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Abstract. In a one-dimensional single facility location game, each player
resides at a point on a straight line (his location); the task is to decide
the location of a single public facility on the line. Each player derives
a nonnegative cost, which is a monotonically increasing function of the
distance between the location of the facility and himself, so he may mis-
report his location to minimize his cost. It is desirable to design an
incentive compatible allocation mechanism, in which no player has an
incentive to misreport.

Offering/Charging payments to players is a usual tool for a mecha-
nism to adjust incentives. Our game setting without payment is equiv-
alent to the voting setting where voters have single-peaked preferences.
A complete parametric characterization of incentive compatible alloca-
tion mechanisms in this setting was given by [17], while the problem for
games with payments is left open. We give a characterization for the case
of linear and strictly convex cost functions by showing the sufficiency
of weak-monotonicity, which, more importantly, implies an interesting
monotone triangular structure on every single-player subfunction.

1 Introduction

People live in communities, where public facilities need to be built to serve the
residents. The location of a public facility is one of the most important decisions
to make since the convenience of accessing a facility is mainly affected by the
distance to the facility. Although the social goal is to provide convenient service
to the whole community, tradeoffs have to be made as people reside at different
locations. Hence the well-known public facility location problem has been a long-
lasting attraction to researchers.

Conventionally, the convenience of accessing a facility is quantified by the
negation of a cost, indicating the effort needed to reach the facility. The cost
can be calculated through a cost function C on the distance d to the facility,
which grows with the distance. For different people or circumstances, the growth
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rate may vary; the cost function may be linear, convex, concave, or a combina-
tion of the three. A linear cost function C(d) = αd is the simplest case, which
has a stable growth rate α. A convex cost function has higher growth rate for
longer distances (such as the taxi fare), which captures the nature that people
become exhausted after long distances. In contrast, a concave cost function has
lower growth rate for longer distances (such as the subway fare). This represents
situations where people become adapted after long distances.

In algorithm design, people solve optimization problems, such as to minimize
the total/maximum cost of the people served in the community. There are also
interesting variations in the number of facilities, the cost function, and the loca-
tion space (discrete or continuous). In our paper, we consider one of the simplest
variations: one-dimensional single facility location, where the location space is
the one-dimensional real line R and only a single facility needs to be built. All
three types of cost functions are investigated.

However, optimization is not the focus of our paper: We investigate the game-
theoretic setting where each resident is modeled as a player in the facility location
game intending to maximize his utility, i.e., his overall benefit. Each player i’s
true location ri is his private information, and the location of the facility is
chosen based on the reported locations from all players x = (x1, . . . , xn). Hence
a player may have an incentive to misreport his location to make the facility
closer to him. Naturally, to achieve good public service, we would like a solution
where no player has an incentive to misreport. This property is called incentive
compatibility, or simply truthfulness, which is the main solution concept of the
field of mechanism design [21,20].

Offering/Charging payments to players is a usual tool in mechanism design to
adjust incentives. Our work allows solutions with payments. Thus, an allocation
mechanism, i.e., a solution to our facility location game, is composed of an
allocation function and a payment function vector. The allocation function f
takes the reported locations of all players x as input and outputs a location y of
the public facility; The payment function vector p contains a payment function
pi as its ith component for each player i. Function pi takes the same input as
f , and assigns a (positive or negative) payment to player i. The setting without
payments restricts p ≡ 0.

Under a mechanism (f,p), the utility ui of player i is his payment under
reported locations pi(x) minus his cost under true location C(|f(x) − ri|). The
mechanism is public knowledge, and a truthful mechanism ensures truth-telling
in the following sense: No matter what other players may report, for each player,
given the mechanism and other players’ reports, reporting his true location al-
ways maximizes his utility.

The goal of our work is to characterize the set of truthful allocation functions,
i.e., allocation functions f for which there exists a payment function vector p
such that (f,p) is truthful. Characterization of truthful functions is meaning-
ful in mechanism design, since it allows mechanism designers to focus on the
function and not to worry about payments, whose existence is already guaran-
teed by the characterization. Furthermore, in most applications, there are other
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desirable properties the allocation function should also satisfy, such as fairness
or efficiency. A good characterization provides a useful description of the set of
truthful functions for a designer to start with to work further on the other prop-
erties, or to prove the impossibility to satisfy other properties simultaneously. A
great number of results in mechanism design follow this path [3,10,22].

For the game setting without payment, a complete parametric characteriza-
tion of truthful allocation mechanisms was given by Moulin [17]. (One unnec-
essary assumption in the proof is dropped by Barberà and Jackson [5], and
Sprumont [26].) Observe that, without payment, a player’s utility is simply the
negation of his cost, and the definition of truthfulness is only concerned with
the comparison of the cost of two locations. Moreover, the cost is single-peaked:
it reaches its minimum 0 at the player’s true location and increases monoton-
ically on both sides; the formula of the cost function becomes irrelevant. In
fact, this setting is essentially equivalent to the voting setting where voters have
single-peaked preferences. Moulin considered the voting setting, and hence his
characterization, a parametric representation of truthful allocations is called a
generalized median voter scheme. It is an extension of the function that selects
the median voter’s preference peak, which, interpreted into our setting, is the
median location out of the locations of all players.

The characterization for games with payments is left open, which is what we
studied in this paper. This question is interesting in its own right: In real life,
some facility builders are willing to provide payments. For example, when a com-
pany chooses the location of its office, employees living far away from the office
are subsidized. On the other hand, the generalized median voter scheme is very
restricted, and does not satisfy certain other desirable properties, such as fairness
or cost minimization. For example, the average function of all agents’ locations
minimizes the sum of squares of agents’ cost, which is a widely used objective
function in operational research to balance the social welfare and fairness. This
nice function is not truthfully implementable without payment. However, by our
characterization, it can be made truthful with payment, so designers may want
to consider investing some money to realize this allocation function.

1.1 Our Contributions

It turns out that the set of truthful allocation functions with payments is a
much wider class than the generalized median voter scheme. We show that
weak monotonicity, an easily proven necessary condition for truthfulness [20],
is also sufficient in this setting for linear and strictly convex cost functions.
There has been a series of works on characterization of truthfulness for vari-
ous settings [23,19,3,15,24,27,18,16,11,16,14,9,7,1,4,2], and most of them involve
weak monotonicity, or some other kind of monotonicity properties. It turns out
that the characterization results are closely related to the domain of the problem
setting, i.e., the set of all possible valuation functions on the set of outcomes. In
our setting, the domain of player i is {−C(|y − ri|) : ri ∈ R}, where each ele-
ment −C(|y − ri|) is a single-peaked function mapping each location of facility
y ∈ R to the valuation (convenience) player i derives when his true location is ri.
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Evidently, the domain of our setting is restricted, so Roberts’ Theorem that ev-
ery truthful function in an unrestricted domain is an affine maximizer [23] does
not apply. Furthermore, our domain is not a special case of the convex domain
or single-parameter domain for which the sufficiency of weak monotonicity is
proved [19,3,24]. Clearly, our domain is not convex, and an easy way to see this
is that the average of two valuation functions no longer has peak of value 0. On
the other hand, though the domain of each player i is associated with a single
parameter ri, the single-peaked function does not conform to the function in the
definition of single-parameter domain. It is interesting that none of the previous
characterization results covers our setting although it is very simple and realis-
tic. In particular, most of the previous result involves some kind of convexity:
either the valuation is convex or the type space is convex. The fact that there are
infinite (uncountable) many alternatives also makes the result interesting since
most of previous results assume a finite set of alternatives.

On the other hand, from the mechanism design point of view, weak mono-
tonicity, as a condition on any two locations, is not directly applicable; it is
more desirable to derive its equivalent properties that describe global features of
the allocation function (usually on every single player subfunction), from which
truthful payments can also be described. The characterization of the single-
parameter domain in [19,3] is successful in this aspect: Various mechanisms for
specific settings with different objectives are derived based on this characteri-
zation [19,3,12,10,25,6]. For our problem, we also succeed in providing a char-
acterization of this kind. In fact, the sufficiency of weak monotonicity is shown
indirectly through the correctness of this characterization.

More specifically, our characterization results are presented in three steps: In
Section 3, we derive some properties from weak-monotonicity on every single
player subfunction:1 For strictly convex cost functions, the allocation function
is simply monotonically non-decreasing in the usual sense; Linear cost functions
imply a weaker condition, which we call partially monotonically non-decreasing.
As shown in Section 4, this condition implies a monotone triangular partition,
which graphically divides the allocation function into pieces each within a trian-
gle, and the set of triangles obeys some “monotone” property. For strictly convex
cost functions, this part is evident as the allocation function is monotone. Finally
we provide a payment function with respect to a monotone triangular partition
and prove truthfulness in Section 5 for linear and strictly convex cost functions
respectively.

In summary, here are our main characterization results for one-dimensional
single facility location game with payments (which also apply to the setting
where the location space is a closed interval):

Theorem 1. For linear and strictly convex cost functions, an allocation func-
tion is truthful if and only if it satisfies weak-monotonicity.

1 A single player subfunction on player i is the allocation function restricted to some
fixed reported locations of players other than i. See Section 2 for a formal definition.
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Theorem 2. For linear cost functions, an allocation function is truthful if and
only if each of its single player subfunctions is partially monotonically non-
decreasing.

Theorem 3. For strictly convex cost functions, an allocation function is truth-
ful if and only if each of its single player subfunctions is monotonically non-
decreasing.

Although Theorem 1 has its own theoretical significance (there are domains
for which weak monotonicity is not sufficient [15]), Theorems 2 and 3 are more
informative: they provide a global monotone structure on every single player
subfunction, which is more intuitive and easier to verify for practical mechanism
design. Strictly convex cost functions enforce a simple monotone structure; the
linear cost function case is more intriguing: here monotonicity is required in a
hidden (partial) way, captured in our notion of monotone triangular partition.

Consider a single player subfunction f . Since the distance to the facility |f(x)−
x| switches sign at f(x) = x, the sign of f(x) − x (thus the line y = x) is
important. Our monotone triangular partition is a partition of the real line
into intervals such that, for each interval I, all f(x) are within the closure Ĩ
of the interval and on the same side of line y = x. Hence f is monotonically
non-decreasing between different intervals (i.e., f on a right interval is never
below f on a left interval), but need not be monotone within an interval I.
Graphically, each interval I corresponds to one of the two triangles generated
by dividing I × Ĩ with line y = x. The sign of the interval, i.e., the uniform sign
of f(x) − x, corresponds to which side of y = x the triangle resides. Therefore,
f is contained in these monotone triangles, and we call this nice interesting
structure a monotone triangular partition. For intervals where f(x) ≡ x, we
allow the corresponding triangle to degenerate into the line segment on y = x
intersecting I × Ĩ.

x

y=f(x)
y=x

Fig. 1. A monotone triangular partition when C is linear

Unsurprisingly, the payment function in Section 5 is closely related to the
triangular partition. Since truthfulness is unaffected by shifting the payment
function by any arbitrary constant, we pick an arbitrary reference point and set
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its payment 0. Then to find out the payment for any point x, imagine taking a
walk from the reference point towards the allocated facility location f(x) and
counting throughout the way. For cost function C(d) = d, we simply count the
distance we have walked, but with a sign according to the sign of the interval
we are walking at (We take negation of it if f(x) is to the left of the reference
point). Hence in the formula, the payment is a directed summation of lengths
of intervals corresponding to a monotone triangular partition. For linear cost
functions with slope α �= 1 or strictly convex cost functions, we need to adjust
the quantity (not as easy as distance here) counted into the payment, but the
idea is the same.

2 Preliminaries and Notation

Now we formally define a one-dimensional single facility location game. Suppose
there are n players and player i’s location is represented by a real number xi ∈ R.
Given a location vector x = (x1, . . . , xn) of n players, an allocation mechanism
chooses a location y = f(x) ∈ R for the single facility and assigns payments
p(x) = (p1(x), . . . , pn(x)) to players where player i gets payment pi(x). The
setting without payments restricts p(x) ≡ 0.

LetC(d) denote the cost functionof all players,which is a smoothmonotonically-
increasing function on nonnegative distances, and can always be normalized to
satisfy C(0) = 0. Let r = (r1, . . . , rn) be the true location vector of the n play-
ers, in which ri is player i’s private information. Then the utility of player i is
ui(x) = −C(|f(x)− ri|) + pi(x).

In the game-theoretic model, each player intends to maximize his utility. An
allocation mechanism (f,p) is incentive compatible, or truthful, if for each player
i, reporting his true location ri always maximizes his utility. Formally, it requires
that, for each player i, for each fixed reported locations of players other than
i, written as x−i = (x1, . . . , xi−1, xi+1, . . . , xn), and for any ri and xi, we have
ui((ri,x−i)) ≥ ui((xi,x−i)). We call an allocation function f truthful if there
exists a payment function vector p such that (f,p) is truthful. Our goal is to
characterize the set of truthful allocation functions.

For a player i, each fixed reported locations of other players x−i induces
a subfunction of the allocation function f on player i’s location: f i

x−i
(xi) =

f((xi,x−i)), which can be viewed as an allocation function for a game of a
single player i. Thus the notion of truthfulness also applies to such single player
subfunctions of f . The following easily proved fact is used extensively in the
literature:

Proposition 4. The allocation function f is truthful if and only if every single
player subfunction of f is truthful.

By Proposition 4, it is meaningful to characterize the set of truthful allocation
functions of one player: now an allocation function f : R → R maps a location x
to location y of the facility. We want to know for which f there exists payment
function p : R → R such that (f, p) is truthful.
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Weak monotonicity is a well-known necessary condition for a truthful function.
In our setting, it translates to the following: for any x, x′ ∈ R, C(|f(x) − x|) −
C(|f(x)−x′|) ≤ C(|f(x′)−x|)−C(|f(x′)−x′|). We obtain a nice characterization
by showing weak monotonicity is also sufficient and providing more illustrative
conditions equivalent to weak monotonicity on the allocation function f .

It turns out that the shape of the cost function C plays an important role. In
our work, we investigate linear, strictly convex and strictly concave cost func-
tions. C(d) = αd where α > 0 is a linear cost function; C is strictly convex if
for any two points d1 �= d2 and t ∈ (0, 1), it holds that C(td1 + (1 − t)d2) <
tC(d1) + (1− t)C(d2). Symmetrically C is strictly concave if for any two points
d1 �= d2 and t ∈ (0, 1), it holds that C(td1 + (1− t)d2) > tC(d1) + (1− t)C(d2).

3 Implication of Weak-Monotonicity

In this section, for linear and strictly convex cost functions respectively, derive
from weak monotonicity an equivalent condition on every single player subfunc-
tion.

3.1 Convex Cost Functions

Lemma 5. If the cost function is strictly convex, a single player allocation
function f satisfies weak monotonicity if and only if it is monotonically non-
decreasing, i.e., f(x1) ≤ f(x2) for any x1 < x2.

Proof. We use the following property of strictly convex functions:

Proposition 6. If function C is strictly convex, C(d1)+C(d4) > C(d2)+C(d3)
holds for any d1 < d2 ≤ d3 < d4 satisfying d1 + d4 = d2 + d3.

Now given a strictly convex cost function C, for any x1 < x2, we claim that
function Δ(z) = C(|z−x1|)−C(|z−x2|) is a monotonically increasing function:
For any z1 < z2 ≤ x1, set d1 = x1−z2, d4 = x2−z1, d2 = min(x1−z1, x2−z2) and
d3 = max(x1−z1, x2−z2). We can easily check d1 < d2 ≤ d3 < d4 and d1+d4 =
d2+d3. By Proposition 6, C(x1−z2)+C(x2−z1) > C(x1−z1)+C(x2−z2). We
rearrange the terms and change the distances to the form of absolute values to
get C(|z1−x1|)−C(|z1−x2|) < C(|z2−x1|)−C(|z2−x2|), i.e., Δ(z1) < Δ(z2).

The case x2 ≤ z1 < z2 is symmetric. For x1 ≤ z1 < z2 ≤ x2, we have
C(|z1 − x1|) = C(z1 − x1) < C(z2 − x1) = C(|z2 − x1|) and C(|z1 − x2|) =
C(x2 − z1) > C(x2 − z2) = C(|z2 − x1|). Taking the difference of the two
inequalities gives C(|z1 − x1|)− C(|z1 − x2|) < C(|z2 − x1|)−C(|z2 − x2|), i.e.,
Δ(z1) < Δ(z2).

The monotonicity of the entire function Δ can be easily derived by its mono-
tonicity on the three closed intervals z ≤ x1, x1 ≤ z ≤ x2, z ≥ x2 derived above.
The condition of weak monotonicity can be rewritten as Δ(f(x1)) ≤ Δ(f(x2)),
which holds if and only if f(x1) ≤ f(x2) since function Δ is strictly monotoni-
cally increasing.
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3.2 Linear Cost Functions

Lemma 7. If the cost function is linear, a single player allocation function f
satisfies weak monotonicity if and only if for any x1 < x2, f(x1) > x1 implies
f(x2) ≥ min(x2, f(x1)).

This property is weaker than being monotonically non-decreasing, which we call
partially monotonically non-decreasing.

Proof. If the cost function C(d) = αd (α > 0), for any x1 < x2, function
Δ(z) = C(|z− x1|)−C(|z− x2|) is a continuous non-decreasing piecewise linear
function: For z ≤ x1,Δ(z) is a negative constant α(x1−x2), whereas it constantly
equals its negation α(x2 −x1) for z ≥ x2. Between z = x1 and z = x2 is a linear
piece of slope 2α > 0.

The condition of weak monotonicity can be rewritten asΔ(f(x1)) ≤ Δ(f(x2)).
This always holds for f(x1) ≤ x1 sinceΔ(f(x1)) reaches the minimum. If f(x1) >
x1, there are two cases: for f(x1) < x2, f(x1) belongs to the linearly increasing
piece, so Δ(f(x1)) ≤ Δ(f(x2)) if and only if f(x1) ≤ f(x2); otherwise, f(x1) ≥
x2, Δ(f(x1)) reaches the maximum, thus Δ(f(x2)) is also the maximum, i.e.,
f(x2) ≥ x2. The summary of the two cases is exactly f(x2) ≥ min(x2, f(x1)).

4 Monotone Triangular Partition

In this section, we show that weak monotonicity implies a monotone triangular
partition. We start with the following key separation theorem:

Theorem 8. If f is partially monotonically non-decreasing, then for any x1 <
x2 satisfying (f(x1) − x1)(f(x2) − x2) < 0, there exists x∗ ∈ [x1, x2] such that
f(x) ≤ x∗ for x < x∗ and f(x) ≥ x∗ for x > x∗. In particular, f(x∗) = x∗ for
the case f(x1) > x1 and f(x2) < x2.

Proof. (f(x1)−x1)(f(x2)−x2) < 0 implies that f(x1)−x1 and f(x2)−x2 have
different signs. There are two cases:

If f(x1) < x1 and f(x2) > x2, we take x∗ = inf{x : f(x) > x, x ≥ x1}, where
the infimum exists since the set is non-empty (contains x2) and bounded below
by x1. Clearly x∗ ∈ [x1, x2].

First, we show f(x) ≤ x∗ for x < x∗ in this case. This is immediate for x ≥ x1

by the definition of x∗. For x < x1, suppose f(x) > x∗ for contradiction. Then
since f is partially monotonically non-decreasing, x < x1 and f(x) > x implies
f(x1) ≥ min(x1, f(x)) ≥ min(x1, x

∗) = x1, contradicting that f(x1) < x1.
Next, for x > x∗, we want to show f(x) ≥ x∗. By the definition of x∗, there

exists x′ ∈ [x∗, x) satisfying f(x′) > x′. Now we apply the partial monotonicity
condition again with x′ < x: f(x′) > x′ implies f(x) ≥ min(x, f(x′)) > x∗.

Interestingly, the second case f(x1) > x1 and f(x2) < x2 is not symmetric.
Here we take x∗ = inf{f(x) : f(x) < x, x ≥ x1}. Again the set is non-empty since
it contains f(x2). It is bounded below by x1 since we can apply the partial mono-
tonicity condition with x1 < x, f(x1) > x1 and get f(x) ≥ min(x, f(x1)) > x1.
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Hence x∗ is also well-defined in this case. Moreover, the above argument plus
f(x2) < x2 guarantees x∗ ∈ [x1, x2]. For this case, we need to show a slightly
stronger statement: f(x) ≤ x∗ for x ≤ x∗ and f(x) ≥ x∗ for x ≥ x∗, which at
x = x∗ implies f(x∗) = x∗.

First we prove f(x) ≤ x∗ for x ≤ x∗. For contradiction, suppose f(x) > x∗.
By the definition of x∗, there exists x′(≥ x1) such that x∗ ≤ f(x′) < f(x)
and f(x′) < x′: This immediately implies f(x′) < min(x′, f(x)); On the other
hand, x ≤ x∗ ≤ f(x′) < x′ and f(x) > x∗ ≥ x allows us to apply the partial
monotonicity condition and get f(x′) ≥ min(x′, f(x)), which is a contradiction.

Now f(x) ≥ x∗ for x ≥ x∗. For those x satisfying f(x) ≥ x, x ≥ x∗ imme-
diately gives f(x) ≥ x∗; otherwise, f(x) < x, then the definition of x∗ implies
that f(x) is at least the infimum x∗.

Theorem 8 enables us to repeatedly partition the real line into intervals: as
long as there exist two points x1 < x2 within the same interval I whose signs
of f(x) − x are different, we disect the interval at x∗. Point x∗ belongs to the
left subinterval I1 if f(x∗) < x∗, to the right subinterval I2 if f(x∗) > x∗, and
to either one of the two if f(x∗) = x∗ (Note that I1 and I2 are both nonempty
but may only contain a single point). This disection at the same time disects
the allocation function by line y = x∗: for x in I1 and all intervals left to I1,
f(x) ≤ x∗, the allocation function does not exceed this line; symmetrically for
x in I2 and all intervals right to I2, f(x) ≥ x∗, the allocation function never
goes below the line. Graphically, f appears within the region x ≤ x∗, y ≤ x∗ and
x ≥ x∗, y ≥ x∗.

Eventually, we get a partition P = {I} of R satisfying the following:

– Within each interval I, the sign of f(x) − x is uniformly δI ∈ {−1, 1}, i.e.,
δI(f(x)− x) ≥ 0 for all x ∈ I.

– For each interval I, f(x) ∈ Ĩ for all x ∈ I, where Ĩ is the closure of I.
– Between different intervals I1 and I2, if I1 is to the left of I2, f(x1) ≤ f(x2)

for any x1 ∈ I1, x2 ∈ I2.

The second property is immediate from the disecting argument in the description
of our partition process; and the last property immediately follows from the
second.

Graphically, the partition P defines a triangular structure: each interval I ∈ P
corresponds to a triangle TI : TI = {(x, y) : x ∈ I, y ∈ Ĩ , y ≤ x} for δI =
−1 and TI = {(x, y) : x ∈ I, y ∈ Ĩ , y ≥ x} for δI = 1. And the allocation
function f only appears within the set of triangles. Moreover, the triangular
structure is “monotonic” in the sense that “a triangle to the right is always
above”. Therefore, we call such a partition P a monotone triangular partition.

Combining Theorem 8 with Lemma 7 in Subsection 3.2, we derive that weak
monotonicity guarantees the existence of such a partition for linear cost functions.
For convex cost functions, Lemma 5 says that weak monotonicity implies that the
allocation function f is monotonically non-decreasing, which is stronger than the
condition of partially monotonically non-decreasing required in Theorem 8. Thus
a monotone triangular partition exists for convex cost functions as well. This can
also be derived directly from the monotonicity of the allocation function.
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5 Incentive Compatible Payments

In this section, for any allocation function f that admits a monotone triangular
partition, we would like to provide a payment function p such that (f, p) is
truthful. We have an explicit formula of p for partitions where any finite range
[a, b] only intersects finitely many intervals, i.e., P can be written as {Ii : b� ≤
i ≤ br}, where the Ii’s are ordered from left to right (possibly b� = −∞, or
br = +∞, or both). For general f that does not admit a partition of this form,
the same idea works; yet it involves infinite summations and makes our argument
notationally much more complicated. Handling such technical details is not the
focus of our paper here.

Now given a monotone triangular partition P = {Ii : b� ≤ i ≤ br}, let
{ai : b� ≤ i ≤ br + 1} be the set of boundary points, where ai ≤ ai+1 and the
left/right endpoint of Ii is ai/ai+1. P may contain only finitely many intervals,
including the very special case |P| = 1 where b� = br; otherwise, there is an
infinite sequence of intervals to the left end of the real line (b� = −∞), or to
the right end (br = +∞), or both. If b� is finite, ab� = −∞; If br is finite,
abr+1 = +∞. Other than these two, all ai’s are finite.

A monotone triangular partition P = {Ii : b� ≤ i ≤ br} of R satisfies the
following three properties:

– Each interval Ii is associated with δi ∈ {−1, 0, 1}, which denotes the uniform
sign of f(x) − x. We have δi(f(x) − x) ≥ 0 for all x ∈ Ii, and in particular,
δi = 0 requires f(x) ≡ x for all x ∈ Ii.

– For each i, f(x) ∈ Ĩi for all x ∈ Ii, where Ĩi is the closure of Ii.
– For any i < j and x ∈ Ii, x

′ ∈ Ij , we have f(x) ≤ f(x′).

Here we allow δi = 0 for an interval Ii where f(x) ≡ x, while for such an
interval, the other two choices −1 and 1 are also allowed. Graphically δi = 0
indicates that the corresponding triangle of Ii shrinks to the line segment {(x, y) :
x ∈ Ii, y = x}. This extra freedom does not add any difficulty to our proofs, but
as shown in Subsection 5.2, now our payment function includes the no-payment
case, i.e., for an allocation function that is truthful without payments, there is
a monotone triangular partition with associated δ’s under which our payment
function is exactly p(x) ≡ 0.

For linear and strictly convex cost functions respectively, we present a formula
of the payment function p and show its incentive compatibility based on the
above properties. This, combined with Section 4, and the necessity of weak
monotonicity, completes the proof of Theorem 1-3. Due to the space limit, we
defer the convex cost function part to the full paper.

5.1 Linear Cost Functions

Given a monotone triangular partition P = {Ii : b� ≤ i ≤ br}, we define a
function q : R → R on the location y ∈ R of the public facility as follows:
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q(y) = δ0y if |P| = 1; otherwise, choose a reference boundary point ab0 , where
b� < b0 ≤ br.

q(y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δk(y − ak) +

k−1∑

i=b0

δi(ai+1 − ai), y ∈ Ik, b0 ≤ k ≤ br

−δk(ak+1 − y)−
b0−1∑

i=k+1

δi(ai+1 − ai), y ∈ Ik, b� ≤ k < b0

Our definition of q only involves ai with bl + 1 ≤ i ≤ br, which are all finite,
thus function q is well-defined. Moreover, observe that for any finite boundary
point ak, the value of q(ak) is the same no matter whether ak belongs to interval
Ik−1 or Ik. Hence the above formula holds for any y ∈ Ĩk as well.

In particular, the value of q at the reference boundary point ab0 is set to 0.
Each interval Ii, or part of an interval, contributes to the payment if and only
if it is between ab0 and y. The contribution equals its sign δi times the length
of the interval if it is to the right of ab0 , and its negation if it is to the left of
ab0 . Under this summarization, the difference of the function value of any two
points y and y′ is irrelevant to the choice of the reference point ab0 . The following
lemma can be easily proven:

Lemma 9. Suppose y ∈ Ĩk and y′ ∈ Ĩk′ . For k < k′,

q(y′)− q(y) = δk′(y′ − ak′) +
k′−1∑

i=k+1

δi(ai+1 − ai) + δk(ak+1 − y);

For k = k′, q(y′)− q(y) = δk(y
′ − y).

Theorem 10. Let f be an allocation function that admits a monotone trian-
gular partition P = {Ii : b� ≤ i ≤ br}, and C(d) = αd (α > 0) is the cost
function. Then mechanism (f, p) is truthful where the payment function is de-
fined as p(x) = αq(f(x)).

Proof. To prove (f, p) is truthful, we need to show that for any true location x
and x′ �= x,

−C(|f(x) − x|) + p(x) = u(x) ≥ u(x′) = −C(|f(x′)− x|) + p(x′),

i.e., reporting true location x always maximizes the player’s utility. Substituting
C(d) = αd, p(x) = αq(f(x)) and f(x) = y, f(x′) = y′, the inequality simplifies
to

q(y)− |y − x| ≥ q(y′)− |y′ − x|.
Now we verify this inequality in three cases as follows. Throughout our proof,

we repeatedly use the simple fact that, for x ∈ Ik and y = f(x), |y−x| = δk(y−x).
This is immediate from the first property of the partition.
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Case 1: x and x′ are in the same interval Ik.
In this case, y, y′ ∈ Ĩk from the second property of the partition. By Lemma
9, we have q(y′)−q(y) = δk(y

′−y). We substitute this and |y−x| = δk(y−x)
and the inequality simplifies to |y′ −x| ≥ δk(y

′ − y)+ δk(y−x) = δk(y
′−x),

which always holds given δk ∈ {−1, 0, 1}.
Case 2 : x ∈ Ik, x

′ ∈ Ik′ and k < k′.
In this case, y ∈ Ĩk and y′ ∈ Ĩk′ . Applying Lemma 9 gives

q(y′)− q(y) = δk′(y′ − ak′) +

k′−1∑

i=k+1

δi(ai+1 − ai) + δk(ak+1 − y).

On the other hand, |y′ − x| = y′ − x = (y′ − ak′) +
∑k′−1

i=k+1(ai+1 − ai) +
(ak+1 − x).
Putting all equalities together, we get

q(y′)− q(y)− |y′ − x|+ |y − x| = (δk′ − 1)(y′ − ak′) +
k′−1∑

i=k+1

(δi − 1)(ai+1 − ai)

+δk(ak+1 − y)− (ak+1 − x) + δk(y − x)

≤ δk(ak+1 − y)− (ak+1 − x) + δk(y − x)

= (δk − 1)(ak+1 − x) ≤ 0,

given δk, δk′ ∈ {−1, 0, 1}. Rearranging the terms gives exactly the inequality
we want to prove.

Case 3 : x ∈ Ik, x
′ ∈ Ik′ and k > k′. This case is symmetric to Case 2.

5.2 Generality and Non-uniqueness of Our Payment

As mentioned before, by allowing degenerated triangles (allowing δI = 0 for
interval I where f(x) ≡ x) in our monotone triangular partition, we make our
payment formula include the all-zero payment function for truthful allocation
functions in the no payment setting.

For games without payment, every single player subfunction behaves as fol-
lows: as player’s location x grows, the facility location y = f(x) either remains
the same, or jumps to a symmetric (higher point) with respect to x, or continues
to equal x. Formally, for any single player subfunction of a truthful allocation
function, there exists a monotone triangular partition satisfying the following
properties:

– For any I with δI = 0, f(x) ≡ x. This is always required by a monotone
triangular partition. We state it here for completeness.

– For any I with δI = 1, f(x) always equals to the right endpoint of I.
– For any I with δI = −1, f(x) always equals to the left endpoint of I.
– For any I1 adjacent to I2 and to the left of I2, δI1 = −1 implies δI2 = 1 and

the lengths of the two intervals are equal.
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It can be verified that our payment function p in Subsection 5.1 based on the
above monotone triangular partition is constant, thus can be made all-zero by a
constant shift.

On the other hand, for an interval I where f(x) ≡ x, we can still set δI = −1
or 1, or even divide it into more intervals and set different δ’s. This freedom
results in different monotone triangular partitions, which, plugged into our pay-
ment formula, results in payment functions that differ more than a constant
shift. Therefore, the payment function for a truthful allocation function may
not be unique. In contrast, the classic unique-payment theorem [20] states that
the payment function is unique for a truthful mechanism when the domain is
connected; and the domain of our setting is connected. The inconsistency comes
from the fact that our outcome set (the set of possible facility locations) is un-
countable, while the theorem assumes the outcome set to be finite. This is called
the revenue equivalence in economics literature [13,8].

6 Conclusion and Open Questions

In this paper, we characterize the set of truthful allocation functions for one-
dimensional single facility location game with payments: we show the sufficiency
of weak monotonicity, and its equivalent global monotone structure on every sin-
gle player subfunction for linear and strictly convex cost functions respectively.

When investigating concave cost functions, we observe certain anti-monotone
feature implied by weak monotonicity, which makes this case greatly different
from the cases we have solved. We would love to see characterization results of
this case: it is not known yet whether weak monotonicity is sufficient or not. We
note here that, when the cost function is concave, the global utility function is
still not convex (it is convex in both sides of its true location but not if we view
it globally).

Another direction is to consider the game for more facilities, say, two facilities.
In this case, the valuation domain for each agent is more complicated. Even the
characterization for truthful mechanisms without payment is still open.
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