output
nodes is assigned a contravariant tensor G of type

(
n
0

)
. Under the standard basis,

it takes the form G with 2n entries, where

Gi1i2...in = PerfMatch(G − Z).

Here PerfMatch is the sum of all weighted perfect matchings, and Z is the
subset of the output nodes having the characteristic sequence χZ = i1i2 . . . in. G
is called the standard signature of the generator Γ . We can view G as a column
vector (whose entries are ordered lexicographically according to χZ).

Similarly a recognizer Γ ′ = (G′, Y ) with n input nodes is assigned a covariant
tensor R of type

(0
n

)
.

Because of the parity constraint of perfect matchings, half of all entries of a
standard signature G (or R) are zero. Therefore, we can use a tensor in V n−1

0 (or
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V 0
n−1 ) to represent all the information contained in G (or R). More precisely,

we have the following definition (we only need for the generators).

Definition 1. If a generator matchgate Γ with arity n is even (resp. odd), a
condensed standard signature G

�

of Γ is a tensor in V n−1
0 , and G

�

α = Gαb (resp.

G
�

α = Gαb), where G is the standard signature of Γ , α ∈ {0, 1}n−1 and b = ⊕α

is the sum of the bits of α mod 2, i.e., the parity of the Hamming weight of α.

A basis T contains 2 vectors (t0, t1) (also denoted as (n, p)), each of them has
dimension 2k (size k). We use the following notation: T = (tαi ) = [nα, pα], where
i ∈ {0, 1} and α ∈ {0, 1}k. We follow the convention that upper index α is for
row and lower index i is for column (see [8]). We assume rank(T ) = 2 in the
following discussion because a basis of rank(T ) ≤ 1 is useless. Under a basis T ,
we can talk about non-standard signatures (or simply signatures).

Definition 2. The contravariant tensor G of a generator Γ has signature G
under basis T iff G = T⊗nG is the standard signature of the generator Γ .

Definition 3. The covariant tensor R of a recognizer Γ ′ has signature R under
basis T iff R = RT⊗n, where R is the standard signature of the recognizer Γ ′.

We have
Gα1α2···αn =

∑

i1,i2,...,in∈{0,1}
Gi1i2···in tα1

i1
tα2
i2

· · · tαn

in
(1)

Ri1i2···in =
∑

α1,α2,...,αn∈{0,1}k

Rα1α2···αn
tα1
i1

tα2
i2

· · · tαn

in
(2)

Definition 4. A contravariant tensor G ∈ V n
0 (resp. a covariant tensor R ∈

V 0
n ) is realizable on a basis T iff there exists a generator Γ (resp. a recognizer

Γ ′) such that G (resp. R) is the signature of Γ (resp. Γ ′) under basis T .

For a string α ∈ {0, 1}n, we use the notation wt(α) to denote its Hamming
weight. A signature G or R on index α = α1α2 . . . αn, where each αi ∈ {0, 1}k,
is symmetric iff the value of Gα or Rα only depends on the number of k-bit
patterns of αi, i.e., it is symmetric under permutations of the blocks αi. For
k = 1 it only depends on the Hamming weight wt(α) of its index α. For k = 1, we
can denote a symmetric signature by the notation [z0, z1, . . . , zn], where i is the
Hamming weight, and zi is the value of the signature for an index of wt(α) = i.
We note that k = 1 always for signatures other than standard signatures.

A matchgrid Ω = (A, B, C) is a weighted planar graph consisting of a disjoint
union of: a set of g generators A = (A1, . . . , Ag), a set of r recognizers B =
(B1, . . . , Br), and a set of f connecting edges C = (C1, . . . , Cf ), where each Ci

edge has weight 1 and joins an output node of a generator with a input node of a
recognizer, so that every input and output node in every constituent matchgate
has exactly one such incident connecting edge.

Let G(Ai, T ) be the signature of generator Ai under the basis T and R(Bj , T )
be the signature of recognizer Bj under the basis T . And Let G =

⊗g
i=1 G(Ai, T )
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and R =
⊗r

j=1 R(Bj , T ). Then Holant(Ω) is defined to be the contraction of
these two product tensors, where the corresponding indices match up according
to the f connecting edges in C. We note that for a holographic algorithm to
use a basis of size k > 1, each matchgate of arity n in the matchgrid has kn
external nodes, grouped in blocks of k nodes each. These k nodes are connected
in a block-wise fashion between matchgates, where the combinations of tensor
products of the 2k-dimensional basis vectors are interpreted as truth values.

Theorem 1 (Valiant). For any matchgrid Ω over any basis T , let G be its
underlying weighted graph, then

Holant(Ω) = PerfMatch(G).

There is a subtlety for the universal bases collapse theorem. It turns out that
if we only focus on the recognizers, bases of size k > 1 are in fact provably
more powerful than bases of size 1. It is only in the context of simultaneous
realizability of both generators and recognizers that we are able to achieve this
universal collapse. The first crucial insight is to isolate certain degenerate bases.

Definition 5. A basis T is degenerate iff tα = (tα0 , tα1 ) = 0 for all wt(α) even
(or for all wt(α) odd).

Definition 6. A generator tensor G ∈ V n
0 (dim(V ) = 2) is degenerate iff it

has the following form (where Gi ∈ V is a arity 1 tensor):

G = G1 ⊗ G2 ⊗ · · · ⊗ Gn. (3)

Degenerate generators can be completely decoupled. A holographic algorithm
that uses only degenerate generators has no connections between its various
components and hence is essentially trivial.

In [6], we proved the following theorem. The proof uses matchgate identities.

Theorem 2. If a basis T is degenerate and rank(T ) = 2, then every generator
G ∈ V n

0 realizable on the basis T is degenerate.

3 Valid Bases

Definition 7. A basis T is valid iff there exists some non-degenerate generator
realizable on T .

Our starting point is a careful study of high dimensional valid bases.

Corollary 1. A valid basis is non-degenerate.

Theorem 3. For every valid basis T = [n, p], (nα, pα) and (nβ , pβ) are linearly
dependent, for all wt(α), wt(β) having the same parity.
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Proof: Since T = [n, p] is valid, by definition, there exists a non-degenerate
generator G which is realizable on T . From Corollary 1, we know that T = [n, p]
is non-degenerate.

Let α0, β0 be two arbitrary indices of even weight and α1, β1 be two arbitrary

indices of odd weight. Let T0 =
[(

nα0

nβ0

)
,

(
pα0

pβ0

)]
and T1 =

[(
nα1

nβ1

)
,

(
pα1

pβ1

)]
.

Then we need to prove det(T0) = det(T1) = 0.
According to the parity of the arity n and the parity of the matchgate realizing

G, we have 4 cases:

Case 1: even n and odd matchgate
From the parity constraint, we have T⊗n

0 G = 0 and T⊗n
1 G = 0. Since G �≡ 0 (i.e.,

G is not identically 0), we have det(T0) = det(T1) = 0. Note that det(T⊗n) =
(det(T ))n2n−1

.

Case 2: odd n and odd matchgate
From the parity constraint, we have T⊗n

0 G = 0. Since G �≡ 0, we have det(T0) =
0. Since the basis is non-degenerate, from the definition, there exists a α such
that wt(α) is even and (nα, pα) �= (0, 0).

From the parity constraint, for all t ∈ [n] = {1, . . . , n}, we have

(T⊗(t−1)
1 ⊗ (nα, pα) ⊗ T

⊗(n−t)
1 )G = 0. (4)

Let Gt be the tensor of type V n−1
0 defined by

G
i1i2...in−1
t = nαGi1i2...it−10itit+1...in−1 + pαGi1i2...it−11itit+1...in−1 ,

where i1, i2, . . . , in−1 = 0, 1. Then equation (4) translates to T
⊗(n−1)
1 Gt = 0.

If ∀t ∈ [n] we have Gt ≡ 0, then we claim G is symmetric and degenerate.
To see this, first suppose pα �= 0. Then for all i1, i2, . . . , in = 0, 1, Gi1i2...in =
G00...0(−nα/pα)wt(i1i2...in). This is clearly symmetric, and degenerate by (3).
The proof is similar if nα �= 0. Since by assumption (nα, pα) �= (0, 0), it follows
that G is degenerate. This is a contradiction.

Therefore there exists some t ∈ [n] such that Gt �≡ 0. Then from T
⊗(n−1)
1 Gt =

0, we have det(T1) = 0.

Case 3: odd n and even matchgate
This is similar to Case 2. We apply the argument for T0 to T1, and apply the
argument for T1 to T0.

Case 4: even n and even matchgate
This case is also similar to Case 2 and Case 3. We simply apply the same argu-
ment for T1 as in Case 2 and the same argument for T0 as in Case 3. 
�

From this theorem, we know that for any valid basis T = [nα, pα] (where α ∈
{0, 1}k), there exist non-zero vectors (nα0 , pα0), and (nα1 , pα1), where α0, α1 ∈
{0, 1}k, and wt(α0) is even and wt(α1) is odd, such that every other (nα, pα) is a
scalar multiple of one of these two vectors (the one with the same parity). More
precisely, we define n̂b = nαb and p̂b = pαb for b = 0, 1, then there exist λα for all
α ∈ {0, 1}k, such that (nα, pα) = λα(n̂⊕α, p̂⊕α), where ⊕α is the parity of wt(α).



Holographic Algorithms: The Power of Dimensionality Resolved 637

Note that (n̂0, p̂0), (n̂1, p̂1) are linearly independent, otherwise rank(T ) < 2.
Therefore each is determined up to a scalar multiplier. This justifies the following

Definition 8. We call T̂ =
[(

n̂0

n̂1

)
,

(
p̂0

p̂1

)]
an embedded size 1 basis of T .

Now suppose a non-degenerate generator G is realizable on a valid basis T =
[nα, pα], (where α ∈ {0, 1}k), and T̂ = (t̂αi ) is an embedded size 1 basis of T .

Substituting (tα0 , tα1 ) = λα(t̂⊕α
0 , t̂⊕α

1 ) in (1), we have

Gα1α2···αn =
∑

i1,i2,··· ,in∈{0,1}
Gi1i2···in tα1

i1
tα2
i2

· · · tαn

in

=
∑

i1,i2,··· ,in∈{0,1}
Gi1i2···inλα1 t̂⊕α1

i1
λα2 t̂⊕α2

i2
· · · λαn t̂⊕αn

in

= λα1λα2 · · · λαn

∑

i1,i2,··· ,in∈{0,1}
Gi1i2···in t̂⊕α1

i1
t̂⊕α2
i2

· · · t̂⊕αn

in
.

We define a tensor Ĝ ∈ V n
0 as follows: For j1, j2, . . . , jn = 0, 1,

Ĝj1j2···jn =
∑

i1,i2,··· ,in∈{0,1}
Gi1i2···in t̂j1i1 t̂j2i2 · · · t̂jn

in
. (5)

Then we have

Gα1α2···αn = λα1λα2 · · · λαnĜ⊕α1⊕α2···⊕αn . (6)

The decomposition (6) is pregnant with structural information (see discussion
in [7]). Starting with any non-degenerate G which is realizable on a valid basis
T , we defined its embedded size 1 basis T̂ , (λα) and Ĝ by (5). But we note that
(5) and (6) are satisfied for every generator (we only need one non-degenerate
G to establish T̂ ). Then regarding (6) we have the following key theorems:

Theorem 4. (λα) (where α ∈ {0, 1}k) is a condensed signature of some gener-
ator matchgate with arity k + 1.

Theorem 5. Ĝ is a standard signature of some generator matchgate of arity n.

The proofs of Theorems 4 and 5 are both constructive. We make one more
definition. Since the basis T is non-degenerate, there exist β0 and β1, such that
wt(β0) is even, wt(β1) is odd, and λβ0λβ1 �= 0. We also assume β0 and β1 is such
a pair with minimum Hamming distance. To simplify notations in the following
proof, we assume β0 = 00 · · · 0 and β1 = 11 · · · 100 · · ·0 (where there are a 1s, a
is odd). This simplifying assumption is without loss of generality; we omit this
justification here and it can be found in the full paper [7].

Let c0 = λβ0 = λ00···000···0 and c1 = λβ1 = λ11···100···0. In this setting, for any
pattern γ strictly between β0 and β1 (if any), if αr = γ for some r ∈ [n], then
by (6)

Gα1α2···αn = 0. (7)
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(k + 1)-th external node
of Γλ
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1

Fig. 3. Modify the i-th
block of Γ when ji = 1.
All the nodes are viewed
as internal in Γλ.

Since G is realizable on T , G is the standard signature of some matchgate Γ
with arity nk. For convenience, we label its ((i − 1)k + j)-th external node by a
pair of integers (i, j) ,where i ∈ [n], j ∈ [k].

Proof of Theorem 5: For every i ∈ [n], do the following modifications to the
k nodes (i, j) of the i-th block of external nodes in Γ , where j ∈ [k] (see Fig. 1):

– Connect (i, l) with (i, l + 1) by an edge of weight 1, for l = 2, 4, . . . , a − 1.
– Add two new nodes i′ and i′′.
– Connect (i, 1) and i′′ by an edge of weight 1/c1.
– Connect i′′ and i′ by an edge of weight 1/c0.

After all these modifications, viewing the n nodes i′ (one node stemming from
each block, i ∈ [n]) as external nodes and all other nodes as internal nodes, we
have a matchgate Γ̂ with arity n. Now we prove that Ĝ is the standard signature
of this matchgate Γ̂ .

Denote the standard signature of Γ̂ temporarily as (Γ̂ j1j2···jn). For an arbi-
trary pattern j1j2 · · · jn ∈ {0, 1}n, we consider the value Γ̂ j1j2···jn . For r ∈ [n],
there are two cases:

– Case 1: jr = 0. In this case, we keep the external node r′. Any perfect
matching will take the edge (r′′, r′), this contributes a factor of 1/c0. As a
result, the node (r, 1) must match with some node in the original Γ . And
from (7), the only possible non-zero pattern of this block of G is β0 = 00 . . .0.
(This means that the perfect matchings will not take any of the new weight
1 edges.)

– Case 2: jr = 1. In this case, we remove the external node r′. Any perfect
matching will take the edge between (r, 1) and r′′, this contributes a factor
of 1/c1. As a result, the node (r, 1) will be removed from the original Γ . And
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from (7), the only possible non-zero pattern of this block of G is β1. (This
means that the perfect matchings will take all of the new weight 1 edges.)

To sum up,

Γ̂ j1j2···jn =
1

cj1

1
cj2

· · · 1
cjn

Gβj1βj2 ···βjn .

Together with (6), we know this is exactly Ĝ. This completes the proof. 
�

Before we prove Theorem 4, we have the following claim. The proof is omitted
here and can be found in the full paper [7].

Claim 1. For any standard signature with more than one non-zero entries, there
exist two non-zero entries Gα and Gβ such that the Hamming distance between
α and β is 2.

Proof of Theorem 4: Here we start with a non-degenerate G. By Claim 3, for
notational simplicity we assume G0 = Ĝ00j3j4···jn �= 0 and G1 = Ĝ11j3j4···jn �= 0.
Other cases can be proved similarly. We are given the planar matchgate Γ with
standard signature G. We carry out the following transformations of Γ :

– Do nothing to the first block. However, for convenience, we rename the first
k nodes as 1′, 2′, . . . , k′.

– Change the second block as in Figure 2, where g0 = G0λ
β0λβj3 · · · λβjn and

g1 = G1λ
β1λβj3 · · · λβjn . Note that g0, g1 �= 0. It has a new external node

(k + 1)′.
– For i ≥ 3 and ji = 0, do nothing to the i-th block.
– For i ≥ 3 and ji = 1, change the i-th block as in Figure 3.

After all these changes, we will consider the k + 1 nodes i′ (where i ∈ [k + 1],
the first k nodes all stem from the first block, and (k+1)′ stems from the second
block) as the new external nodes and all other nodes as internal nodes. In this
way we obtain a planar matchgate Γλ with arity k +1. Now we prove that λα is
the condensed standard signature of Γλ.

First we show that Γλ is an even matchgate. Let x be the number of nodes in
Γ and y = wt(j3j4 · · · jn). Since

Gβ0β0βj3βj4 ···βjn = λβ0λβ0λβj3 λβj4 · · · λβjn Ĝ00j3...jn �= 0,

we know x − ya is even. Given that a is odd, we can count mod 2, and get
x + y + 2 ≡ x − ya ≡ 0 mod 2. Since x + y + 2 is exactly the number of nodes in
Γλ, we know Γλ is an even matchgate.

For α ∈ {0, 1}k and wt(α) is even, we consider Γ α0
λ at the (k + 1)-bit pattern

α0. Consider each block in turn in Γ . The first block clearly should be given the
k-bit pattern α. The only possible non-zero value concerning the second block
is to take the edge (2′′, (k + 1)′) with weight 1/g0, and assign the all-0 pattern
β0 to (2, 1), (2, 2), . . . , (2, k). This follows from (7). Similarly for the i-th block,
where i ≥ 3, we must assign the pattern βji . Hence, applying (6) we get,

Γ α0
λ =

1
g0

Gαβ0βj3βj4 ···βjn =
1
g0

λαλβ0λβj3 λβj4 · · · λβjn G0 = λα.
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Similarly, for α ∈ {0, 1}k and wt(α) is odd,

Γ α1
λ =

1
g1

Gαβ1βj3βj4 ···βjn =
1
g1

λαλβ1λβj3 λβj4 · · · λβjn G1 = λα.

This completes the proof. 
�

4 Collapse Theorem

By (5) and Theorem 5, we have

Theorem 6. If a generator is realizable on a valid basis T , then it is also real-
izable on its embedded size 1 basis T̂ .

Now we prove the collapse result on the recognizer side.

Theorem 7. If a recognizer R is realizable on a valid basis T , then it is also
realizable on its embedded size 1 basis T̂ .

Proof: Since T is a valid basis, from Section 3, we have its embedded size 1 basis
T̂ , and the tensor (λα). By the proof of Theorem 4 we have an even matchgate
Γλ whose condensed signature is λα.

Let Γ ′ be a matchgate realizing R, R = RT⊗n. Γ ′ has kn external nodes.
For every block of k nodes in Γ ′, we use the matchgate Γλ from Section 3 to

extend Γ ′ to get a new matchgate Γ̂ ′ of arity n (see Figure 4).

Fig. 4. Extend the i-th block of recognizer Γ ′ by a copy of Γλ. We rename the (k+1)-th
node of this copy of Γλ as i∗, which is the i-th external node of the new recognizer �Γ ′.

The idea is that, for each block of k external nodes in Γ ′, we take one copy
of Γλ and fold it around so that in a planar fashion its first k external nodes are
connected to the k external nodes in Γ ′ in this block. The (k + 1)-st external
node of this copy of Γλ becomes a new external node of Γ̂ ′. Altogether Γ̂ ′ has n
external nodes 1∗, 2∗, . . . , n∗.
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Since Γλ is an even matchgate, when the node i∗ is either left in (set to 0) or
taken out (set to 1), the only possible non-zero patterns within the i-th copy of
Γλ are all αi ∈ {0, 1}k with the same parity.

It follows that the following exponential sum holds, for all i1, i2, . . . , in = 0, 1:

R̂i1i2...in
=

∑

⊕αr=ir

Rα1α2···αn
λα1λα2 · · ·λαn .

where R̂ is the standard signature of Γ̂ ′, and R is the standard signature of Γ ′.

We want to prove that R̂ in the basis T̂ = (t̂il) =
[(

n̂0

n̂1

)
,

(
p̂0

p̂1

)]
and R in the

basis T = (tαl ) give the same recognizer R.
Recall that tαl = λα t̂⊕α

l . Now from (2) we have

Rl1l2···ln =
∑

αr∈{0,1}k

Rα1α2···αn
tα1
l1

tα2
l2

· · · tαn

ln

=
∑

ir∈{0,1}

∑

⊕αr=ir

Rα1α2···αn
tα1
l1

tα2
l2

· · · tαn

ln

=
∑

ir∈{0,1}

∑

⊕αr=ir

Rα1α2···αn
λα1 t̂⊕α1

l1
λα2 t̂⊕α2

l2
· · ·λαn t̂⊕αn

ln

=
∑

ir∈{0,1}
t̂i1l1 t̂

i2
l2

· · · t̂in

ln

∑

⊕αr=ir

Rα1α2···αn
λα1λα2 · · · λαn

=
∑

ir∈{0,1}
t̂i1l1 t̂

i2
l2

· · · t̂in

ln
R̂i1i2···in

.

The last equation shows that R is also the signature of Γ̂ ′ under basis T̂ . This
completes the proof. 
�

From Theorems 6 and 7, we can prove the following main theorem. See [7].

Theorem 8. (Bases Collapse Theorem) Any holographic algorithm on a basis of
any size which employs at least one non-degenerate generator can be efficiently
transformed to an holographic algorithm in a basis of size 1. More precisely,
if generators G1, G2, . . . , Gs and recognizers R1, R2, . . . , Rt are simultaneously
realizable on a basis T of any size, and not all generators are degenerate, then
all the generators and recognizers are simultaneously realizable on a basis T̂ of
size 1, which is the embedded basis of T .

We remark that a holographic algorithm which only uses degenerate generators
is trivial. From Theorem 8, what can be computed in P-time by holographic algo-
rithms in arbitrary dimensional bases can also be done with bases of size 1. This
rules out infinitely many theoretical possibilities. Regarding holographic algo-
rithms over size 1 basis, we have already built a substantial theory [5]. Therefore
this is an important step towards the understanding of the ultimate capability
of holographic algorithms.
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