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Abstract. Fibonacci gate problems have severed as computation prim-
itives to solve other problems by holographic algorithm [5] and play an
important role in the dichotomy of exact counting for Holant and CSP
frameworks [6]. We generalize them to weighted cases and allow each ver-
tex function to have different parameters, which is a much boarder family
and #P-hard for exactly counting. We design a fully polynomial-time ap-
proximation scheme (FPTAS) for this generalization by correlation decay
technique. This is the first deterministic FPTAS for approximate count-
ing in the general Holant framework without a degree bound. We also
formally introduce holographic reduction in the study of approximate
counting and these weighted Fibonacci gate problems serve as computa-
tion primitives for approximate counting. Under holographic reduction,
we obtain FPTAS for other Holant problems and spin problems. One
important application is developing an FPTAS for a large range of ferro-
magnetic two-state spin systems. This is the first deterministic FPTAS
in the ferromagnetic range for two-state spin systems without a degree
bound. Besides these algorithms, we also develop several new tools and
techniques to establish the correlation decay property, which are appli-
cable in other problems.

1 Introduction

Holant is a refined framework for counting problems [5,6,8], which is more expres-
sive than previous frameworks such as counting constraint satisfaction problems
(CSP) in the sense that they can be simulated using Holant instances. In this pa-
per, we consider a generalization called weighted Holant problems. A weighted
Holant is an extension of a Holant problem where each edge e is assigned an ac-
tivity λe, and if it is chosen it contributes to the partition function a factor of λe.
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Given a graph G(V,E), a family of node functions F = {Fv|v ∈ V }, and edge
weights Λ = {λe|e ∈ E}, the partition function for a weighted Holant instance
Ω (G,F , Λ) is the summation of the weights over all configurations σ : E →
{0, 1}, specifically the value of

∑
σ

(∏
e∈E λe (σ (e))

∏
v∈V Fv

(
σ|E(v)

))
. We use

Holant(F , Λ) to denote the class of Holant problems where all functions are taken
fromF and all edge weights are taken fromΛ. For example, consider thePerfect
Matching problem on G. This problem corresponds to attaching the Exact-
One function on every vertex of G — for each 0-1 edge assignment, the product∏

v∈V Fv(σ |E(v)) evaluates to 1 when the assignment is a perfect matching, and
0 otherwise, thereby summing over all 0-1 edge assignments gives us the number
of perfect matchings in G. If we use the At-Most-One function at each vertex,
then we can count all matchings, including those that are not perfect.

A symmetric function F can be expressed by [f0, f1, . . . , fk], where fi is the
value of F on inputs of hamming weight i. The above mentioned Exact-One
and At-Most-One functions are both symmetric and can be expressed as
[0, 1, 0, 0, . . .] and [1, 1, 0, 0, . . .] respectively. A Fibonacci function F is a symmet-
ric function [f0, f1, . . . , fk], satisfying that fi = cfi−1 + fi−2 for some constant
c. For example, the parity function [a, b, a, b, . . .] is a special Fibonacci function
with c = 0. If there are no edge weights (or equivalently all the weights are equal
to 1) and all the node functions are Fibonacci functions with a same parame-
ter c, we have a polynomial time algorithm to compute the partition function
exactly [5]. These problems also form the base for a family of holographic algo-
rithms, where other interesting problems can be reduced to the Fibonacci gate
problems [5]. Furthermore, this family of functions is interesting not only because
of its tractability, but also because it essentially captures almost all tractable
Holant problems with all unary functions available [6,8].

If we allow edges to have non-trivial weights or each function to have dif-
ferent parameters in Fibonacci gates, then the exact counting problem becomes
#P-hard [6,8]. Nevertheless, it is interesting to study the problem in the approx-
imation setting. In contrast to the exact counting setting, the approximability
of Holant problem is much less understood. In this paper, we study approximate
counting for weighted Fibonacci gate problems.

Another closely related and well-studied model is spin systems. In this pa-
per, we focus on two-state spin systems. An instance of a spin system is a
graph G(V,E). A configuration σ : V → {0, 1} assigns every vertex one of the
two states. The contributions of local interactions between adjacent vertices are

quantified by a matrix A =

[
A0,0 A0,1

A1,0 A1,1

]

=

[
β 1
1 γ

]

, where β, γ ≥ 0. The partition

function is defined by ZA(G) =
∑

σ∈{0,1}V

∏
(u,v)∈E Aσ(u),σ(v).

There has been a lot of studies on the approximability of the partition function
in terms of parameters β and γ. The problem is exactly solvable in polynomial
time if βγ = 1. When βγ < 1, the system is called anti-ferromagnetic and
we have a complete understanding of its approximability: there is a uniqueness
boundary, above which there is an FPTAS [27,15,23,16] and below which it is
NP-hard [24,25,9].



FPTAS for Weighted Fibonacci Gates and Its Applications 789

The story is different in ferromagnetic range βγ > 1. Jerrum and Sinclair [13]
gave an FPRAS for Ising model (β = γ > 1) based on Markov Chain Monte
Carlo (MCMC) method and lately Goldberg et al. extended that to all βγ > 1
plane. However, these algorithms are all randomized. Can we design a deter-
ministic FPTAS for it as that for anti-ferromagnetic range? Indeed, this is an
interesting and important question in general and many effort has been made
for derandomizing MCMC based algorithms. For instance, there is an FPRAS
for counting matchings [12] but FPTAS is only known for graphs of bounded de-
gree [2]. The situation is similar in computing permanent of nonnegative matrix,
although an FPRAS is known [14], the current best deterministic algorithm can
only approximate the permanent with an exponential large factor [18]. To the
best of our knowledge, no deterministic FPTAS was previously known for two-
state spin systems in ferromagnetic range. In particular, the correlation decay
technique, the main tool to design FPTAS in anti-ferromagnetic range, cannot
directly apply.

1.1 Our Results

The main results of this paper are a number of FPTAS’s for computing the
partition function of different Holant problems and spin systems.

Weighted Fibonacci Gates. We design an FPTAS for weighted Fibonacci
gates when the parameters satisfy certain conditions. We have several theorems
to cover different ranges. In Theorem 1, we prove that for any fixed choice of
other parameters, we can design an FPTAS as long as the edge weights are close
enough to 1. This result demonstrates a smooth transition from the unweighted
case to weighted ones in terms of approximation.

Another interesting range is that we have an FPTAS for the whole range as
long as the Fibonacci parameter c is reasonably large (no less than a constant
1.17) and edge weights are no less than 1 (which means all the edges prefer to
be chosen) (Theorem 2). We also allow different nodes to have functions with
different parameter c, which contrasts the exact counting setting where a uniform
parameter on each node is crucial to have a polynomial time algorithm.

Ferromagnetic Two-State Spin Systems. We design an FPTAS for a large
range of ferromagnetic two state spin systems. This is the first deterministic
FPTAS in the ferromagnetic range for two-state spin systems without a degree
bound. To describe the tractable range, we present a monotonically increasing
function Γ : [1,∞] → R with Γ (1) = 1 and Γ (x) ≤ x. We have an FPTAS for a

ferromagnetic spin system

[
β 1
1 γ

]

as long as γ ≤ Γ (β) or β ≤ Γ (γ) (Theorem 4).

The exact formula of Γ is complicated and we do not spend much effort to

optimize it. However, it already enjoys a nice property in that limx→+∞
Γ (x)
x = 1.

This means that although the range does not cover the Ising model (β = γ), it
gets relatively close to that in infinity. We also have similar results for two-spin
system with external fields.
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OtherHolantProblems.We can extend our FPTAS to functions [f0, f1, . . . , fd]
with form fi+2 = afi+1 + bfi for a range of parameters. This is a much bigger
family than Fibonacci gates, since Fibonacci gates corresponds to b = 1.

1.2 Our Techniques

Our main approach for designing FPTAS’s is the correlation decay technique
introduced in [1] and [27]. While the general framework is standard, it is highly
non-trivial to design a recursive computational structure and especially to prove
the property of exponential correlation decay for a specific problem.

A powerful technique we use is to apply a potential function to amortize the de-
cay rate, which was introduced and used in many circumstances [22,15,23,16,20].
Besides this, to enrich the toolkit, we introduce several new techniques to design
and analysis the recursive computational structure. We believe that these tech-
niques can find their applications in other problems.

Working with Dangling Edges. The recursive computational structure for
spin problems usually relates a marginal probability of a vertex to that of its
neighbors. In Holant problems, we work with assignments and marginal proba-
bilities on edges. Since an edge has two ends, it has two sets of neighbors, which
complicates things a lot. In this paper, we instead work on instances with dan-
gling edges, that is, a half edge with neighbors only on one end, and then reduce
regular instances to dangling instances. This technique works for any Holant
problems and we believe that it is the right structure to work with in the Holant
framework. Indeed, the idea has later been successfully used in [17].

Computation Tree with Bounded Degrees. The correlation decay property
only directly implies an FPTAS for systems with bounded degrees. One exception
is the anti-ferromagnetic two-state spin systems, where a stronger notion of
computationally efficient correlation decay is introduced [15]. In this paper, we
also establish the computationally efficient correlation decay for systems with
unbounded degree, but via a different approach. Thanks to the unique property
of Fibonacci functions, we can decompose a node into several nodes with constant
degrees. Thus, at each step of our computation tree, we only involve constant
many sub-instances even if the degree of the original system is not bounded.

Bounding Range of Variables. After we get a recursion system, the main task
is to prove the correlation decay property. This is usually achieved by proving
that a certain amortized decay rate, which is a function of several variables,
is less than one for any choice of these variables in their domain. Thus if one
can prove a smaller domain for each vairable, the analysis becomes easier. Some
naive implementation of this idea already appeared in approximate counting of
coloring problems [10,20]. In this paper, we develop this idea much further. We
divide sub-instances involved in the computation tree into two classes: deep ones
for which we can get a much better estimation of their range and shallow ones
for which we can compute their value without error. Then we can either compute
the exact value or we can safely assume that it is within a smaller domain, which
enables us to prove the correlation decay property easier.
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Holographic Reduction. We formally introduce holographic reduction in the
study of approximate counting. We use weighted Fibonacci gate problems as
computational primitives for approximate counting and design holographic al-
gorithms for other problems based on them. In particular, we use the FPTAS for
Fibonacci gates to obtain an FPTAS for ferromagnetic two-state spin systems.
It is noteworthy that the correlation decay property does not generally hold for
ferromagnetic two-state spin systems. So we cannot do a similar argument to
get the FPTAS in the spin world directly. Moreover, the idea of holographic
reduction can apply to any Holant problems, which extends known counting
algorithms (both exact and approximate, both deterministic and randomized)
to a broader family of problems. Indeed, the other direction of holographic re-
duction is also used in our algorithm. We design an exact algorithm for shallow
sub-instances of Fibonacci instance by a holographic reduction to the spin world.

1.3 Related Works

Most previous studies of the Holant framework are for exact counting, and a
number of dichotomy theorems were proved [8,11,3]. Holographic reduction was
introduced by Valiant in holographic algorithms [26,4], which is later also used
to prove hardness result of counting problems [5,8,7].

For some special Holant problems such as counting (perfect) matchings, their
approximate versions are well studied [2,12,14]. In particular, [2] gave an FPTAS
to count matchings but only for graphs with bounded degrees. It is relatively less
studied in the general Holant framework in terms of approximate counting except
for two recent work: [28] studied general Holant problems but only for planar
graph instances with a bounded degree; [21] gives an FPRAS for several Holant
problems. Another well-known example is the “sub-graph world” in [13]. It is
indeed a weighted Holant problem with Fibonacci functions of c = 0, for which
an FPRAS was given. In that paper, holographic reduction was also implicitly
used, which extends the FPRAS to the Ising model.

Most previous study for FPTAS via correlation decay is on the spin systems. It
was extremely successful in the anti-ferromagnetic two-spin system [27,15,23,16].
It is also used in multi-spin systems [10,20].

2 Preliminaries

A weighted Holant instance Ω = (G(V,E), {Fv|v ∈ V }, {λe|e ∈ E}) is a tuple.
G(V,E) is a graph. Fv is a function with arity dv: {0, 1}dv → R

+, where dv
is the degree of v and R

+ denotes non-negative real numbers. Edge weight λe

is a mapping {0, 1} → R
+. A configuration σ is a mapping E → {0, 1} and

gives a weight wΩ(σ) =
∏

e∈E λe(σ(e))
∏

v∈V Fv(σ |E(v)), where E(v) denotes
the incident edges of v. The counting problem on the instance Ω is to compute
the partition function: Z(Ω) =

∑
σ

(∏
e∈E λe(σ(e))

∏
v∈V Fv(σ |E(v))

)
.

We can represent each function Fv by a vector in (R+)2
dv
, or a tensor in

((R+)2)⊗dv . This is also called a signature. A symmetric function F can be
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expressed by [f0, f1, . . . , fk], where fj is the value of F on inputs of hamming
weight j. For example, the equality function is [1, 0, . . . , 0, 1]. Edge weight is a
unary function, which can be written as [λe(0), λe(1)]. Since we do not care about
global scale factor, we always normalize that λe(0) = 1 and use the notation
λe = λe(1) as a real number.

A Holant problem is parameterized by a set of functions F and edge weights
Λ. We denote by Holant(F , Λ) the following computation problem .

Definition 1. Given a set of functions F and edge weights Λ, we denote by
Holant(F , Λ) the following computation problem.
Input: A Holant instance Ω = (G(V,E), {Fv |v ∈ V }, {λe|e ∈ E}), where Fv ∈
F and λe ∈ Λ ;
Output: The partition function Z(Ω).

The weights of configurations also give a distribution over all possible config-
urations:

PΩ(σ) =
wΩ(σ)

Z(Ω)
=

1

Z(Ω)

∏

e∈E

λe(σ(e))
∏

v∈V

Fv(σ |E(v)).

This defines the marginal probability of each edge e0 ∈ E.

PΩ(σ(e0) = 0) =

∑
σ:σ(e0)=0

(∏
e∈E λe(σ(e))

∏
v∈V Fv(σ |E(v))

)

Z(Ω)
.

Similarly, we can define the marginal probability of a subset of edges. Let
E0 ⊂ E and e1, e2, . . . , e|E0| be an enumeration of the edges in E0. Then we
can define σ(E0) = σ(e1)σ(e2) · · ·σ(e|E0|) as a Boolean string of length |E0|. Let
α ∈ {0, 1}|E0|, we define

PΩ(σ(E0) = α) =

∑
σ:σ(ei)=αi,i=1,2,...,|E0|

(∏
e∈E λe(σ(e))

∏
v∈V Fv(σ |E(v))

)

Z(Ω)
.

We denote the partial summation as

Z(Ω, σ(E0) = α) =
∑

σ:σ(ei)=αi

(
∏

e∈E

λe(σ(e))
∏

v∈V

Fv(σ |E(v))

)

.

We define a dangling instance ΩD of Holant(F , Λ) also as a tuple (G(V,E ∪
D), {Fv|v ∈ V }, {λe|e ∈ E}), where G(V,E ∪D) is a graph with dangling edges
D. A dangling edge can be viewed as a half edge, with one end attached to a
regular vertex in V and the other end dangling (not considered as a vertex). A
dangling instance ΩD is the same as a Holant instance except for these dangling
edges. In G(V,E ∪D) each node is assigned a function in F (we do not consider
“dangling” leaf nodes at the end of a dangling edge among these), each regular
edge in E is assigned a weight from Λ and we always assume that there is no
weight on a dangling edge in this paper. A dangling instance can be also viewed
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as a regular instance by attaching a vertex with function [1, 1] at the dangling end
of each dangling edge. We can define the probability distribution and marginal
probabilities just as for regular instance. In particular, we shall use dangling
instance Ωe with single dangling edge e extensively in this paper. For that, we

define R(Ωe) = PΩe(σ(e)=1)
PΩe(σ(e)=0) .

3 Statement of Main Results

A symmetrical function [f0, f1, . . . , fd] is called a (generalized) Fibonacci func-
tion if there exists a constant c such that fi+2 = cfi+1+fi, where i = 0, 1, · · · , d−
2. We denote this family of function as Fc, the Fibonacci functions with param-
eter c. We use Fp,q

c to denote a subfamily of Fc such that fi+1 ≥ pfi and
fi+1 ≤ qfi for all i = 0, 1, · · · , d − 1. When the upper bound q is not given,
we simply write Fp

c . We use Fp,q
c1,c2 to denote

⋃
c1≤c≤c2

Fp,q
c . We use Λλ1,λ2 to

denote the set of edge weights λe such that λ1 ≤ λe ≤ λ2.
Here is a list of FPTAS’s we get:

Theorem 1. For any c > 0 and p > 0, there exists λ1(p, c) < 1 and λ2(p, c) > 1
such that there is an FPTAS for Holant(Fp

c , Λλ1(p,c),λ2(p,c)).

Theorem 2. Let p > 0. Then there is an FPTAS for Holant(Fp
1.17,+∞, Λ1,+∞).

Theorem 3. Let λ > 0 and c ≥ 2.57. There is an FPTAS for

Holant(Fc/2,c+2/c
c , Λλ,+∞).

Under a holographic reduction with base

[
1 t
ρ − t

ρ

]

, we have the following trans-

formation. Let λ > 0, ρ ≥ 1, t(1 − λ) > 0, and |t| ≤ 1. Let β = 1+λρ2

t(1−λ) and

γ = t(1+λρ−2)
1−λ . The two spin problem with edge function

[
β 1
1 γ

]

and external

field μ is equivalent to Holant(Fρ− 1
ρ
, Λλ,λ), where Fρ− 1

ρ
is a set of Fibonacci

functions with with parameter c = ρ − 1
ρ and the one of arity n has form

fk = ρk + μtn(−ρ)−k. Through this reduction, we can transform Theorem 1-
3 to the following FPTAS for ferromagnetic two-state spin system .

Theorem 4. There is a continuous curve Γ (β) defined on [1,+∞) such that

(1) Γ (1) = 1; (2) 1 < Γ (β) < β for all β > 1; and (3) limβ→+∞
Γ (β)
β = 1.

There is an FPTAS for the two-state spin system with local interaction matrix[
β 1
1 γ

]

and external field μ ≤ 1 if βγ > 1 and γ ≤ Γ (β).

4 Computation Tree Recursion

In the exact polynomial time algorithm for Fibonacci gates without edge weights,
one crucial property of a set of Fibonacci functions with a fixed parameter is
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βγ = 1

uniqueness threshold

Γ (β)

β

γ

(0, 0)

1

1

Fig. 1. This figure illustrates the rough shape of Γ (·) when there is no external field. It
also includes anti-ferromagnetic range. Parameters (β, γ) admit FPTAS in green region
and hard to approximate in red region.

that it is closed when two nodes are connected together [5]. This is no longer
true if we have non-trivial edge weights or when different Fibonacci function
have different parameters. However, we can still use the special property of a
Fibonacci function to decompose a vertex, which is the key property for all
FPTAS algorithms in our paper.

Let Ω = (G(V,E), {Fv |v ∈ V }, {λe|e ∈ E}) be an instance of Holant
(Fp,q

c1,c2 , Λλ1,λ2), v ∈ V be a vertex of the instance with degree d1+d2 (d1, d2 ≥ 1)
and e1, e2, . . . , ed1+d2 be its incident edges. We can construct a new Holant in-
stance Ω′: Ω′ is the same as Ω except that v is decomposed into two vertices
v′, v′′. e1, e2, . . . , ed1 are connected to v′ and ed1+1, ed1+2, . . . , ed1+d2 are con-
nected to v′′. There is a new edge e connecting v′ and v′′. If the function on the
original v is [f0, f1, . . . , fd1+d2 ], a Fibonacci function with parameter c, then the
function on v′ is [f0, f1, . . . , fd1] and the function on v′′ is [1, 0, 1, c . . .], also a
Fibonacci function with parameter c. The edge weight on the new edge e is 1.
The functions on all other nodes and edge weights on all other edges (except the
new e) remain the same as that in Ω. We use the following notation to denote
this decomposition operation

Ω′ = D(Ω, v, {e1, e2, . . . , ed1}, {ed1+1, ed1+2, . . . , ed1+d2}).
Using the special property of Fibonacci function, we have the following lemma.

Lemma 1. Let Ω′ = D(Ω, v,E1, E2). Then Z(Ω) = Z(Ω′) and for all e ∈ E,
PΩ(σ(e) = 0) = PΩ′(σ(e) = 0).

Let Ωe be a dangling instance of Holant(Fp
c1,c2 , Λλ1,λ2). Let v be the attaching

vertex of the dangling edge e and e1, e2, . . . , ed be other incident edges of v. We
compute R(Ωe) by smaller instances depending on d. If d = 0, then R(Ωe) can
be computed directly. If d = 1, we construct a smaller dangling instance Ωe1 by
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removing e0 and v from G and make e1 be the new dangling edge and remove
its weight.

R(Ωe) =
f1 + λe1f2R(Ωe1 )

f0 + λe1f1R(Ωe1 )
. (1)

If d ≥ 2, we use the above lemma to decompose the vertex v into v′ and v′′

and let e and e1 connect to v′′ and the remaining edges connect to v′. We use e′

to denote the edge between v′ and v′′. By removing e and v′′ from Ω′ , we get
a dangling instance Ωe′,e1 with two dangling edges e′, e1.

R(Ωe) =
Z(Ωe, σ(e) = 1)

Z(Ωe, σ(e) = 0)

=
λe1Z(Ωe′,e1 , σ(e′e1) = 01) + Z(Ωe′,e1 , σ(e′e1) = 10) + cλe1Z(Ωe′,e1 , σ(e′e1) = 11)

Z(Ωe′,e1 , σ(e′e1) = 00) + λe1Z(Ωe′,e1 , σ(e′e1) = 11)

=
λe1PΩe′,e1 (σ(e

′e1) = 01) + P
Ωe′,e1 (σ(e

′e1) = 10) + cλe1PΩe′,e1 (σ(e
′e1) = 11)

P
Ωe′,e1 (σ(e

′e1) = 00) + λe1PΩe′,e1 (σ(e
′e1) = 11)

.

In the above recursion, the marginal probability of the original instance is
written as that of smaller instances but with two dangling edges. In order to
continue the recursive process, we need to convert them into instances with single
dangling edge. This can be done by pinning one of the two dangling edges, or
just leaving one of the edges free (in which case the dangling end of the free edge
can be treated as a regular vertex with signature [1, 1]).

We use Pine,x(Ω) to denote the new instance obtained by pinning the edge e
of the instance Ω to x.

There are many choices in deciding which edge to pin, and to what state the
edge is pinned to. Each choice leads to different recursions and consequently
have an impact on the following analysis. Here we give an example which is used
in the proof of Theorem 1 and Theorem 3. In the proof of Theorem 2, we use a
different one.

Set Ωe′ = Pine1,0(Ω
e′,e1), Ωe1 = Pine′,0(Ω

e′,e1) and Ω̃e1 = Pine′,1(Ω
e′,e1).

By the definitions, we have PΩe′ (σ(e′) = 0) = PΩe′,e1 (σ(e
′) = 0|σ(e1) = 0),

PΩe1 (σ(e1) = 0) = PΩe′,e1 (σ(e1) = 0|σ(e′) = 0), and P
˜Ωe1

(σ(e1) = 0) =
PΩe′,e1 (σ(e1) = 0|σ(e′) = 1). Given these relation and the fact that

PΩe′,e1 (σ(e
′e1) = 00) + PΩe′,e1 (σ(e

′e1) = 01)+

PΩe′,e1 (σ(e
′e1) = 10) + PΩe′,e1 (σ(e

′e1) = 11) = 1.

We can solve these marginal probabilities and substitute these into the above
recursion to get

R(Ωe) =
λe1R(Ωe1) +R(Ωe′) + cλe1R(Ωe′ )R(Ω̃e1)

1 + λe1R(Ωe′ )R(Ω̃e1)
(2)
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If e′ and e1 are in different connected components of Ωe′,e1 , then the marginal
probability of e1 is independent of e′ and as a result R(Ω̃e1) = R(Ωe1). So in
this case, we have

R(Ωe) =
λe1R(Ωe1) +R(Ωe′) + cλe1R(Ωe′ )R(Ωe1)

1 + λe1R(Ωe′ )R(Ωe1)
(3)

Starting from an dangling instance Ωe, we can compute R(Ωe) by one of (1),
(2) and (3) recursively. We note that if Ωe ∈ Holant(Fp,q

c1,c2 , Λλ1,λ2), the instances
involved in the recursion are also in the same family. We define three functions
according to these three recursions:

h(x) =
f1 + λe1f2x

f0 + λe1f1x
, g(x, y, z) =

λe1y + x+ cλe1xz

1 + λe1xz
, ĝ(x, y) =

λe1y + x+ cλe1xy

1 + λe1xy
.

By expanding this recursion, we get a computation tree recursion to compute
R(Ωe). We need one more step to compute the marginal probability of an edge in
a regular instance. This can be done similarly and we have the following lemma.

Lemma 2. If we can ε approximate R(Ωe) for any dangling instance Ωe of
Holant(Fp,q

c1,c2 , Λλ1,λ2) in time poly(n, 1ε ), we can also ε approximate the marginal
probability of any edge of a regular instance of Holant(Fp,q

c1,c2 , Λλ1,λ2) in time

poly(n, 1ε ).

5 Algorithm

The procedure from marginal probabilities to partition function is rather stan-
dard and we have the following lemma.

Lemma 3. If for any ε > 0 and any Ωe of Holant
(Fp,q

c1,c2 , Λλ1,λ2

)
, we have a

deterministic algorithm to get P̂ in time poly
(
n, 1ε

)
such that |P̂ − PΩe(σ(e) =

0)| ≤ ε, we have an FPTAS for Holant(Fp,q
c1,c2 , Λλ1,λ2).

Before we use the computation tree recursion to compute the marginal prob-
ability, we need the following lemma to handle shallow instances separately. We
denote by SP (Ωe) the longest simple path containing e in G.

Lemma 4. Let L be a constant. We have a polynomial time algorithm to com-
pute R(Ωe) for all Ωe of Holant(Fp

c1,c2 , Λλ1,λ2) with SP (Ωe) ≤ L.

The proof of the above Lemma uses holographic reduction to spin world and
makes use of the self-avoiding walk tree [27] for two-state spin systems. The
length of the longest simple path is the same as the depth of the self-avoiding
walk tree. See the full version for more details.

Now we give out formal procedure to estimate PΩe(σ(e) = 0). Since there is
a one to one relation between PΩe(σ(e) = 0) and R(Ωe), we can define our re-
cursion on R(Ωe), and at the final step we convert R(Ωe) back to PΩ(σ(e) = 0).
Let bounds R1, R2 and depth L be obtained for the family of dangling instance
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in the sense that for any dangling instance with SP (Ωe) ≥ L, we have R(Ωe) ∈
[R1, R2]. Formally, for t ≥ 0, the quantityRt(Ωe) is recursively defined as follows:

– If SP (Ωe) ≤ 2L, we compute Rt(Ωe) = R(Ωe) by Lemma 4.
– Else If t = 0, let R0(Ωe) = R1.
– Else If t > 0, use oneof the recursion to get R̃t(Ωe) = ĝ(Rt−1(Ωe′ ), Rt−1(Ωe1 )),

R̃t(Ωe) = h(Rt−1(Ωe1)), or R̃t(Ωe) = g(Rt−1(Ωe′ ), Rt−1(Ωe1 ), Rt−1(Ω̃e1).
Return the median of R1, R̃

t(Ωe), R2: R
t(Ωe) = Med(R1, R̃

t(Ωe), R2).

There are three possible recursions and we define four amortized decay rates:

α1(x) =
Φ(x)

∣
∣ dh
dx

∣
∣

Φ(h(x))
, α3(x, y) =

∣
∣
∣
∂ĝ
∂x

∣
∣
∣Φ(x)

Φ(ĝ(x, y))
, α4(x, y) =

∣
∣
∣
∂ĝ
∂y

∣
∣
∣Φ(y)

Φ(ĝ(x, y))
,

α2(x, y, z) =
1

Φ(g(x, y, z))

(∣
∣
∣
∣
∂g

∂x

∣
∣
∣
∣Φ(x) +

∣
∣
∣
∣
∂g

∂y

∣
∣
∣
∣Φ(y) +

∣
∣
∣
∣
∂g

∂z

∣
∣
∣
∣Φ(z)

)

,

where Φ(·) is a potential function.

Definition 2. We call a function Φ : (0,+∞) → (0,+∞) nice if there is some
function f : [1,+∞) → (0,+∞) such that for any c ≥ 1 and x, y > 0 with
x
c ≤ y ≤ cx, we have Φ(x)

Φ(y) ≤ f(c).

Lemma 5. Let bounds R1, R2 and depth L be obtained for dangling instances of
Holant(Fp,q

c1,c2 , Λλ1,λ2) such that for any dangling instance with SP (Ωe) ≥ L, we
have R(Ωe) ∈ [R1, R2]. If there exist a nice function Φ(·) and a constant α < 1
such that α1(x) ≤ α for all x ∈ [R1, R2], α2(x, y, z) ≤ α for all x, y, z ∈ [R1, R2],
α3(x, y) ≤ α for all x ∈ [R1, R2], and α4(x, y) ≤ α for all y ∈ [R1, R2]. Then
there is an FPTAS for Holant(Fp,q

c1,c2 , Λλ1,λ2).

To obtain the FPTAS for the Fibonacci gates (Theorem 1-3), we make use of
this Lemma 5. In order to apply Lemma 5, we need to establish two things: the
bounds R1, R2 and the amortized decay rates. There two parts are technically
involved and omitted here due to space limitation. The complete proof can be
found in the full version of the current paper [19].
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