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We propose a uniform approach for the design and analysis of prior-free competitive auctions and online
auctions. Our philosophy is to view the benchmark function as a variable parameter of the model and study
a broad class of functions instead of a individual target benchmark. We consider a multitude of well-studied
auction settings, and improve upon a few previous results.

— Multi-unit auctions. Given a β-competitive unlimited supply auction, the best previously known multi-
unit auction is 2β-competitive. We design a (1 + β)-competitive auction reducing the ratio from 4.84 to
3.24. These results carry over to matroid and position auctions.

— General downward-closed environments. We design a 6.5-competitive auction improving upon the ratio of
7.5. Our auction is noticeably simpler than the previous best one.

— Unlimited supply online auctions. Our analysis yields an auction with a competitive ratio of 4.12, which
significantly narrows the margin of [4, 4.84] previously known for this problem.

A particularly important tool in our analysis is a simple decomposition lemma, which allows us to bound
the competitive ratio against a sum of benchmark functions. We use this lemma in a “divide and conquer”
fashion by dividing the target benchmark into the sum of simpler functions.
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Algorithms and Problem Complexity]: Tradeoffs among Complexity Measures
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1. INTRODUCTION
Revenue maximization in multi-unit auctions is a canonical problem that has attracted
a lot of attention from algorithmic game theory community over the last fifteen years.
In this framework auctioneer sells an abstract service to n potential customers par-
ticipating in the auction. The auctioneer has a feasibility constraint on which sets
of agents can be served simultaneously. Each bidder i values the service at a single
privately known value vi. Auctioneer runs a single-round auction, where each bidder
submits a sealed bid bi. After soliciting the bids the auctioneer decides on whether
each bidder i receives the service and the amount that i pays. The auctioneer’s goal
is to maximize revenue, i.e., the total payment of the bidders. In our work we consider
the following well-motivated and intensively studied settings that fall into this general
framework.

— Digital goods. The auctioneer sells unlimited number of copies of a single item, so
that any set of winners is feasible.
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— Limited supply (a.k.a. multi-unit) auctions. There are only ` copies of the item in
total, and thus, at most ` bidders can be served. There is a reduction [21] to limited
supply auctions from position and matroid environments, which are related to FCC
spectrum auction and sponsored search.

— General downward-closed permutation environments. Set system of feasible sets is
downward-closed if any subset of a feasible set is also feasible. The auctioneer has a
probabilistic feasibility constraint, i.e., given by a probability distribution over feasi-
ble sets. Bidders are assumed to be symmetric, i.e., bidders’ values are revealed in a
random order. This is a generalization of multi-unit and position auctions, as well as
matching environments, where each feasible set represents vertices on the one side
of a bipartite matching.

— Online auctions. The bidders arrive online one by one and the auctioneer makes an
irrevocable decision (whether the bidder receives a service or not and at what price)
immediately as each new bidder arrives. Online auctions capture important scenarios
such as sales on the Internet, where bidders may appear at any time and want to
receive service right away.

Our approach. A common theme in the design and analysis of online algorithms and
prior-free auctions is the competitive framework. In both cases, an online algorithm,
which has to make irrevocable decisions online, or a truthful mechanism, whose out-
comes must be aligned with bidders’ incentives, are competing against a benchmark
corresponding to a desirable outcome. We propose a uniform approach for the design
and analysis of prior-free competitive auctions and online auctions. Our philosophy
is to view the benchmark function as a variable parameter of the model and study a
broad class of functions instead of a individual target benchmark. Our approach is sur-
prisingly simple and relies on a very basic decomposition lemma, which allows us to
bound the competitive ratio against a sum of benchmark functions. We use this lemma
in a “divide and conquer” fashion by dividing the target benchmark into the sum of
simpler benchmark, each of which admit a good approximation. This allows us to im-
prove some of the best known results for the aforementioned settings and sometimes
along the way simplify mechanisms and analysis from the prior literature.

Notably, all our significant modifications to the benchmarks are derived only for
the basic setting of the digital good auction. On the the other hand, the black-box
reductions to the digital good auction employed in the prior work usually deal with
the same, or analogous benchmarks in the base and derived settings. In contrast to
this paradigm, our work demonstrates that it may be better to deliberately use dif-
ferent benchmarks in the two settings. This signifies importance of developing theory
and performing competitive analysis for a variety of benchmarks, if nothing else but
at least as an intermediate step towards better design and analysis of more complex
settings.

1.1. Benchmarks and Competitive Analysis
We assume that all bidders are selfish and aim to maximize their own utility. Buyers
are assumed to have quasi-linear utility, i.e., if bidder i gets served, his utility is the
difference between his value vi and his payment; otherwise, the bidder pays 0 and
his utility is 0. We say that an auction is truthful or incentive compatible if it is a
dominant strategy for every bidder i to bid his private value, i.e., bi = vi, no matter
how other bidders behave. A randomized auction is (universally) truthful if it is given
by a distribution over deterministic truthful auctions.

The objective is to design auctions that maximize revenue of the auctioneer. To
evaluate the performance of an auction, we need to define a benchmark function
f : Rn → R, where f(b) measures our target revenue for the bid vector b ∈ Rn. Given
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a benchmark function f(·), we say that an auction A has a competitive ratio of λ with
respect to f(·) if

E [A(b)] ≥ f(b)

λ
, ∀b = (b1, . . . , bn) ∈ Rn

where E[A(b)] is the expected revenue of auction A on the bid vector b.
A benchmark function should be, on the one hand, economically meaningful in pro-

viding a revenue target, and on the other hand not too ambitious so that a truthful auc-
tion may have small competitive ratio against the benchmark. For the auction with un-
limited supply, the most well-studied benchmark is F (2)(b) = max2≤k≤n k · b(k), where
bids are ordered so that b(1) ≥ b(2) ≥ · · · ≥ b(n). That is, F (2) gives the largest possible
revenue of a fixed price sale given that there are at least two buyers. The reason for
having at least two winners is that otherwise, all but one bidders may have 0 value
and then no truthful auction can be competitive against a single bidder with arbitrary
large private value. Another meaningful benchmark is MAXV(b) = max1≤k<n k ·b(k+1).
We note that k · b(k+1) is the revenue of the Vickrey auction selling k units. Hence,
MAXV is the maximum revenue of a k-unit Vickrey auction for all possible values of
the supply k.

For the `-unit auctions, one can naturally extend the definition of F (2) to

F (2,`)(b) = max
2≤k≤`

k · b(k).

This is the largest possible revenue of a fixed price sale given that there are at least
two and at most ` buyers (as there are only ` copies).

Hartline and Yan [21] gave another interpretation of F (2) for the unlimited supply
setting. Namely, it is the optimal revenue one can extract in an envy-free allocation
with at least two winners. The definition was extended in [21] to more general en-
vironments such as limited supply and general downward-closed environments. We
denote by EFO(2) the largest revenue that can be obtained in an envy-free allocation
for a slightly modified bid vector b2 = (b2, b2, . . . , bn). Interestingly, although EFO(2)

coincides with F (2) in the digital goods setting, EFO(2) is not the same as F (2,`) for the
limited supply case, where the precise formula for EFO(2) will be given in Section 2.

For the online setting, we focus on the model of Koutsoupias and Pierrakos [24] of
unlimited supply auctions competing against the benchmark F (2) or against MAXV.
We assume random arrival order of the bidders, as if bidders arrive in an adversarial
order, competitive ratio cannot be a constant [24].

1.2. Results and Techniques
Our recent work [7] on digital goods auction proposed a uniform procedure for calcu-
lating the optimal competitive ratio against any monotone benchmark. In particular,
it yielded tight competitive ratios against the MAXV and F (2) benchmarks. Here, we
study the design of competitive auctions in other settings. We summarize previous and
our new results in the following table. (Since some of the earlier work used auctions
for digital goods as a black-box, we update their bounds accordingly with the new tight
bounds of [7].)

Limited supply Downward-closed Online Online
EFO(2) EFO(2) F (2) MAXV

Previous upper bounds 4.84 [21] 7.5 [9] 4.84 [24] -
Our upper bounds 3.24 6.5 4.12 2.42

Lower bounds 2.42 [14] 2.42 [14] 4 [24] 2

365



All bounds in the table are for the worst-case scenarios when the number of bidders
n can be arbitrarily large. Better bounds are known for every fixed number of bidders,
although, as n grows, these bounds quickly converge to the worst-case bounds given in
the table.

An important new perspective of [7] was to view benchmark function as a variable
parameter of the model. It should be noted that to a limited degree an earlier work [22]
also studied a broad class of benchmarks in the digital goods setting. In this paper, we
continue to explore this idea in more general settings. Unlike [7] we explicitly design
auctions with improved competitive ratios.

The following general yet simple observation appears to be very helpful in our analy-
sis. When we seek for an auction with good performance against a specific benchmark
f(b), it is often the case that f(b) can be decomposed into the sum of two functions
f(b) = f1(b) + f2(b), such that it is easier to find good competitive auctions separately
against f1(·) and f2(·). The following lemma gives an upper bound on the competitive
ratio against the original benchmark function f(·).

LEMMA 1.1 (DECOMPOSITION LEMMA). Let A1 and A2 be truthful λ1 and λ2 com-
petitive auctions against the benchmarks f1(·) and f2(·), respectively. Then there is a
truthful λ1 + λ2 competitive auction against the benchmark f1(·) + f2(·).

PROOF. We construct an auction that runs A1 with probability λ1

λ1+λ2
and runs A2

with probability λ2

λ1+λ2
. The constructed auction is (universally) truthful by definition.

Its performance for any bid vector b is at least

λ1
λ1 + λ2

A1(b) +
λ2

λ1 + λ2
A2(b) ≥

λ1
λ1 + λ2

f1(b)

λ1
+

λ2
λ1 + λ2

f2(b)

λ2
=
f1(b) + f2(b)

λ1 + λ2
.

All our results primarily depend on the analysis of non-standard benchmarks only
for the basic setting of digital good auctions. Namely, we only consider benchmarks of
the form f(b) = max(k2 ·b(2), k3 ·b(3), · · · , kn ·b(n)) , where k1, . . . , kn is a set of constants1:

limited supply. f(b) = l ∗ b(l+1),
downward-closed. f(b) = b(2),
online auctions. f(b) = max(4b(2), 3b(3), 4b(4) · · · , nb(n)),

whereas our remaining mechanisms are appropriate adjustments to the existing mech-
anism from the prior literature.

Specifically for the online auctions, Koutsoupias and Pierrakos [24] gave a lower
bound of 4 on the competitive ration of any mechanism with just n = 2 bidders. They
conjectured that competitive ratio of 4 is tight. Our analysis provides matching upper
bound of 4 for the cases of n = 2, 3, 4 bidders yielding a straightforward mechanism:
the auctioneer posts a price for every new arriving bidder equal to the maximal bid
seen so far. However, this mechanism does not extend to the case of more than four
bidders and, moreover, we believe that in general case the upper bound of 4 is wrong
and we conjecture that the right lower bound is in fact 4.12.

1.3. Related Work
The worst-case study of digital goods auctions was initiated by Goldberg et al. [16].
The competitive prior-free framework was formulated by Fiat et al. [12]. Over the past

1some preliminary results for this class of benchmarks were derived in [22]
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decade a lot of effort has been devoted to improving the analysis and competitive ra-
tios of digital goods auctions, see, e.g., [13], [14], [22], [11], [1] and [23]. In our recent
work [7], we showed the optimal bound on the competitive ratio for digital goods auc-
tions.

A few other closely related settings have stemmed from the study of digital goods
auctions with the most immediate extension being the limited supply auctions also
known as multi-unit auctions. Multi-unit environments have been traditionally stud-
ied with respect to the F (2,`) benchmark, which allows a straightforward reduction [15]
to the unlimited supply case with a specific number of bidders. Thus optimal bounds
of [7] carry over to the multi-unit auctions with respect to the F (2,`) benchmark.

The general downward-closed single-parameter environments include, e.g,. match-
ing, matroid, and position auctions have also received considerable attention in recent
years. Hartline and Yan [21] characterized the optimal revenue in the envy-free out-
comes and proposed EFO(2) as a uniform benchmark for all of these environments.
They presented a truthful multi-unit auction with a constant competitive ratio and
established a no-loss reduction from position and matroid auctions to a simpler multi-
unit setting. Devanur et al. [10] improved the competitive ratio to 9.6 and gave a
189-competitive auction for the more general downward-closed environments. Ha and
Hartline [19] further improved the competitive ratio to 30.4 for the downward-closed
environments. In an unpublished followup paper [18], the authors presented a 11-
competitive auction using elegant combination of biased sampling and profit extrac-
tion ideas. The best known ratio is due to Devanur at al. [9] (official version of [18])
with a 7.5-competitive auction that builds upon the biased sampling approach in a
significantly more intricate manner than in [18] .

As a multi-parameter extension of the digital goods auctions setting, Gravin and
Lu [17] studied competitive auction in the presence of positive externalities among the
buyers.

Another thread of work considers digital goods auctions is in the online framework.
Motivated by internet advertising, Mahdian and Saberi [25] proposed a model where
supply is unknown in advance. Devanur and Hartline [8] studied prior-free auctions
in this model and by applying random sampling technique derived results in the prior-
free setting. There was substantial interest from machine learning community [5],
[6],[3] in a closely related online pricing problem. However, this work together with an
earlier work [4] on online auctions does not assume random order of arrivals. It also
uses machine learning techniques resulting in a worse performance guarantees that
depends on h, the ratio between the highest and the lowest bid. Lastly, the setting of
Koutsoupias and Pierrakos [24] is closely related to generalized secretary problem (for
a survey on secretary problem and online digital goods auction see [2]). They gave a
black-box reduction of the online problem to the standard off-line digital goods setting
with a factor 2 loss in the competitive ratio. It should be noted that in [24] the choice of
the offline competitive mechanism as long as it is constant approximation to the offline
optimum does not matter. In contrast, the choice of the corresponding offline auction
is important and non trivial part of our mechanism, since our goal is to get mechanism
performance as close to the theoretical optimum as possible.

2. LIMITED SUPPLY AUCTIONS
It was pointed out in [15] that there is an equivalence between the unlimited supply
auction problem for the F (2) benchmark and the limited supply auction problem for
the F (2,`) benchmark. Namely, any unlimited supply auction with ` bidders that is β-
competitive against F (2) can be converted into a β-competitive `-unit auction against
F (2,`). This equivalence and the tight results of [7] for unlimited supply auctions with
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` bidders against F (2) benchmark yield tight results for `-unit auction against F (2,`)

benchmark with the same competitive ratio λ`.2
A similar equivalence was established in [7] between `-unit auctions competing with

any benchmark f(·) that depends only on the first ` highest bids and unlimited sup-
ply auctions with ` bidders. However, beyond such benchmarks [7] does not provide a
satisfactory way to compute tight competitive ratios in the limited supply case. For ex-
ample, economically meaningful benchmark EFO(2) of Hartline and Yan [21] depends
not only on the first ` highest bids.

Definition 2.1. For a fixed valuation profile v, order all valuations by v(1) ≥ v(2) ≥
· · · ≥ v(n) and let g(j) = j · v(j) for each 2 ≤ j ≤ n. Consider the concave envelope ĝ(·)
of the function g(·) on the interval [2, n], i.e., iron g(·). For `-unit auction EFO(2)(v) =
max
2≤i≤`

ĝ(i).

There is only a constant gap between EFO(2) and F (2,`) benchmarks for `-unit auc-
tions.

LEMMA 2.2. For any valuation profile v,

F (2,`)(v) ≤ EFO(2)(v) ≤ F (2,`)(v) + (`− 2) · v(`+1).

PROOF. The first inequality holds because

F (2,`)(v) = max
2≤i≤`

g(i) ≤ max
2≤i≤`

ĝ(i) = EFO(2)(v).

We next prove the second inequality. We assume that g(·) is ironed from i to j, where
i < ` < j and g(i) < g(j), otherwise EFO(2)(v) = F (2,`)(v) and the second inequality
holds true. Similarly, if EFO(2)(v) > F (2,`)(v), we can assume that EFO(2)(v) = ĝ(`).
We observe that v(i) the slope of the line from (0, 0) to (i, g(i)) is greater than or equal
to v(j) the slope of the line from (0, 0) to (j, g(j)), which implies that the latter slope is
greater than or equal to the slope of the line between (i, g(i)) and (j, g(j)). We further
note that v(`+1) ≥ v(j) is greater than or equal to the slope of the line between (i, g(i))
and (j, g(j)). Finally, since `− 2 ≥ `− i we get that

F (2,`)(v) + (`− 2) · v(`+1) ≥ g(i) + (`− i) · v(`+1) ≥ ĝ(`) = EFO(2)(v),

which concludes the proof.

One can further estimate F (2,`)(v) ≥ (`−1) ·v(`) ≥ (`−2) ·v(`+1); this implies a trivial
upper bound of 2F (2,`)(v) on EFO(2)(v). As λ` is the exact competitive ratio against
the F (2,`) benchmark, the competitive ratio against EFO(2)(v) lies between λ` and 2λ`.
These two bounds were the best currently known [10]. However, these bounds are not
tight. In particular, we can improve on the upper bound.

We decompose the upper bound on EFO(2) in Lemma 2.2 into the sum of two bench-
marks f1(v) = F (2,`)(v) and f2(v) = (` − 2) · v(`+1). The competitive ratio against the
first benchmark is λ`. On the other hand, the revenue of VCG mechanism selling `
items is ` · v(`+1), which shows that the competitive ratio against f2(v) is `−2

` . By com-
bining Lemma 1.1 and Lemma 2.2 we obtain the following claim, which improves the
upper bound on the competitive ratio against EFO(2) to λ` + 1.

2λ` = 1−
∑̀
i=2

i
i−1

(`−1
i−1

) (−1
`

)i−1
, which converges to 2.42 when ` approaches infinity.
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THEOREM 2.3. For multi-unit auctions with ` units for sale, there is a (λ` +
`−2
` )-

competitive auction against the EFO(2) benchmark, where λ` is the optimal competitive
ratio of unlimited supply auction with ` bidders against the F (2) benchmark.

3. DOWNWARD-CLOSED ENVIRONMENTS
In this section, we consider general downward-closed permutation environments. We
denote by EFO(v) the optimal revenue achievable in an envy-free allocation for the
vector of values v. Our benchmark of interest is EFO(2)(v) = EFO(v2, v2, . . . , vn). The
basic ingredients of our auction are biased random sampling and the profit extraction
auction from [18]. Our auction is slightly different from the one presented in [18] and
has a better competitive ratio of 6.51 compared to 11 of [18]. It is much simpler than
another auction with competitive ratio 7.5 presented in [9], which has a few more
components on the top of random sampling and profit extraction.

The profit extraction (PER) auction receives as a parameter a target valuation pro-
file ṽ. When PERṽ(v) is run on the actual valuation profile v, it is able to extract
revenue greater than or equal to the value of the envy-free benchmark EFO(ṽ) as well
as EFO(2)(ṽ), if profile v dominates ṽ (v � ṽ), i.e., v(i) ≥ ṽ(i) for every bidder i. If v 6� ṽ,
PER rejects all bidders.

LEMMA 3.1 (HA AND HARTLINE, 2012). For any downward-closed permutation
environment, there is a truthful profit extraction auction PERṽ(v) with a profit of at
least EFO(2)(ṽ), if v(i) ≥ ṽ(i) for each bidder i.

Our auction is quite simple: with some probability p we run the single-item Vickrey
auction; with probability 1− p we run the following σ-biased random-sampling profit-
extraction auction (denoted by σ-BSPE).

— Divide all bidders into two groups market M and sample S: Place the two highest
bids in M . Sample the rest bids independently with probability σ < 1/2 in S and
with probability 1− σ in M .

— Let ṽ = vS . Allocate to the winners of PERṽ(v
M
).

THEOREM 3.2. For any downward-closed permutation environment, σ-BSPE is a
6.51-competitive truthful auction against the envy-free benchmark EFO(2)(v).

PROOF. For any random coin flips of σ-BSPE, the allocation rule of PERṽ is mono-
tone. This implies that σ-BSPE also has a monotone allocation rule. Therefore, since
our environment is a single-parameter domain, σ-BSPE allocation with the threshold
payment rule makes the auction universally truthful.

We next estimate the expected revenue of σ-BSPE. We follow closely the proof strat-
egy described in [18], the main difference being in the way we deal with the benchmark
EFO(2)(v). We note that if vM � vS , then the total sum of the threshold payments of
PERṽ(vM ) is at least EFO(vS); we further observe that the threshold payments of
σ-BSPE can be only larger than that, as we could only increase payments of the two
highest bidders.

CLAIM 3.3. The probability that vM � vS is at least 1− ( σ
1−σ )

3.

PROOF. Sort all bidders in the original profile v : v(1) ≥ · · · ≥ v(n) (without loss of
generality we assume that all inequalities are strict). We simulate our random sam-
pling process by independently flipping a biased coin for each bidder (i) in this order.
Each time we count the difference between the number of bidders in M and S. Note
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that because we always place the highest two bids in M , after the first two steps the
difference becomes two. Note that vM 6� vS if and only if at some step (i) this difference
becomes negative. We next estimate the probability that this event never happens.

We consider an infinite random walk on a one-dimensional infinite line; each time
we move to the left with probability σ and to the right with probability 1− σ. It is well
known that the probability that such a random walk starting at a point x eventually
makes one step to the left from x is σ

1−σ . As our random walk starts at point 2, it
would take three such steps to move below 0. The probability of this event is ( σ

1−σ )
3.

Therefore, the probability that this never happens after n steps is at least 1−( σ
1−σ )

3.

We conclude that the expected revenue of the σ-BSPE is at least

E [σ-BSPE] ≥ E [EFO(vS) | vM � vS ] ·Pr [vM � vS ]

= E [EFO(vS)]−E [EFO(vS) | vM 6� vS ] ·Pr [vM 6� vS ]

≥ σ · EFO(v−{1,2})− EFO(v−{1,2}) ·Pr [vM 6� vS ]

≥
(
σ −

( σ

1− σ

)3)
EFO(v−{1,2}),

where v−{1,2} is the bid vector without first two highest bids. The maximum of the
function (σ − ( σ

1−σ )
3) is attained at σ ≈ 0.29 with a value around 0.22. Thus, the com-

petitive ratio of σ-BSPE against the benchmark EFO(v−{1,2}) is 4.51.
On the other hand, by running the single-item Vickrey auction, we extract revenue

of at least 1
2 · EFO(v2, v2). Note that by subadditivity of EFO (shown in [21]) we have

EFO(v2, v2) + EFO(v−{1,2}) ≥ EFO(v2, v2,v−{1,2}) = EFO(2)(v). Therefore, according
to Lemma 1.1 one can achieve the competitive ratio of 4.51 + 2 = 6.51 against the
benchmark EFO(v2, v2) + EFO(v−{1,2}). Thus, we obtain a 6.51-competitive auction
against EFO(2)(v), which runs 0.22-BSPE with probability 4.51/6.51 and the single-
item Vickrey auction with probability 2/6.51.

Remark 3.4. In fact, our analysis also implies the same competitive ratio of 6.51
for a slightly stronger benchmark EFO(2v2, v2, . . . , vn)

3. Indeed, single-item Vickrey
auction in the proof of Theorem 3.2 generates revenue equal to 1

2 · EFO(2v2, v2).

4. ONLINE AUCTIONS
Let {Mn

off}∞n=2 be a sequence of β-competitive offline digital goods auctions against a
benchmark f(·) for each number of bidders n. To simplify notation, we refer {Mn

off}∞n=2
as Moff auction omitting the number of bidders when it could be inferred from the
context.

THEOREM 4.1 (KOUTSOUPIAS, PIERRAKOS [24]). Let Moff be a β-competitive of-
fline auctions against the F (2) benchmark. The online sampling auction is a 2β-
competitive against the F (2) benchmark with bidders arriving in a random order.

The online sampling auction by [24] uses a black box reduction from an offline
digital-goods auctionMoff to construct an online competitive auctionMon. Their auc-
tion, upon the arrival of each bidder k, observes first k − 1 bids b[k−1] , (b1, . . . , bk−1)
and runsMk

off(b
[k−1]) for bidder k.

3this benchmark was proposed by Hartline [20] as an upper bound on the revenue of the optimal auction for
any i.i.d. prior in any downward-closed environment.
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In particular, [24] used the offline auction of [22] with a competitive ratio of 3.24,
they obtained an upper bound of 6.48. In a recent paper [7], it was shown that the
optimal competitive ratio ofMoff is in fact 2.42, which gives an upper bound of 4.84 for
the online problem. There is also a lower bound of 4 in [24] for online auctions with
only 2 bidders.

COROLLARY 4.2. The optimal competitive ratio of online auctions is between 4 and
4.84.

We next propose another simple black-box reduction from offline to online auctions
with a better competitive guarantee. Any online auction can be thought of as a se-
quence of offline auctions run for a set of bidders already present at each time. The
main idea of our design is to tailor each of our offline auctions to a different from F (2)

benchmark so that their combination has good performance with respect to F (2).

THEOREM 4.3. Let f(b) = max(4b2, 3b3, 4b4, . . . , kbk) and Moff be a β-competitive
auction against the f(·) benchmark. Then there is a β-competitive online auction
against F (2), where bidders arrive in a random order.

PROOF. Any truthful online auctionMon can be viewed as a weighted combination
of offline auctions {An}∞n=2 running on n = 1, 2 . . . bidders

Mon(b) =
∑
n=1

1

n
·An(b[n]).

Indeed, each time whenMon observes first n−1 bids b[n−1] and offers a price to bidder
n, it could have seen any combination of n − 1 bids among b[n] equally likely, since
bidders arrive uniformly at random. Therefore,Mon derives 1

n of the revenue of offline
auction An(b[n]). We denote byMk

on the online auction run only up to k rounds, i.e.,

Mk
on(b) =

k∑
n=1

1

n
·An(b[n]).

We are going to construct our online auctionMon inductively at each time increasing
the number of bidders by one. Namely, we assume that for all n = k − 1 bidders our
Mon auction is β-competitive. Next we specify an offline auction Ak which together
withMk−1

on is β-competitive for k bidders.
For n = 1 bidder F (2) is 0, so Mon is competitive regardless of A1. By induction

hypothesis, we know that for any fixed bid vector b[k−1],

β · Mk−1
on (b[k−1]) ≥ F (2)(b[k−1]).

Since the first k − 1 bids are uniformly selected from b[k], we have

β · Mk−1
on (b[k]) =

1

k

k∑
i=1

β · Mk−1
on (b

[k]
-i ) ≥

1

k

k∑
i=1

F (2)(b
[k]
-i ).

Let us sort the bids in b[k] by b1 ≥ b2 ≥ · · · ≥ bk. We compare the revenue of Mk−1
on

with each b`, for 2 ≤ ` ≤ k. We have F (2)(b
[k]
-i ) ≥ ` · b` for every i > `. If ` > 2 and i ≤ `,

then F (2)(b
[k]
-i ) ≥ (`− 1) · b`. Unfortunately, for ` = 2, we cannot write F (2)(b

[k]
-1 ) ≥ b2 or
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F (2)(b
[k]
-2 ) ≥ b2. Therefore,

1

k

k∑
i=1

F (2)(b
[k]
-i ) ≥ max

(
2k − 4

k
b2,

3k − 3

k
b3, . . . ,

`(k − `) + (`− 1)`

k
b`, . . . ,

k2 − k
k

bk

)
≥ F (2)(b[k])− 1

k
max(4b2, 3b3, 4b4, . . . , kbk).

We want the offline auction Ak to have good performance against f(b) =
max(4b2, 3b3, 4b4, . . . , kbk). We know that there is a β-competitive auctionMoff with re-
spect to this benchmark f(·). Thus, there is a β-competitive auction for k bidders in the
online setting. This completes the proof.

Note that f(b) ≤ F (2)(b)+2b2. According to Lemma 1.1, we can run a mixture of the
optimal auction against F (2) and single-item Vickery auction against 2b2 to achieve a
(λ+2)-competitive auction with respect to f(·), which is already an improvement over
the result of [24]. However, we can actually derive the optimal ratio using the same
approach as that for F (2), which yields an even better competitive ratio for the online
auction problem.

THEOREM 4.4. The optimal competitive ratio of (offline) digital good auction with
respect to the benchmark f(b) = max(4b2, 3b3, 4b4, . . . , nbn) is at most 4.12.4

PROOF. By the same argument as in [7] for F (2), the matching lower bound for
the optimal competitive ratio is achieved by the equal revenue distribution with the
support Rn≥1. For n ≤ 4, f(b) = 4b2. In the following, we always assume n > 4. We first
observe that f(b) = max(4b2,EFO(2)(b)).

We recall that equal revenue distribution Dn over the bid vectors is i.i.d. with the
density function w(b) = 1

b2 and cumulative density 1 − 1
b supported on [1,∞). Let B

be a random vector drawn from Dn. The key technical problem for us is to compute
the expected value of the benchmark f(B). Following [14], we compute the probability
Pr[f(B) ≥ z] for any given z. Since f(B) is at least n, we may only consider z ≥ n.
Let a random variable Vi be the i-th largest bid in B. We also define a set of random
variables

Fn,k = max
i=1,2,...,n

(k + i) · Vi.

Let Hi denote the event

Vi ≥
z

k + i
and

∧
j=i+1,i+2,...,n

Vj <
z

k + j
.

The probability of Hi can be written as

Pr [Hi] =
(
n

i

)(
k + i

z

)i
Pr [Fn−i,k+i < z] .

Since Hi’s are mutually exclusive and the event Fn,k ≥ z is the union of Hi for
i = 1, 2, . . . , n, we get

Pr [Fn,k ≥ z] =
∑
i

Pr [Hi] =
∑
i

(
n

i

)(
k + i

z

)i
Pr [Fn−i,k+i < z] . (1)

4the actual ratio for a fixed n is 1−
n∑

i=2

(−1
n

)i−1 i
i−1

(n−1
i−1

)
+ 3n

2(n−2)

((
1− 2

n

)n−1
+ 1− 2

n

)
.
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This gives a recursive relation for Pr[Fn,k ≥ z] and the boundary condition is Pr[F0,k ≥
z] = 0. This recursion has been solved in [14]:

Pr [Fn,k ≥ z] = 1−
(
z − k
z

)n(
z − k − n
z − k

)
.

Let H′2 denote the event V2 ≥ z
4 and

∧
j=3,4,...,n Vj <

z
j . Then

Pr [H′2] =
(
n

2

)(
4

z

)2

Pr [Fn−2,2 < z] .

This implies that

Pr [f(B) ≥ z]

= Pr [H′2] +
∑

j=3,4,...,n

Pr [Hj ]

= Pr [H′2] +Pr [Fn,0 ≥ z]−Pr [H1]−Pr [H2]

=

(
n

2

)(
4

z

)2

Pr [Fn−2,2 < z] +
n

z
− n

z
Pr [Fn−1,1 < z]−

(
n

2

)(
2

z

)2

Pr [Fn−2,2 < z]

=
n

z
− n

z

(
z − 1

z

)n−1(
z − n
z − 1

)
+

6n(n− 1)

z2

(
z − 2

z

)n−2(
z − n
z − 2

)

Therefore, we have

E [f(B)] =

∫ ∞
0

Pr [f(B) ≥ z] dz

= n+

∫ ∞
n

(
n

z
− n

z

(
z − 1

z

)n−1(
z − n
z − 1

)
+

6n(n− 1)

z2

(
z − 2

z

)n−2(
z − n
z − 2

))
dz

= n− n
n∑
i=2

(
−1
n

)i−1
i

i− 1

(
n− 1

i− 1

)
+ 6n(n− 1)

∫ ∞
n

1

z2

(
z − 2

z

)n−2(
z − n
z − 2

)
dz.
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The integration part is∫ ∞
n

1

z2

(
z − 2

z

)n−2(
z − n
z − 2

)
dz

=

∫ ∞
n

1

z2
(1− n

z
)

(
z − 2

z

)n−3
dz

=

∫ ∞
n

1

z2
(1− n

z
)

(
n−3∑
i=0

(
n− 3

i

)
(−2)i

zi

)
dz

=
n−3∑
i=0

(
n− 3

i

)
(−2)i

∫ ∞
n

(
1

zi+2
− n

zi+3

)
dz

=
n−3∑
i=0

(
n− 3

i

)
(−2)i

(
1

(i+ 1)ni+1
− 1

(i+ 2)ni+1

)

=

n−3∑
i=0

(
n− 3

i

)
(−2)i 1

(i+ 1)(i+ 2)ni+1

=
n

4(n− 1)(n− 2)

n−3∑
i=0

(
n− 1

i+ 2

)(
−2
n

)i+2

=
n

4(n− 1)(n− 2)

((
1− 2

n

)n−1
− 1−

(
n− 1

1

)
−2
n

)

=
n

4(n− 1)(n− 2)

((
1− 2

n

)n−1
+ 1− 2

n

)
Therefore, we have

E [f(B)] = n− n
n∑
i=2

(
−1
n

)i−1
i

i− 1

(
n− 1

i− 1

)
+

3n2

2(n− 2)

((
1− 2

n

)n−1
+ 1− 2

n

)
.

And the competitive ratio is

1−
n∑
i=2

(
−1
n

)i−1
i

i− 1

(
n− 1

i− 1

)
+

3n

2(n− 2)

((
1− 2

n

)n−1
+ 1− 2

n

)
.

As f(b) = 4b2 for n = 2, 3, and 4 bidders we get competitive ratio of 4, which exactly
matches the lower bound. Therefore, our online auction is optimal for the case of 2, 3,
and 4 bidders.

4.1. The benchmark MAXV
The results of [24] carry over for another standard benchmark, namely, the maximum
Vickery MAXV. As the exact competitive ratio of the optimal offline auction against
MAXV was shown in [7] to be e − 1 and since 2MAXV(v) = F (2,`)(v) for n = 2 bidders,
the approach of [24] implies the following claim.

THEOREM 4.5 (KOUTSOUPIAS ET AL.[24]). The competitive ratio of the online sam-
pling auction of [24] is at most 2(e − 1) against the MAXV benchmark. The competitive
ratio of any online auction against MAXV is at least 2.
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Interestingly, if we run Mon exactly as proposed in [24], i.e., as a sequence of Moff
tailored to F (2), then Mon appears to be specifically well suited for the MAXV bench-
mark. This observation once again highlights how useful is the idea of thinking about
the problem with respect to different benchmarks.

THEOREM 4.6. LetMoff be a β-competitive auction against the F (2) benchmark. The
online sampling auctions composed of a sequence of offline auctions Moff against F (2)

is β-competitive against MAXV.

PROOF. Similar to the proof of Theorem 4.3, we proceed by induction on the number
of bidders. We have

β · Mk−1
on (b[k]) ≥ 1

k

k∑
i=1

MAXV(b
[k]
-i ).

We sort the bids in b[k] : b1 ≥ · · · ≥ bk. For a fixed `, we want to estimate how the
revenue ofMk−1

on is compared to b`. For each i > ` we have F (2)(b
[k]
-i ) ≥ (`− 1) · b`; and

for i ≤ `, we have F (2)(b
[k]
-i ) ≥ (`− 2) · b`. Hence,

1

k

k∑
i=1

F (2)(b
[k]
-i ) ≥ max

(
k − 2

k
b2, . . . ,

(`− 1)(k − `) + (`− 2)`

k
b`, . . . ,

(k − 2)k

k
bk

)
= max

(
k − 2

k
b2, . . . ,

(`− 1)k − `
k

b`, . . . ,
(k − 1)k − k

k
bk

)
≥ MAXV(b)− 1

k
F (2)(b).

Thus, the online sampling auction by running a β-competitive auction against F (2)

benchmark is β-competitive against MAXV.

COROLLARY 4.7. The competitive ratio of online auctions against MAXV is between
2 and 2.42.
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