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Abstract. In digital goods auctions, the auctioneer sells an item in un-
limited supply to a set of potential buyers. The objective is to design a
truthful auction that maximizes the auctioneer’s total profit. Motivated
by the observation that the buyers’ valuation of the good might be in-
terconnected through a social network, we study digital goods auctions
with positive externalities among buyers. This defines a multi-parameter
auction design problem where the private valuation of every buyer is
a function of the set of other winning buyers. The main contribution
of this paper is a truthful competitive mechanism for subadditive valua-
tions. Our competitive result is with respect to a new solution benchmark
F(3). On the other hand, we show a surprising impossibility result if com-
paring to the stronger benchmark F(2), where the latter has been used
quite successfully in digital goods auctions without externalities [16].

1 Introduction

In economics, the term externality is used to describe situations in which private
costs or benefits to the producers or purchasers of a good or service differ from
the total social costs or benefits entailed in its production and consumption. In
this context a benefit is called a positive externality, while a cost is referred to
as a negative one. One needs not to go far to find examples of positive external
influence in digital and communications markets, when a customer’s decision
to buy a good or purchase a service strongly relies on its popularity among
his/her friends or generally among other customers, e.g. instant messenger and
cell phone users will want a product that allows them to talk easily and cheaply
with their friends. Another good example is social network, where a user is
more likely to appreciate membership in a network if many of his/her friends
are already using it. There exist a number of applications, like the very popular
Farm Ville in online social network Facebook, where a user would have more fun
when participating with friends. In fact, quite a few such applications explicitly
reward players with a large number of friends.

On the other hand, negative external effects occur when a potential buyer,
e.g. a big company, incurs a great loss if a subject it fights for, like a small firm or

F.V. Fomin et al. (Eds.): ICALP 2013, Part II, LNCS 7966, pp. 569–580, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



570 N. Gravin and P. Lu

company, goes to its direct competitor. Another well-studied example related to
computer science is the allocation of advertisement slots [1,13–15,17,23], where
every customer would like to see a smaller number of competitors’ advertisements
on a web page that contains his/her own advert. One may also face mixed
externalities as in the case of selling nuclear weapons [21], where countries would
like to see their allies win the auction rather than their foes.

We investigate the problem of mechanism design for auctions with positive
externalities. We study a scenario where an auctioneer sells the good, of no
more than a single copy in the hands of each customer. We define a model
for externalities among the buyers in the sealed-bid auction with an unlimited
supply of the good. This types of auctions arise naturally in digital markets,
where making a copy of the good (e.g. cd with songs or games, or extra copy of
online application) has a negligible cost compared to the final price and can be
done at any time the seller chooses.

A similar agenda has been introduced in the paper [18], where authors consider
a Bayesian framework and study positive externalities in the social networks with
single-parameter bidders and submodular valuations. The model in the most gen-
eral form can be described by a number of bidders n, each with a non-negative
private valuation function vi(S) depending on the possible winning set S. This is
a naturalmulti-parameter mechanism designmodel that may be considered a gen-
eralization of the classical auctions with unlimited supply, i.e. auctions where the
amount of items being sold is greater than the number of buyers.

Traditionally the main question arising in such situations is how to maximize
the seller’s revenue. In literature on the classical auctions without any exter-
nalities many diverse approaches to this question have been developed. In the
current work we pick a classical approach and benchmark (cf. [16]), namely the
best-uniform-price benchmark called F , which is different from Bayesian frame-
work. There one seeks to maximize the ratio of the mechanism’s revenue to the
revenue of F taken in the worst case over all possible bids. In particular a mech-
anism is called competitive if such a ratio is bounded by some uniform constant
for each possible bid. However, it was shown that there is no competitive truthful
mechanism w.r.t. F , and therefore to get around this problem, a slightly modi-
fied benchmark F (2) [16] was proposed. The only difference of F (2) to F is in one
additional requirement that at least two buyers should be in a winning set. Thus
F (2) becomes a standard benchmark in analyzing digital auctions [11,12,16,20].
Similarly to F (2) one may define benchmark F (k) for any fixed constant k. It
turns out that the same benchmarks can be naturally adopted to the case of
positive externalities. Surprisingly F (2) fails to serve as a benchmark in social
networks with positive externalities, i.e. no competitive mechanism exists w.r.t.
F (2). Therefore, we go further and consider the next natural candidate for the
benchmark, which is F (3).

The main contribution of this paper is an universally truthful competitive
mechanism for the general multi-parameter model with subadditive valuations
(substantially broader class than submodular) w.r.t. F (3) benchmark. We com-
plement this result with a proof that no truthful mechanism can achieve constant
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ratio w.r.t. F (2). In order to do so we introduce a restricted model with a single
private parameter which in some respects resembles the one considered in [18];
further for this restricted model we give a simple geometric characterization of
all truthful mechanisms and based on the characterization then show that there
is no competitive truthful mechanism w.r.t. F (2).

Our model is the so-called multi-parameter or multi-dimensional model (see
[25]), as utility of every agent may not be described by a single real number for
all possible outcomes of the mechanism. Mechanism design in this case is known
to be harder than in the single-parameter domains.

1.1 Related Work

Many studies on externalities in the direction of pricing and marketing strategies
over social networks have been conducted over the past few years. In many ways,
they have been caused by the development of social-networks on the Internet,
which has allowed companies to collect information about each user and user
relationships.

Earlier works have generally been focused on the influence maximization prob-
lems (see Chapter 24 of [24]). For instance, Kempe et al. [22] study the algorith-
mic question of searching a set of nodes in a social network of highest influence.
From the economic literature one could name such papers as [26], which studies
the effect of network topology on a monopolist’s profits and [10], which studies
a multi-round pricing game, where a seller may lower his price in an attempt to
attract low value buyers. These works take no heed of algorithmic motivation.

There are several more recent papers [2, 7, 9, 19] studying the question of
revenue maximization as well as work studying the posted price mechanisms
[3, 5, 8, 19].

We could not continue without mentioning a beautiful line of research on
revenue maximization for classical auctions, where the objective is to maximize
the seller’s revenue compared to a benchmark in the worst case. We cite here only
some papers that are most relevant to our setting [4,11,12,16,20]. With respect
to the refined best-uniform-price benchmark F (2) a number of mechanisms with
constant competitive ratio were obtained; each subsequent paper improving the
competitive ratio of the previous one [11, 12, 16, 20]. The best known current
mechanism is due to Hartline and McGrew [20] and has a competitive ratio
of 3.25. On the other hand a lower bound of 2.42 has been proven in [16] by
Goldberg et.al.. The question of closing the gap still remains open.

2 Preliminaries

We suppose that in a marketplace n agents are present, the set of which we
denote by [n]. Each agent i has a private valuation function vi, which is a non-
negative real number for each possible winner set S ⊂ [n]. The seller organizes
a single round sealed bid auction, where agents submit their valuations bi(S)
to an auctioneer for all possible winner sets S, and the auctioneer then chooses
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agents who will obtain the good and vector of prices to charge each of them.
The auctioneer is interested in maximizing his/her revenue.

For every i ∈ [n] we impose the following mild requirements on vi.

1. vi(S) ≥ 0.
2. vi(S) = 0 if i /∈ S.
3. vi(S) is a monotone sub-additive function of S, i.e.

(a) vi(S) ≤ vi(R) if S ⊆ R ⊆ [n].
(b) vi(S ∪R) ≤ vi(S) + vi(R), for each i ∈ S,R ⊆ [n]

We should note here that the sub-additivity requirement is only for those subsets
that include the agent i. This is a natural assumption since vi(S) = 0 if i /∈ S.

2.1 Mechanism Design

Each agent in turn would like to get a positive utility that is as high as possible
and may lie strategically about his/her valuation. The utility ui(S) of an agent i
for a winning set S is simply the difference of his valuation vi(S) and the price pi
the auctioneer charges i. Thus one of the desired properties for the auction is the
well known concept of truthfulness or incentive compatibility, i.e. the condition
that every agent maximizes his utility by truth telling.

It is worth mentioning that our model is that of multi-parameter mechanism
design and, moreover, that collecting the whole bunch of values vi(S) for every
i ∈ [n] and S ⊂ [n] would require an exponential amount of bits in n and thus
is inefficient. However, in the field of mechanism design there is a way to get
around such a problem of exponential input size with the broadly recognized
concept of black box value queries. The latter simply means that the auctioneer,
instead of getting the whole collection of bids instantly, may ask during the
mechanism execution every agent i only for a small part of his input, i.e. a
number of questions about valuation of i for certain sets. We note that the
agent still may lie in the response to each such query. We denote the bid of i by
bi(S) to distinguish it from the actual valuation vi(S). Thus if we are interested
in designing a computationally efficient mechanism, we can only ask in total a
polynomial in n number of queries.

Throughout the paper, withM we denote a mechanism with allocation rule
A and payment rule P . Allocation algorithmA may ask queries about valuations
of any agent for any possible set of winners. Thus A has an oracle black box
access to the collection of bid functions bi(S). For each agent i in the winning
set S the payment algorithm decides a price pi to charge. The utility of agent i is
then ui = vi(S)− pi if i ∈ S and 0 otherwise. To emphasize the fact that agents
may report untruthfully we will use ui(bi) notation for the utility function in
the general case and ui(vi) in the case of truth telling. We assume voluntary
participation for the agents, that is ui ≥ 0 for each i who reports the truth.

2.2 Revenue Maximization and Possible Benchmarks

We discuss here the problem of revenue maximization from the seller’s point
of view. The revenue of the auctioneer is simply the total payment

∑
i∈S pi of
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all buyers in the winning set. We assume that the seller incurs no additional
cost for making a copy of the good. This assumption is essential for our model,
since unlike the classical digital auction case there is no simple reduction of the
settings with a positive price per issuing the item to the settings with zero price.

The best revenue the seller can hope for is
∑

i∈[n] vi([n]). However, it is not
realistic when the seller does not know agents’ valuation functions. We follow the
tradition of previous literature [11, 12, 16, 20] of algorithmic mechanism design
on competitive auctions with limited or unlimited supply and consider the best
revenue uniform price benchmark, which is defined as maximal revenue that
the auctioneer can get for a fixed uniform price for the good. In the literature
on classical competitive auctions this benchmark was called F and is formally
defined as follows.

Definition 1 (F without Externalities). For the vector of agent’s bids b

F(b) = max
c≥0,S⊂[n]

(
c · |S|

∣
∣
∣∀i ∈ S bi ≥ c

)
.

This definition generalizes naturally to our model with externalities and is
defined rigorously as follows.

Definition 2 (F with Externalities). For the collection of agents’ bid func-
tions b.

F(b) = max
c≥0,S⊂[n]

(
c · |S|

∣
∣
∣∀i ∈ S bi(S) ≥ c

)
.

The important point in considering F in the setting of classical auctions is that
the auctioneer, when he/she is given in advance the best uniform price, can run
a truthful mechanism with corresponding revenue. It turns out that the same
mechanism works neatly for our model. Specifically, a seller who is given the
price c in advance can begin with the set of all agents and drop one by one those
agents with negative utility (bi(S) − c < 0); once there are left no agents to
delete, the auctioneer sells the item to all surviving buyers at the given price c.

In these circumstances, a natural problem arising for the auctioneer is to
devise a truthful mechanism which has a good approximation ratio of the mech-
anism’s revenue to the revenue of the benchmark at any possible bid vector b.
Such a ratio is usually called the competitive ratio of a mechanism. However, it
was shown (cf. [16]) that no truthful mechanism can guarantee any constant com-
petitive ratio w.r.t. F . Specifically, the unbounded ratio appears in the instances
where the benchmark buys only one item at the highest price. To overcome this
obstacle, a slightly modified benchmark F (2) has been proposed and a number
of competitive mechanisms w.r.t. F (2) were obtained [11, 12, 16, 20]. The only
difference of F (2) from F is one additional requirement that at least two buyers
should be in the winning set. Similarly, for any k ≥ 2 we may define F (k).

Definition 3.

F (k)(b) = max
c≥0,S⊂[n]

(
c · |S|

∣
∣
∣|S| ≥ k, ∀i ∈ S bi(S) ≥ c

)
.
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However, in case of our model the benchmark F (2) does not imply the exis-
tence of a constant approximation truthful mechanism. In order to illustrate that
later in Section 4 we will introduce a couple of new models which differ from the
original one in certain additional restrictions on the domain of agent’s bids. We
further give a complete characterization of truthful mechanisms for these new
restricted settings substantially exploiting the fact that every agent’s bidding
language is single-parameter. Later, we use that characterization to argue that
no truthful mechanism can achieve constant approximation with respect to F (2)

benchmark even for these cases. On the positive side, and quite surprisingly, we
can furnish our work in the next section with the truthful mechanism which has
a constant approximation ratio w.r.t. F (3) benchmark for the general case of
multi-parameter bidding.

3 Competitive Mechanism

Here we give a competitive truthful mechanism, that is a mechanism which
guarantees that the auctioneer gets a constant fraction of the revenue he could
get for the best fixed price benchmark assuming that all agents bid truthfully.
We call it Promotion-Testing-Selling Mechanism. In the mechanism we
give the good to certain agents for free, that is without requiring any payment.
The general scheme of the mechanism is as follows.

Promotion-Testing-Selling Mechanism

1. Put every agent at random into one of the sets A,B,C.

2. Denote rA(C) and rB (C) the largest fixed price revenues one can

extract from C given that, respectfully, either A, or B got the

good for free.

3. Let r(C) = max{rA(C), rB (C)}.
4. Sell items to agents in A for free.

5. Apply Cost Sharing Mechanism(r(C), B, A) to extract revenue r(C)
from set B given that A got the good for free.

Bidders in A receive items for free and increase the demand of agents from B.
One may say that they “advertise” the goods and resemble the promotion that
occurs when selling to participants. The agents in C play the role of the “testing”
group, the only service of which is to determine the right price. Note that we
take no agents of the testing group into the winning set, therefore, they have
nothing to gain for bidding untruthfully. The agents of B appear to be the source
of the mechanism’s revenue, which is being extracted from B by a cost sharing
mechanism as follows.

We note here that a more “natural” mechanism is simply to set that r(C) =
r
A
(C) rather than max{r

A
(C), r

B
(C)}. But unfortunately, we have a counter

example to show that this simpler mechanism cannot guarantee a constant ap-
proximation ratio compared to our benchmark.
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Cost Sharing Mechanism(r,X,Y)

1. S ← X.

2. Repeat until T = ∅:
– T ← {i|i ∈ S and bi(S ∪ Y ) < r

|S|}.
– S ← S \ T.

3. If S �= ∅ sell items to everyone in S at r
|S| price.

Lemma 4. Promotion-Testing-Selling Mechanism is universally truth-
ful.

Proof. The partitioning of the set [n] into A, B, C does not depend on the
agent bids. When the partition is fixed, our mechanism becomes deterministic.
Therefore, we are only left to prove the truthfulness for that deterministic part.
Let us do so by going through the proof separately for each set A, B and C.

– Bids of agents in A do not affect the outcome of the mechanism. Therefore,
they have no incentive to lie.

– No agent from C could profit from bidding untruthfully, since her utility will
be zero regardless of the bid.

– Let us note that the Cost Sharing Mechanism is applied to the agents
in B and the value of r does not depend on their bids, since both r

A
(C) and

r
B
(C) are retracted from C irrespectively of bids from A and B. Also let us

note that at each step of the cost sharing mechanism the possible payment
r
|S| is rising, and meanwhile the valuation function, because of monotonicity

condition, is going down. Hence, manipulation of a bid does not help any
agent to survive in the winning set and receive positive utility, if by bidding
truthfully he/she has been dropped from the winning set. Mis-reporting a
bid could not help an agent to alter the surviving set and at the same time
remain a winner. These two observations conclude the proof of truthfulness
for B.

Therefore, from now on we may assume that bi(S) = vi(S).

Theorem 5. Promotion-Testing-Selling Mechanism is universally truth-

ful and has an expected revenue of at least F(3)

324 .

Proof. We are left to prove the lower bound on the competitive ratio of our
mechanism, as we have shown the truthfulness in Lemma 4.

For the purpose of analysis, we separate the random part of our mechanism
into two phases. In the first phase, we divide agents randomly into three groups
S1, S2, S3 and in the second one, we label the groups at random by A, B and
C. Note that the combination of these two phases produces exactly the same
distribution over partitions as in the mechanism.

Let S be the set of winners in the optimal F (3) solution and the best fixed
price be p∗. For 1 ≤ i 	= j ≤ 3 we may compute rij the largest revenue for a fixed
price that one can extract from set Si given Sj is “advertising” the good, that
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is agents in Sj get the good for free and thus increase the valuations of agents
from Si though contribute nothing directly to the revenue.

First, let us note that the cost-sharing part of our mechanism will extract one
of these rij from at least one of the six possible labels for every sample of the
dividing phase (in general cost-sharing mechanism may extract 0 revenue, e.g.
if the target revenue is set too high). Indeed, let i0 and j0 be the indexes for
which ri0j0 achieves maximum over all rij and let k0 = {1, 2, 3} \ {i0, j0}. Then
the cost-sharing mechanism will retract the revenue r(C) = max(r

A
(C), r

B
(C))

on the labeling with Sj0 = A, Si0 = B and Sk0 = C. It turns out, as we will
prove in the following lemma, that one can get a lower bound on this revenue
within a constant factor of rF (C); the revenue we got from the agents of C in
the benchmark F (3).

Lemma 6. r(C) ≥ rF (C)

4 .

Proof. Let Sc = S∩C. Thus, by the definition of F (3), we have rF (C) = |Sc| ·p∗
and for all i ∈ Sc, vi(S) ≥ p∗.

We define a subset T of Sc as a final result of the following procedure.

1. T ← ∅ and X ← {i|i ∈ Sc and vi(A ∪ {i}) ≥ p∗
2 }.

2. While X 	= ∅
– T ← T ∪X,

– X ← {i|i ∈ Sc and vi(A ∪ T ∪ {i}) ≥ p∗
2 }

For any agent of T we have vi(A ∪ T ) ≥ p∗
2 because the valuation function is

monotone. Now if |T | ≥ |Sc|
2 , we get the desired lower bound. Indeed,

r(C) ≥ r
A
(C) ≥ |Sc|

2
· p

∗

2
=
|Sc| · p∗

4
=

rF (C)

4
.

Otherwise, let W = Sc \ T . Then we have |W | ≥ |Sc|
2 . For an agent i ∈ W it

holds true that vi(A ∪ T ∪ {i}) < p∗

2 , since otherwise we should include i into

T . However, since i wins in the optimal F (3) solution, we have vi(S) ≥ p∗. The
former two inequalities together with the subadditivity of vi(·) (vi(S \ (A∪T ))+
vi(A∪ T ∪ {i}) ≥ vi(S)) allow us to conclude that vi(S \ (A∪ T )) ≥ p∗

2 for each

i ∈W . Hence, we get vi(B∪W ) ≥ p∗
2 for each i ∈W , since S \(A∪T ) ⊆ B∪W .

Therefore, we are done with the lemma’s proof, since

r(C) ≥ r
B
(C) ≥ |W | · p

∗

2
≥ |Sc| · p∗

4
=

rF (C)

4
.

Let k1, k2, k3 be the number of winners of the optimal F (3) solution, respectively,
in S1, S2, S3.

For any fixed partition S1, S2, S3 of the dividing phase by applying Lemma
6, we get that the expected revenue of our mechanism over a distribution of six
permutations in the second phase should be at least

1

6
· 1
4
min{k1, k2, k3} · p∗.
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In order to conclude the proof of the theorem we are only left to estimate the
expected value of min{k1, k2, k3} from below by some constant factor of |S|. The
next lemma will do this for us.

Lemma 7. Let m ≥ 3 items independently at random be put in one of the three
boxes and let a, b and c be the random variables denoting the number of items
in these boxes. Then E[min{a, b, c}] ≥ 2

27m.

By definition of the benchmark F (3) we have m = k1 + k2 + k3 ≥ 3 and thus
we can apply Lemma 7. Combining every bound we have so far on the expected
revenue of our mechanism we conclude the proof with the following lower bound.

1

6
· 1
4
E [min{k1, k2, k3}] · p∗ ≥ 1

24
· 2
27
· p∗ ·m =

F (3)

324
.

4 Restricted Single-Parameter Valuations

Here we introduce a couple of special restricted cases of the general setting with a
single parameter bidding language. For these models we only specify restrictions
on the valuation functions. In each case we assume that ti is a single private
parameter for agent i that he submits as a bid and wi(S) and w′

i(S) are fixed
publicly known functions for each possible winning set S. The models then are
described as follows.

– Additive valuation vi(ti, S) = ti + wi(S).
– Scalar valuation vi(ti, S) = ti · wi(S).
– Linear valuation vi(ti, S) = tiwi(S) + w′

i(S), i.e. combination of previous
two.

Note that we still require wi(S) = w′
i(S) = 0 if i 	∈ S. These settings are now

single parameter domains, which is the most well studied and understood case
in mechanism design.

4.1 A Characterization

The basic question of mechanism design is to describe truthful mechanisms in
terms of simple geometric conditions. Given a vector of n bids, b = (b1, . . . , bn),
let b−i denote the vector, where bi is replaced with a ‘?’. It is well known that
truthfulness implies a monotonicity condition stating that if an agent i wins
for the bid vector b = (b−i, bi) then she should win for any bid vector (b−i, b

′
i)

with b′i ≥ bi. In single-dimensional domains monotonicity turns out to be a suffi-
cient condition for truthfulness [6], where prices are determined by the threshold
functions.

In our model, valuation of an agent may vary for different winning sets and
thus may depend on his/her bid. Nevertheless, any truthful mechanism still has
to have a bid-independent allocation rule, although now it is not sufficient for the
truthfulness. However, in the case of linear valuation functions we are capable
of giving a complete characterization.
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Theorem 8. In the model with linear valuation functions vi(ti, S) = ti ·wi(S)+
w′

i(S) an allocation rule A may be truthfully implemented if and only if it satisfies
the following conditions:

1. A is bid-independent, that is for each agent i, bid vector b = (b−i, bi) with
i ∈ A(b) and any b′i ≥ bi, it holds that i ∈ A(b−i, b

′
i).

2. A encourages asymptotically higher bids, i.e. for any fixed b−i and b′i ≥ bi,
it holds that wi(A(b−i, b

′
i)) ≥ wi(A(b−i, bi)).

Here we prove that these conditions are indeed necessary. The sufficiency part of
the theorem is deferred to the full paper version, where we prove the characteri-
zation for a slightly more general family of single parameter valuation functions.

Proof. The necessity of the first monotonicity condition was known, so we prove
here that the second condition is also necessary. In the truthful mechanism,
an agent’s payment should not depend on his/her bid, if by changing it the
mechanism does not shift the allocated set. We denote by p the payment of
agent i for winner set A(b−i, bi) and by p′ the payment of agent i for winner set
A(b−i, b

′
i). If the agent’s true value is bi, by truthfulness, we have

bi · wi(A(b−i, bi)) + w′
i(A(b−i, bi))− p ≥ bi · wi(A(b−i, b

′
i)) + w′

i(A(b−i, b
′
i))− p′.

And if the agent’s true value is b′i, we have

b′i · wi(A(b−i, b
′
i)) + w′

i(A(b−i, b
′
i))− p′ ≥ b′i · wi(A(b−i, bi)) + w′

i(A(b−i, bi))− p.

Adding these two inequalities and using the fact that b′i ≥ bi, we have

wi(A(b−i, b
′
i)) ≥ wi(A(b−i, bi)).

4.2 From F (2) to F (3)

Here we show that the usage of F (2) as a benchmark may lead to an unbounded
approximation ratio even for the restricted single parameter scalar valuations.
This justifies why we used a slightly modified benchmark F (3) in Section 3.

Theorem 9. There is no universally truthful mechanism that can achieve a
constant approximation ratio w.r.t. F (2).

Proof. Consider the example of two people, in which every bidder evaluates the
outcome, where both agents get items much higher than the outcome, where only
one agent gets the item. That is v1(x, {1}) = x, v2(y, {2}) = y and v1(x, {1, 2}) =
Mx, v2(y, {1, 2}) = My for a large constant M . We note that these are single
parameter scalar valuations. We also note that these valuation functions are
indeed subadditive according to our definition. The subadditive requirement is
only for the subsets that includes the current agent and, in fact, any valuation
function for two agents is subadditive by our definition.

We will show that any universally truthful mechanismMD with a distribution
D over truthful mechanisms cannot achieve an approximation ratio better than
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M . Each truthful mechanismM in D either sells items to both bidders for some
pair of bids (b1, b2), or for all pairs of bids sells not more than one item. In
the first case, by our characterization of truthful mechanisms (see theorem 8),
M should also sell two items for the bids (x, b2) and (b1, y), where x ≥ b1 and
y ≥ b2. Therefore, M has to sell two items for any bid (x, y) with x ≥ b1 and
y ≥ b2. Let us denote the first and the second group of mechanisms in D by G1
and G2 respectively.

For any small ε we may pick sufficiently large x0, such that at least 1−ε fraction
of G1 mechanisms in D are selling two items for the bids (x = x0

2M , y = y0

2M ).
Note that

– revenue of F (2) for the bids (x0, x0) is 2Mx0,
– revenue of anyM in G2 for the bids (x0, x0) is not greater than x0,
– revenue of more than 1 − ε fraction of G1 mechanisms in D is not greater

than 2M x0

2M = x0.
– revenue of the remaining ε fraction of G1 mechanisms is not greater than

2Mx0.

Thus we can upper bound the revenue ofMD by x0(1 − ε) + 2Mx0ε while the
revenue of F (2) is 2Mx0. By choosing sufficiently large M and small ε we get an
arbitrarily large approximation ratio.

Remark 10. In fact, the same inapproximability results w.r.t. F (2) holds for a
weaker notion of truthfulness, namely truthfulness in expectation.
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