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Abstract

Holographic algorithms are a novel approach to design
polynomial time computations using linear superpositions.
Most holographic algorithms are designed with basis vec-
tors of dimension 2. Recently Valiant showed that a basis of
dimension 4 can be used to solve in P an interesting (restric-
tive SAT) counting problem mod 7. This problem without
modulo 7 is #P-complete, and counting mod 2 is NP-hard.

We give a general collapse theorem for bases of dimen-
sion 4 to dimension 2 in the holographic algorithms frame-
work. We also define an extension of holographic algo-
rithms to allow more general support vectors. Finally we
give a Basis Folding Theorem showing that in a natural set-
ting the support vectors can be simulated by bases of di-
mension 2.

1 Introduction

The most fundamental dichotomy in computational com-
plexity is polynomial time versus exponential time compu-
tation. Various methods have been devised to achieve expo-
nential speed-ups for a specific problem or a class of prob-
lems. This includes the methods of dynamic programming,
linear programming, semidefinite programming, random-
ization, quantum algorithms etc. The theory of holographic
algorithms introduced recently by Valiant [18] is another at-
tempt at exponential speed-ups for certain computations.

In this methodology it is possible to give polynomial
time algorithms for some problems which seem to require
exponential time. At the heart of a holographic algorithm,
one tries to devise a custom made process of exponential
cancellations. This process is carried out by representing
meaningful computational information in a superposition
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of linear vectors, somewhat analogous to quantum com-
puting. Here these superpositions of vectors are processed
in a classical way. Ultimately they are transformed by the
Holant Theorem [18] to an evaluation of the perfect match-
ing polynomial PerfMatch for planar graphs, which is then
computed by the elegant FKT method [11, 12, 15]. This re-
markable algorithm counts the number of perfect matchings
in a planar graph in polynomial time.

There are two main ingredients in the design of a holo-
graphic algorithm. First, a collection of planar matchgates.
Second, a choice of a linear vector basis, through which the
computation is expressed and interpreted. In this frame-
work, Valiant obtained polynomial time algorithms for a
number of combinatorial problems which were not known
to be in P and minor variations of which are known to be
NP-hard. In [2, 1] several other problems were shown to be
solvable in this framework.

Because the underlying basic computation is ultimately
reduced to perfect matchings, the linear basis vectors which
express the computation are necessarily of dimension 2k,
where k is called the size of the basis. In almost all
cases [18, 2, 1], the successful design of a holographic al-
gorithm was accomplished by a basis of size 1. Typically
there are two basis vectors n and p in dimension 2, which
represent the truth values True and False, and their tensor
product will represent a combination of 0-1 bits. It is the
superpositions of these vectors in the tensor product space
that are manipulated by a holographic algorithm in the com-
putation.

However, utilizing bases of a higher dimension is always
a theoretical possibility which may allow us to devise more
holographic algorithms that are not feasible with bases of
size 1. Indeed in [21], Valiant used a basis of size 2 to show
#7Pl-Rtw-Mon-3CNF ∈ P. This problem is a very restric-
tive Satisfiability counting problem. It counts the number
of satisfying assignments of a planar read-twice monotone
3CNF formula, modulo 7. Even though the form of the
Boolean formulae is severely restricted, it is known that the
counting problem for these formulae without the modulo 7



is #P-complete. Also, the counting problem modulo 2, i.e.,
to decide whether there are an even or an odd number of
satisfying assignments for these formulae is ⊕P-complete
(thus NP-hard by randomized reductions). Put in this con-
text, the solvability in P of the counting problem modulo
7 is very surprising. This opens up the realistic possibility
that bases of size 2 may be in fact more powerful.

In a recent paper [4] we have shown, among other things,
that for the particular problem #7Pl-Rtw-Mon-3CNF, this
use of bases of size 2 is unnecessary. There is another basis
of size 1, for which one can devise a holographic algorithm
which also solves #7Pl-Rtw-Mon-3CNF. The main result in
[4] is a characterization of all the realizable symmetric sig-
natures over all bases of size 1. The holographic algorithm
for #7Pl-Rtw-Mon-3CNF using bases of size 1 follows as
a consequence.

This leaves open whether bases of size 2 can always be
replaced by bases of size 1. We settle this problem affirma-
tively in this paper. It turns out that technically this collapse
is subtle. To explain this we need some more terminologies.

A (planar) matchgate is a planar undirected weighted
graph Γ = (G, X), where G = (V, E, W ), and X ⊆ V is
a subset of m external nodes, considered as inputs/outputs.
If all vertices in X are output nodes then Γ is called a gen-
erator. If all vertices in X are input nodes then Γ is a rec-
ognizer. To each matchgate Γ we assign a standard signa-
ture which has 2m entries Gi1i2...im = PerfMatch(G−Z),
where Z ⊆ X has the characteristic sequence χZ =
i1i2 . . . im. These signatures transform under various ba-
sis transformations, which make it possible to assume cer-
tain desired values. These matchgates are connected to
form a matchgrid for which one can define a Holant.
It is the Holant that expresses the desired computational
value. Meanwhile by the remarkable Holant Theorem [18],
Holant(Γ) is always computable in polynomial time by the
FKT method. The idea is then to find appropriate match-
gates and a basis, such that we can realize the desired sig-
natures. (For more background, please see [18, 2, 1].)

Consider the problem #Pl-Rtw-Mon-3CNF, i.e., count-
ing the number of satisfying assignments of a planar read-
twice monotone 3CNF formula. Given a 3CNF formula ϕ
as a planar graph Gϕ where variables and clauses are rep-
resented by vertices. For each variable x we wish to find
a generator G with signature G00 = 1, G01 = 0, G10 =
0, G11 = 1. or (1, 0, 0, 1) for short. It is indeed possible
to construct such a matchgate which consists of a path of
length 3 and all weights 1. Note that when we remove ex-
actly one of the two external nodes we get 3 vertices left
and therefore the value of PerfMatch is 0. If we remove
both or none of the two external nodes we get a unique per-
fect matching in each case with the weight of the matching
having value 1. We can replace the vertex for x in the pla-
nar formula by this generator G. This signature (1, 0, 0, 1)

intuitively corresponds to a truth assignment: its outputs
will be a consistent assignment of either 0 or 1. We also
wish to find a recognizer R with 3 inputs having signature
(0, 1, 1, 1, 1, 1, 1, 1). This signature intuitively corresponds
to a Boolean OR. The matchgrid is formed by connecting
the generator outputs to the recognizer inputs as given in
Gϕ. If we could find this recognizer, we would have shown
#Pl-Rtw-Mon-3CNF ∈ P, and therefore P#P = P.

It can be shown by a simple parity argument that a recog-
nizer with the standard signature (0, 1, 1, 1, 1, 1, 1, 1) does
not exist. However, under a suitable basis transformation
this signature is in fact realizable by some recognizer. In-
deed this is simultaneously realizable together with a gen-
erator having the signature (1, 0, 0, 1), over the filed Z7 (but
not over Q). This gives the surprising result that #7Pl-Rtw-
Mon-3CNF ∈ P.

Now we can explain the subtlety of whether it is possible
to universally replace a basis of size 2 by a basis of size 1. It
turns out that if we only focus on the recognizers, bases of
size 2 are in fact provably more powerful than bases of size
1. It is only in the context of simultaneous realizability of
both generators and recognizers that we are able to achieve
this universal bases collapse. Due to this subtlety, the proofs
are delicate.

Utilizing bases of higher dimensions is one way to ex-
tend the reach of holographic algorithms. There is another
way in which the basic framework of holographic algo-
rithms could be extended. With the additional dimension in
the basis vectors, comes the extra freedom of having more
than two linearly independent basis vectors. One can intro-
duce a notion of a set of support vectors. If all the genera-
tors have one set of support vectors, while all the recogniz-
ers have another set of support vectors, then one can define
the Holant of the matchgrid just as before, whose value will
only depend on the intersection of the two sets of support
vectors. In this case the Holant Theorem is still valid and
we can still evaluate the Holant by the FKT method. This
extension provides another degree of freedom in the design
of holographic algorithms, and thus an opportunity to solve
more problems this way. Holographic algorithms without
this extension can be considered as a special case. This ex-
tension to more varied support vector sets is particularly in-
teresting when we have basis size k > 1.

Regarding the extension with support vectors, for basis
size k = 2 we prove a Basis Folding Theorem in Section 5.
This theorem says that in a natural and interesting case, this
notion of support vectors can be simulated by holographic
algorithms with bases of size 1.

The results in this paper have the general implication that
a more extended version of holographic algorithms can be
simulated by holographic algorithms on bases of size 1. We
note however the general case with arbitrary support vec-
tors is yet to be investigated. We also remark that, from



an algorithm design point of view, even if these more gen-
eralized holographic algorithms can all be simulated in the
basic model of holographic algorithms, these extensions (of
basis size k > 1 and with support vectors) might still be
interesting as useful options in finding a holographic algo-
rithm. This situation is not dissimilar to that of determinis-
tic and non-deterministic finite automata. However, from a
strict complexity theory point of view, especially for prov-
ing lower bounds, these extensions no longer have any im-
portance, and we should focus only on the basic model with
bases of size 1.

This paper is organized as follows. In Section 2, we give
a brief summary of background information and a proof out-
line. In Section 3, we prove a general theorem about de-
generate bases and degenerate signatures of (planar) match-
gates. In Section 4, we give the proof of the main theorem,
namely, every holographic algorithm on some basis of size
2 using at least one non-degenerate generator can be real-
ized on some basis of size 1. In Section 5, we prove the
Basis Folding Theorem.

Addendum: In this paper we could only prove the Basis
Collapse Theorem for bases of size 2 (dimension 4) to size
1 (dimension 2), and for characteristic p where either p = 0
or under the condition that p does not divide the arity n
of any matchgate involved. This covers the case for #7Pl-
Rtw-Mon-3CNF from [21] where p = 7 and n = 3. In
a subsequent paper [7], we have proved a universal Basis
Collapse Theorem for bases of all sizes k, and without the
condition on the characteristic of the field.

2 Background and Proof Outline

2.1 Background

We give a brief recap of definitions.
Let G = (V, E, W ) be a weighted undirected planar

graph. A generator matchgate Γ is a tuple (G, X) where
X ⊆ V is a set of external output nodes. A recognizer
matchgate Γ′ is a tuple (G, Y ) where Y ⊆ V is a set of ex-
ternal input nodes. The external nodes are ordered counter-
clock wise on the external face. Γ (or Γ′) is called an odd
(resp. even) matchgate if it has an odd (resp. even) number
of nodes.

Each matchgate is assigned a signature tensor. A genera-
tor Γ with m output nodes is assigned a contravariant tensor
G of type

(
m
0

)
. Under the standard basis, it takes the form

G with 2m entries, where

Gi1i2...im = PerfMatch(G − Z),

and where Z is the subset of the output nodes having the
characteristic sequence χZ = i1i2 . . . im. G is called the

standard signature of the generator Γ. We can view G as a
column vector.

Similarly a recognizer Γ′ = (G′, Y ) with m input nodes
is assigned a covariant tensor R of type

(
0
m

)
. Under the

standard basis, it takes the form R with 2m entries, where

Ri1i2...im
= PerfMatch(G′ − Z),

where Z is the subset of the input nodes having χZ =
i1i2 . . . im. R is called the standard signature of the rec-
ognizer Γ′. We can view R as a row vector.

A basis T contains 2 vectors (t0, t1) (also denoted as
n, p), each of them has dimension 2k (size k). We use the
following notation:

T = (tαi ), where i ∈ {0, 1} and α ∈ {0, 1}k.

(Also denoted as [nα, pα] where α ∈ {0, 1}k. We follow the
convention for double indices such as tαi that upper index α
is for row and lower index i is for column [8].) We assume
rank(T ) = 2 in the following discussion because a basis of
rank(T ) = 1 is useless.

Under a basis T , we can talk about non-standard signa-
tures (or general signatures, or simply signatures).

Definition 2.1. The contravariant tensor G of a generator
Γ has signature G under basis T iff G = T⊗mG is the
standard signature of the generator Γ.

We have

Gα1α2···αn =
∑

i1,i2,··· ,in∈{0,1}
Gi1i2···in tα1

i1
tα2
i2

· · · tαn

in
. (1)

Where αj ∈ {0, 1}k for j = 1, 2, . . . , n.

Definition 2.2. The covariant tensor R of a recognizer Γ′

has signature R under basis T iff R = RT⊗m, where R is
the standard signature of the recognizer Γ′.

We have

Ri1i2···in =
∑

α1,α2,··· ,αn∈{0,1}k

Rα1α2···αn
tα1
i1

tα2
i2

· · · tαn

in
.

(2)
Where ij ∈ {0, 1} for j = 1, 2, . . . , n.
Remark: Under a basis of size k, if a general signature is
of arity n, then the standard signature is of arity nk. nk
is also the number of external nodes in the matchgate. So
a standard generator signature G (resp. a standard recog-
nizer signature R) has 2nk entries, and can be thought of as
belonging to V n

0 (resp. V 0
n) where V is a vector space of

dim(V ) = 2k (here we use standard notations V �
k for ten-

sor spaces [8]). It is convenient to view it blockwise when
we discuss its transformation or symmetry, and to view it
bitwise when we discuss its parity or realizability.



Definition 2.3. A contravariant tensor G ∈ V n
0 (resp. co-

variant tensor R ∈ V 0
n ) is realizable on a basis T iff there

exists a generator Γ (resp. a recognizer Γ′) such that G
(resp. R) is the signature of Γ (resp. Γ′) under basis T .

For a string α ∈ {0, 1}∗, we use the notation wt(α) to
denote its Hamming weight. A signature G or R on index
α = α1α2 . . . αn, where each αi ∈ {0, 1}k, is (block-wise)
symmetric iff the value of Gα or Rα only depends on the
number of k-bit patterns of αi. For k = 1 it only depends
on the Hamming weight of its index wt(α). For k = 1, we
can denote a (bit-wise) symmetric signature by the notation
[z0, z1, . . . , zn], where i is the Hamming weight.

A matchgrid Ω = (A, B, C) is a weighted planar graph
consisting of a disjoint union of: a set of g generators A =
(A1, . . . , Ag), a set of r recognizers B = (B1, . . . , Br),
and a set of f connecting edges C = (C1, . . . , Cf ), where
each Ci edge has weight 1 and joins an output node of a
generator with a input node of a recognizer, so that every
input and output node in every constituent matchgate has
exactly one such incident connecting edge.

Let G(Ai, T ) be the signature of generator Ai under the
basis T and R(Bj , T ) be the signature of recognizer Bj

under the basis T . And Let G =
⊗g

i=1 G(Ai, T ) and
R =

⊗r
j=1 R(Bj , T ). Then Holant(Ω) is defined to be

the contraction of these two product tensors, where the cor-
responding indices match up according to the f connecting
edges in C.

Valiant’s Holant Theorem [18] is

Theorem 2.1 (Valiant). For any matchgrid Ω over any basis
T , let G be its underlying weighted graph, then

Holant(Ω) = PerfMatch(G).

Standard signatures (of either generators or recogniz-
ers) are characterized by the following two sets of condi-
tions. (1) The parity requirements: either all even weight
entries are 0 or all odd weight entries are 0. This is due
to perfect matchings. (2) A set of Matchgate Identities
(MGI) [1, 3, 17]: Let G be a realizable standard signature
of arity n (we use G here, it is the same for R). A pattern
α is an n-bit string, i.e., α ∈ {0, 1}n. A position vector
P = {pi}, i ∈ [l], is a subsequence of {1, 2, . . . , n}, i.e.,
pi ∈ [n] and p1 < p2 < · · · < pl. We also use p to denote
the pattern, whose (p1, p2, . . . , pl)-th bits are 1 and others
are 0. Let ei ∈ {0, 1}n be the pattern with 1 in the i-th bit
and 0 elsewhere. Let α + β be the pattern obtained from
bitwise XOR the patterns α and β. Then for any pattern
α ∈ {0, 1}n and any position vector P = {pi}, i ∈ [l], we
have the following identity:

l∑
i=1

(−1)iGα+epi Gα+p+epi = 0. (3)

The following simple Proposition 4.3 of [18] is due to
Valiant and gives an equivalence relation on basis of size 1.
Let F be a field.

Proposition 2.1 (Valiant). [18] If there is a genera-
tor (recognizer) with certain signature for size one ba-
sis {(n0, n1)T, (p0, p1)T} then there is a generator (rec-
ognizer) with the same signature for size one basis
{(xn0, yn1)T, (xp0, yp1)T} or {(xn1, yn0)T, (xp1, yp0)T}
for any x, y ∈ F and xy �= 0.

2.2 An Outline

In [21], Valiant employed a basis of size 2: n =
(1, 1, 2, 1)T, p = (2, 3, 6, 2)T, and showed that #7Pl-Rtw-
Mon-3CNF is in P. He found that, in the notation for sym-
metric signatures, a generator for [1, 0, 1] and a recognizer
for [0, 1, 1, 1] over Z7 are simultaneously realizable on this
basis of size 2. In [4], we showed that a generator for
[1, 0, 1] and a recognizer for [0, 1, 1, 1] over Z7 can also
be simultaneously realized on the following basis of size

1:

[(
1
6

)
,

(
3
5

)]
. The natural question is whether this is

luck or this is universally true.
It turns out that if we only focus on realizable signatures

for recognizers, there do exist some signatures which are
realizable on a basis of size 2, but not realizable on any
basis of size 1. The following basis of size 2 is such an
example: n = (1, 2, 3, 4)T, p = (5, 6, 7, 8)T. (We omit
the particular matchgate and signature that witness this,
since it is not particularly illuminating for the rest.) The
next key insight is that when we have a holographic algo-
rithm, given by a matchgrid consisting of a set of gener-
ators and recognizers, we need to have a basis on which
their signatures are simultaneously realizable. For some
bases such as n = (1, 2, 3, 4)T, p = (5, 6, 7, 8)T, no gen-
erator is realizable on them. This is a new phenomenon.

In the case of bases of size 1, any

[(
n0

n1

)
,

(
p0

p1

)]
∈

GL2(F) can be a potential basis (for which some gener-
ator can be realized). But this is not true for an arbi-
trary n = (n00, n01, n10, n11)T, p = (p00, p01, p10, p11)T.
Informally speaking, the underlying reason for this is
the following fact. If a generator G is realizable on
n = (n00, n01, n10, n11)T, p = (p00, p01, p10, p11)T, then
G is also realizable on the following 4 bases of size 1:[(

n00

n01

)
,

(
p00

p01

)]
,

[(
n00

n10

)
,

(
p00

p10

)]
,

[(
n01

n11

)
,

(
p01

p11

)]
,[(

n10

n11

)
,

(
p10

p11

)]
. This constraint forces that the values

n00, n01, n10, n11, p00, p01, p10 and p11 can not be arbitrary.
After ruling out a degenerate case, we can prove that this
requires the above 4 bases of size 1 to be equivalent in the
sense of Proposition 2.1. Up to this equivalence we can de-



fine it to be the embedded basis of size 1. Such bases of size
2 are called valid bases. It implies that n00p11−n11p00 = 0
and n01p10 − n10p01 = 0.

Now one can expect some kind of collapse property fo-
cusing only for valid bases. Then on a valid basis of size
2, are there any more realizable recognizers which are not
realizable on bases of size 1? This we answer in the neg-
ative. We prove that any recognizer which is realizable
on a size 2 valid basis can also be realized on a size 1
basis. More precisely, it can be realized on its embed-
ded size 1 basis. For the above example, we notice that
n = (1, 1, 2, 1)T, p = (2, 3, 6, 2)T is valid. Furthermore its

4 embedded bases of size 1:

[(
1
1

)
,

(
2
3

)]
,

[(
1
2

)
,

(
2
6

)]
,[(

1
1

)
,

(
3
2

)]
,

[(
2
1

)
,

(
6
2

)]
and our basis

[(
1
6

)
,

(
3
5

)]
are all equivalent in the sense of Proposition 2.1, over Z7.

The above result is proved by ruling out a degener-
ate case, which happens when the size 2 basis are of the
form n = (n00, 0, 0, n11)T, p = (p00, 0, 0, p11)T, or n =
(0, n01, n10, 0)T, p = (0, p01, p10, 0)T. We call such bases
degenerate. It turns out that degenerate cases are tricky
technically. In fact, on a degenerate basis, there is no gen-
eral collapse for recognizers, i.e., there do exist some recog-
nizers which are realizable on a degenerate basis of size 2,
but not realizable on any basis of size 1. Furthermore, there
are some generators realizable on some degenerate bases.
But we can show that the only generators realizable on a
degenerate basis are trivial. They are essentially only ten-
sors of arity 1 (technically they can only be a tensor product
of some arity 1 generators; we call such generators degen-
erate). We will argue that holographic algorithms which
only use degenerate generators are not interesting. They es-
sentially degenerate into ordinary algorithms, without any
holographic superpositions.

In the next section we start with degenerate bases.

3 Degenerate Bases

Definition 3.1. A basis T is degenerate iff tα = 0 for all
wt(α) even (or for all wt(α) odd).

Definition 3.2. A generator tensor G ∈ V n
0 (where

dim(V ) = 2) is degenerate iff it has the following form:

G = G1 ⊗ G2 ⊗ · · · ⊗ Gn, (4)

where Gi ∈ V .

Remark: Every generator with arity 1 is trivially degener-
ate. G is degenerate iff G completely factors into a tensor
product of arity 1 tensors. This means that there is no in-
teraction or interference between the output bits of the gen-
erator. Such generators should really be considered as n
separate one-bit generators.

Now we prove a general theorem showing that a degener-
ate basis can only accommodate degenerate generators. The
proof uses Matchgate Identities in an essential way. There-
fore it depends crucially on the fact that we are dealing
with planar matchgates (or for readers who are familiar with
the character theory of general matchgates, it ultimately de-
pends on the properties of Pfaffians and the equivalence of
the signature theory of planar matchgates and the character
theory of general matchgates [16, 18, 1, 3]).

Theorem 3.1. If a basis T is degenerate and rank(T ) = 2,
then every generator G ∈ V n

0 realizable on the basis T is
degenerate.

Proof: Since T is degenerate, we assume tα = 0 for all
wt(α) odd. The other case is similar. Let G = T⊗nG.
Then G can be realized as the standard signature of a planar
matchgate and from (1) we know that it has the following
property: for every non-zero entry Gα1α2···αn , wt(αj) is
even for j = 1, 2, . . . , n.

If G ≡ 0, i.e., G is identically 0, thus G is identi-
cally 0 since rank(T ) = 2, then the Theorem is obviously
true. Otherwise there exists some β ∈ {0, 1}nk such that
Gβ �= 0. We can assume β = 00 · · ·0, and further assume
G00···0 = 1. This is because we may let G′α = Gα⊕β/Gβ ,
then G′00···0 = 1. Then the proof works for G′. In terms of
G = T⊗nG, this becomes G′ = (T1 ⊗ T2 ⊗ · · · ⊗ Tn)G,
where each Ti is obtained from T by a permutation of
its rows determined by αi. In the following we assume
G00···0 = 1.

Since G is realizable, it can be realized as some match-
gate Γ with nk external nodes. View its k external nodes in
the i-th block still as external nodes and other nodes as in-
ternal, we have a matchgate Γi with k external nodes. This
is our Gi. By definition we have

Gi
α = G00···0α00···0,

where the position of α in the RHS is the i-th block of G.
We want to prove that

Gα1α2···αn = G1
α1G2

α2 · · ·Gn
αn . (5)

If any wt(αi) is odd, then both sides are 0 and this equa-
tion is satisfied.

Now we prove (5) by induction on wt(α1α2 · · ·αn) ≥ 0
and all wt(αi) are even.

If wt(α1α2 · · ·αn) = 0, we have the only case that
α1α2 · · ·αn = 00 · · · 0. In this case (5) is obvious.

If wt(α1α2 · · ·αn) = 2, since we require that all wt(αj)
are even, the two 1’s must be in the same block. Then (5) is
obvious too.

Inductively we assume (5) has been proved for all
wt(α1α2 · · ·αn) ≤ 2(i − 1), for some i ≥ 2. Now
wt(α1α2 · · ·αn) = 2i ≥ 4. W.l.o.g, we assume α1 �=



00 · · ·0, a block a k 0’s. (This is for notational convenience;
that it is w.l.o.g. will become clear from the proof below.)
Let t be the position of the first 1 in α1. Using the pattern
α1α2 · · ·αn +et and positions α1α2 · · ·αn (we denote it as
P = {pj} where j = 1, 2, . . . , 2i), we have the following
matchgate identity:

Gα1α2···αn =
2i∑

j=2

(−1)jGα1α2···αn+et+epj Get+epj .

Let w = wt(α1). Then when j ≥ w + 1, Get+epj =
0 because the weight of its first block is 1, which is odd.
Therefore, we have

Gα1α2···αn =
w∑

j=2

(−1)jG(α1+et+epj
)α2···αnG(et+epj

)00···0.

Here for convenience we consider et, epj ∈ {0, 1}k.
Since every Gα in the RHS has weight wt(α) ≤ 2i − 2,

we can apply (5) to them, and get:

Gα1α2···αn = G2
α2 · · ·Gn

αn

w∑
j=2

(−1)jG1
α1+et+epj G1

et+epj .

The matchgate identity for G1 using pattern α1 + et and
positions α1 gives us

G1
α1 =

w∑
j=2

(−1)jG1
α1+et+epj G1

et+epj .

It follows that

Gα1α2···αn = G1
α1G2

α2 · · ·Gn
αn .

We can rewrite it as

G = G1 ⊗ G2 ⊗ · · · ⊗ Gn. (6)

To prove (4), we apply a transformation. Since
rank(T ) = 2, there exists a 2 × 2k matrix T̃ such that
T̃ T = I2. Therefore

G = (T̃ T )⊗nG = T̃⊗nT⊗nG = T̃⊗nG.

Substituting (6) in this, we have

G = T̃⊗n(G1⊗G2⊗· · ·⊗Gn) = (T̃G1)⊗(T̃G2)⊗· · ·⊗(T̃Gn).

Let Gj = T̃Gj , we have

G = G1 ⊗ G2 ⊗ · · · ⊗ Gn.

If we take into account the transformation from G to G′,
then we must use a permuted T̃i for each Ti separately. This
completes the proof.

Definition 3.3. A basis T is valid iff there exists some non-
degenerate generator realizable on T .

Corollary 3.1. A valid basis is non-degenerate.

In the main collapse theorem, we will rule out the case
that a holographic algorithm only employs degenerate gen-
erators. This is justified as follows.

Let there be given a matchgrid Ω in a holographic algo-
rithm consisting of a number of generators G1, G2, . . . , Gs

and recognizers R1, R2, . . . , Rt. If all the generators
G1, G2, . . . , Gs are degenerate then we can decompose ev-
ery generator as in Theorem 3.1 without changing the value
for the Holant of the matchgrid. After that every generator
has arity 1. So every generator connects to a unique recog-
nizer. Suppose the arity of Ri is ni, we rename the gener-
ator (after decomposition) which connects to the j-th node
of Ri as Gi,j , where i ∈ [t], j ∈ [ni]. Then the Holant can
be evaluated for each recognizer separately and then multi-
plied:

t∏
i=1


 ∑

x1,x2,...,xni
∈{0,1}

(Ri)x1,x2,...,xni
Gx1

i,1G
x2
i,2 · · ·G

xni

i,ni


 .

This means that the value of Holant(Ω) can be com-
pletely decomposed into the local components of the indi-
vidual recognizer matchgate Ri, without any interation be-
tween these matchgates. For example, if this is a Satisfiabil-
ity problem and the recognizers correspond to clauses. Then
the sum for a single recognizer corresponding to a clause is
to count all the satisfying assignments to that clause. This
is trivial if all its input variables do not have any interaction
with any other clauses. In general we assume the combina-
torial problem is defined in such a way that the notion that
corresponds to a local component is sufficiently simple, so
that the sum for the matchgate signature for that local com-
ponent alone is computable in polynomial time. This is in
particular true if the size of the local component is at most
O(log N), where N is the input size to the problem.

4 Collapse Bases of Size 2

In this section, we develop a general collapse result for
bases of size 2. Some of the lemmas are generally true for
any size k, in such cases, we state the results for arbitrary k.

First we give the following simple lemmas:

Lemma 4.1. If a generator G is realizable on a basis
T = [n, p] of size k, then for all α ∈ {0, 1}k and
i ∈ [k], G is also realizable on the following size 1 basis:[(

nα

nα+ei

)
,

(
pα

pα+ei

)]
.



Proof: The fact that G is realizable on the basis T = [n, p]
means that there exists a matchgate Γ with kn external
nodes with a standard signature G = T⊗nG. We construct
a new matchgate as follows:

Fix an i. First, for every block and every j ∈ [k], if the j-
th bit of α is 1, add an additional edge of weight 1 between
j and an additional node j′. Then viewing nodes i (if the i-
th bit of α is 0) or i′ (if the i-th bit of α is 1) in every block
as external nodes and all the other nodes as internal nodes,
we have a new matchgate Γ′ with n external nodes.

From (1), we know that the standard signature of Γ′ is

exactly

[(
nα

nα+ei

)
,

(
pα

pα+ei

)]⊗n

G.

It follows that G is also realizable on the size 1 basis:[(
nα

nα+ei

)
,

(
pα

pα+ei

)]
.

Lemma 4.2. If a non-degenerate symmetric generator is
realizable on two linearly independent bases of size 1:[(

n
n1

)
,

(
p
p1

)]
and

[(
n
n2

)
,

(
p
p2

)]
, then

n1p2 − n2p1 = 0.

Proof: In the paper [5] we have obtained a complete char-
acterization of symmetric realizable generators and recog-
nizers on bases of size 1. The purpose of Lemma 4.1 is
precisely to be able to apply this information. Being non-
degenerate means that G is not of the form of Lemma 8.1
in [5]. And we can check with Lemma 8.2–Lemma 8.6
in [5] to verify that in every other case the statement of this
Lemma is true. (For reader’s convenience, we include the
relevant Lemmas from [5] in an Appendix.)

Lemma 4.3. Let T = [n, p] be a non-degenerate basis of
size k, (and as usual assume rank(T ) = 2.) Then there exist
i and j, such that wt(i) is even, wt(j) is odd and nipj −
njpi �= 0.

We denote by vα = (nα, pα) in the following.
Proof: We assume for a contradiction that for every i and
j, with wt(i) even and wt(j) odd, nipj − njpi = 0.

Since T is non-degenerate, there exist i0 and j0 such that
wt(i0) is even, wt(j0) is odd, vi0 �= (0, 0), and vj0 �=
(0, 0). From the assumption, we know that there exists a λ,
such that vj0 = λvi0 . Applying this, for any r ∈ {0, 1}k, if
wt(r) is odd, there exists some λr such that vr = λrvi0 ; if
wt(r) is even, there exists some λ′

r such that vr = λ′
rvj0 =

λ′
rλvi0 .

Therefore, every two vectors vi,vj are linearly depen-
dent. As a result rank(T ) = 1. This contradiction com-
pletes the proof.

Lemma 4.4. Suppose a generator G is realizable on the
basis T = [n, p] of size k. Let G = T⊗nG be the standard
signature of G. If wt(α) is even, wt(β) is odd and the two

non-zero vectors (nα, pα), (nβ , pβ) are linearly dependent,
then whenever α or β occurs as some αi in α1α2 · · ·αn, we
have Gα1α2···αn = 0.

Proof: Suppose α or β occurs as some αi in α1α2 · · ·αn.
From (1), when we replace either α with β or β with α at
one place, the value of G is changed by a non-zero factor,
because vα and vβ are linearly dependent and non-zero.
But their parities are different. By the parity requirements of
standard signatures, one of them is 0. So the only possibility
is Gα1α2···αn = 0.

Lemma 4.5. If a non-degenerate symmetric generator G is
realizable on a basis T = [n, p] of size 2, then nipj−njpi =
0 for all wt(i), wt(j) having the same parity.

Proof: First, notice that every even pattern differs from ev-
ery odd pattern of {00, 01, 10, 11} by exactly one bit. From
Lemma 4.1, we have for every even wt(i) and odd wt(j),

the standard signature

[(
ni

nj

)
,

(
pi

pj

)]⊗n

G, is realizable.

From Lemma 4.3, w.l.o.g, we assume v00 and v01 are
linearly independent, i.e., n00p01 − n01p00 �= 0. (If it is the
pair (v00,v10) we can just exchange the first with the sec-
ond bit. It is similar with the case where it is the vector v11

instead of v00 (for the even weight i from Lemma 4.3).) We
use the notation D(u,v) to say the vectors u and v are lin-
early dependent. Then from Lemma 4.2, if ¬D(v00,v10)
then D(v01,v10), and if ¬D(v11,v01) then D(v00,v11).
As a result, both v10 and v11 are in the following three
cases: (1) a non-zero multiple of v00, (2) a non-zero multi-
ple of v01, or (3) the zero vector (0, 0).

In order to prove Lemma 4.5 we only need to rule out the
following cases:

• Case 1: v11 = (0, 0), and v10 is a non-zero multiple
of v00.

In this case, from Lemma 4.4, any occurrence of 00
or 10 will make Gα1α2···αn = 0. Since v11 = (0, 0),
from eqn. (1) any occurrence of 11 will also make
Gα1α2···αn = 0. So the only possible non-zero entry
of G is G01,01,··· ,01. Then G is degenerate, and so is
G. A contradiction.

• Case 2: v10 is (0, 0), and v11 is a non-zero multiple of
v01. This case is similar with Case 1.

• Case 3: v10 is a non-zero multiple of v00, and v11 is a
non-zero multiple of v01.

As in Case 1, any occurrence of 00 or 10 will make
Gα1α2···αn = 0. And also any occurrence of 11 or 01
will make Gα1α2···αn = 0. Therefore G is trivial. It
follows that G is also trivial, a contradiction.



• Case 4: v10 and v11 are both non-zero multiples of
v00.

In this case, v11 is also a non-zero multiple of v10.
From Lemma 4.4, any occurrence of 00, 10 or 11 will
make Gα1α2···αn = 0. So the only possible non-zero
entry of G is G01,01,···01. Then G is degenerate, and so
is G. A contradiction.

• Case 5: v10 and v11 are both non-zero multiples of
v01.

This case is similar to Case 4. We can show that the
only possible non-zero entry of G is G00,00,···00.

This completes the proof.

Remark: It seems that the “degeneracy” of having some
identically 0 vectors in the basis does present additional
technical difficulty in the proof. The main contour of the
proof of the Collapse Theorem is simpler in spirit, when
one does not have to deal with these zero vectors. In a way,
all the preceding lemmas are handling some “borderline
cases”. However we can not dismiss these bases of “bor-
derline cases” from the theory, for in fact most successes
of holographic algorithms have utilized these “accidental”
bases.

Now we can prove the following theorem.

Theorem 4.1. For every valid basis T = [n, p] of size 2, we
have D(vi,vj), i.e., vi and vj are linearly dependent, for
all wt(i), wt(j) having the same parity.

Proof: Since T = [n, p] is valid, by definition, there ex-
ists a non-degenerate generator G which is realizable on T .
From Corollary 3.1, we know T = [n, p] is non-degenerate.

Let T0 =
[(

n00

n11

)
,

(
p00

p11

)]
and T1 =[(

n01

n10

)
,

(
p01

p10

)]
.

Then all we need to prove is det(T0) = det(T1) = 0.
According to the parity of the arity n and the parity of

the matchgate realizing G, we have four cases:
Case 1: even n and odd matchgate
From the parity constraint, we have T⊗n

0 G = 0 and
T⊗n

1 G = 0. Since G �≡ 0 (i.e., G is not identically 0),
we have det(T0) = det(T1) = 0.
Case 2: odd n and odd matchgate
From the parity constraint, we have T⊗n

0 G = 0. Since G �≡
0, we have det(T0) = 0. Since the basis is not degenerate,
from Lemma 4.3, we know that there exist i and j, such that
wt(i) is even, wt(j) is odd and ¬D(vi,vj).

From the parity constraint, for all 0 ≤ t ≤ n−2, we also
have

(T⊗t
1 ⊗ [ni, pi] ⊗ [nj , pj ] ⊗ T⊗n−2−t

1 )G = 0,

(T⊗t
1 ⊗ [nj , pj ] ⊗ [ni, pi] ⊗ T⊗n−2−t

1 )G = 0.

Subtract these two equations we get:

(nipj − njpi)(T⊗t
1 ⊗ [0, 1,−1, 0]⊗ T⊗n−2−t

1 )G = 0.

Since nipj − njpi �= 0, we have

(T⊗t
1 ⊗ [0, 1,−1, 0]⊗ T⊗n−2−t

1 )G = 0.

Let Gt be a tensor of V n−2
0 such that

G
i1i2...in−2
t = Gi1i2...it−101itit+1...in−2−Gi1i2...it−110itit+1...in−2 .

Then we have T
⊗(n−2)
1 Gt = 0.

If there exists any 0 ≤ t ≤ n − 2 such that Gt �≡ 0, we
have det(T1) = 0.

Otherwise for any 0 ≤ t ≤ n − 2 we have Gt ≡ 0. This
implies that G is symmetric. Then from Lemma 4.5, we
have det(T1) = 0.
Case 3: odd n and even matchgate
This case is similar to Case 2. We apply the argument for
T0 to T1, and apply the argument for T1 to T0.
Case 4: even n and even matchgate
This case is also similar to Case 2 and Case 3. We simply
apply the same argument for T1 as in Case 2 and the same
argument for T0 as in Case 3.

From this theorem, we know that for any valid basis

T =






n00

n01

n10

n11


 ,




p00

p01

p10

p11





, there exist (n0, p0), (n1, p1),

λ00, λ01, λ10 and λ11, such that vij = λij(nb, pb), where
i, j = 0, 1 and b = i + j mod 2.

From Lemma 4.3, we know that (n0, p0), (n1, p1) are
linearly independent, and each is determined up to a scalar
multiplier.

Definition 4.1. We call T̂ =
[(

n0

n1

)
,

(
p0

p1

)]
an embedded

size 1 basis of T .

By Lemma 4.3 for at least one pair of indices ij and i′j′,
one is of odd weight and the other of even weight, such
that both λij , λi′j′ �= 0. Then by Lemma 4.1 and apply
Proposition 2.1, we have

Theorem 4.2. If a generator G is realizable on a valid basis
T of size 2, then it is also realizable on its embedded size 1
basis T̂ .

Now we address recognizers.

Theorem 4.3. If a recognizer R is realizable on a valid
basis T of size 2, then it is also realizable on its embedded
size 1 basis T̂ .



Proof: Suppose T̂ =
[(

n0

n1

)
,

(
p0

p1

)]
, and we have vij =

λij(nb, pb), where i, j = 0, 1 and b = i + j mod 2.
Let Γ be a matchgate realizing R, where R = RT⊗n.

Γ has 2n external nodes. For every block of two nodes in
Γ, we use the following gadget to extend Γ to get a new
matchgate Γ′ of arity n. The parameters a, b, c, d, e, f, g

�

�

�

�

�

f

a

�

�
�

�
��

�
�

�
��

c

b

d

e
g

satisfy daf = λ11, cf = λ01, ae = λ10, be + cg = λ00.
These equations are satisfiable as follows. If λ10 = 0,

we set e = 0, c = 1, f = λ01, and g = λ00. Note impor-
tantly, when λ10 = 0, we have λ01 �= 0. This follows from
Lemma 4.3. So then we can let a = 1 and d = f−1λ11. If
λ10 �= 0, we set e = f = 1, and g = 0. Then c = λ01,
a = λ10 and d = a−1λ11.

Note the following: If the right most vertex of this gad-
get is removed, then there are exactly two perfect matching
fragments of Γ′, or more precisely, exactly two classes of
perfect matchings of Γ′ which have the parts in the gad-
get having weight multipliers cf and ae respectively. These
correspond to the bit patterns 01 and 10 respectively in the
original matchgate Γ. If the right most vertex is kept, then
there are exactly three perfect matching fragments of Γ′,
the first with weight multiplier daf which corresponds to
the bit pattern 11 in Γ, and the second and third with weight
multipliers be and cg, both correspond to the bit pattern 00
in Γ.

Let R′ be the standard signature of Γ′. Then the discus-
sion above leads to the following exponential sum for all
i1, i2, . . . , in = 0, 1:

R′
i1i2...in

=
∑

jr+j′r=ir

Rj1j′1,j2j′2,··· ,jnj′n
λj1j′1λj2j′2 · · ·λjnj′n .

(The summation jr + j′r = ir in the index is done in Z2.)

We want to prove that R′ in the basis

[(
n0

n1

)
,

(
p0

p1

)]

and R in the basis






n00

n01

n10

n11


 ,




p00

p01

p10

p11





 give the same rec-

ognizer R.
For the summation notation below, we use (til) and (t̄jj′

l )
to represent the above two bases, where l, i, j, j′ ∈ {0, 1}.

Here l = 0 is for the n(·) vectors and l = 1 is for the p(·)
vectors. Then t̄jj′

l is the product of λjj′ and tj+j′
l .

Now from (2) we have

Rl1l2···ln

=
∑

jr,j′r∈{0,1}
Rj1j′1,j2j′2,··· ,jnj′n

t̄
j1j′1
l1

t̄
j2j′2
l2

· · · t̄jnj′n
ln

=
∑

ir∈{0,1}

∑
jr+j′r=ir

Rj1j′1,j2j′2,··· ,jnj′n
t̄
j1j′1
l1

t̄
j2j′2
l2

· · · t̄jnj′n
ln

=
∑

ir∈{0,1}

∑
jr+j′r=ir

Rj1j′1,··· ,jnj′n
λj1j′1t

j1+j′1
l1

· · ·λjnj′nt
jn+j′n
ln

=
∑

ir∈{0,1}
ti1l1 t

i2
l2
· · · tin

ln

∑
jr+j′r=ir

Rj1j′1,··· ,jnj′n
λj1j′1 · · ·λjnj′n

=
∑

ir∈{0,1}
ti1l1 t

i2
l2
· · · tin

ln
R′

i1i2···in

= R′
l1l2···ln .

This completes the proof.

Together from Theorems 4.1 to 4.3, we have the follow-
ing main theorem:

Theorem 4.4. (Basis Collapse Theorem) Over any field of
characteristic p, where p = 0 or p does not divide the arity
of any matchgate involved, any holographic algorithm on a
basis of size 2 which employs at least one non-degenerate
generator can be simulated efficiently in a basis of size 1.
More precisely, if generators G1, G2, . . . , Gs and recogniz-
ers R1, R2, . . . , Rt are simultaneously realizable on a size
2 basis, and not all generators are degenerate, then all the
generators and recognizers are simultaneously realizable
on a basis of size 1.

Proof: Suppose generators G1, G2, . . . , Gs and recog-
nizer R1, R2, . . . , Rt are simultaneously realizable on the

size 2 basis T =






n00

n01

n10

n11


 ,




p00

p01

p10

p11





. Since some

Gi is not degenerate, we know that T is valid. Let

T̂ =
[(

n0

n1

)
,

(
p0

p1

)]
be the embedded size 1 basis of

T . From Theorem 4.2, we know that all the generators
G1, G2, . . . , Gs are realizable on T̂ . From Theorem 4.3,
we know that all the recognizers R1, R2, . . . , Rt are also
realizable on T̂ . This completes the proof.

5 More General Support Vectors

In this section we consider an extension to the basic
model of holographic algorithms. We will state our exten-



sion in the most concrete terms in order to make the basic
ideas clearer. Generalizations are certainly possible.

The present set-up of holographic algorithms at a tech-
nical level—where the rubber meets the road—can be de-
scribed as follows. We have a collection of planar match-
gates which are endowed with their standard signatures G.
These are defined by the PerfMatch polynomial. Then we
look for a suitable linear basis [n,p] on which we can ex-
press the standard signatures of the matchgates (superposi-
tions). More precisely for a generator of arity n we have
a contravariant tensor G, when viewed as a column vec-
tor G, it satisfies the relation G = [n,p]⊗nG. Similarly
we have recognizers as covariant tensors, and they satisfy
R = R[n,p]⊗n, where R is the standard signature of the
recognizer and R is the signature under this basis. (We view
G and G as column vectors and view R and R as row vec-
tors.) We then form tensor products of the signatures in the
order specified by the matchgrid. With an abuse of notation
we still denote by G and R the signatures for the matchgrid.

The Holant is the contraction of R on G. This is also,
when viewed as an inner product of row/column vectors,
equal to 〈R, G〉. Abstractly the Holant Theorem is just

〈R, G〉 = 〈R, G〉.
To solve a combinatorial problem we design matchgates

and find a basis so that the entries of R and G have the
desired combinatorial meanings. Then the Holant 〈R, G〉
expresses the computational value one wishes to compute,
which is usually an exponential sum. And the Holant The-
orem tells us that this is the same as 〈R, G〉, which can then
be computed by the FKT method in polynomial time.

Consider a matchgrid using a basis t0, t1 of size 2 (dim
4). Let’s extend the basis to a 4 × 4 invertible matrix T =
(tij) where i, j ∈ {0, 1, 2, 3}. Here it would be convenient
to use the convention that upper index i is for row and lower
index j is for column. We will use this convention below
consistently [8]. We also denote by T̃ = T−1 = (t̃ij).

To say a generator tensor G is realizable is to have
G = [t0, t1]⊗nG being a standard signature of a planar
matchgate, which are constrained by the PerfMatch poly-
nomial. Viewed in terms of t0, t1, t2, t3, we say the gen-
erator tensor G is supported on the subset {t0, t1}. This
is the same as to say G can be augmented to Ĝ with zero
entries, whenever the index involves 2 and 3, and then
G = [t0, t1, t2, t3]⊗nĜ.

Now suppose we don’t know how to construct some de-
sired signature G realizable (or supported on {t0, t1}) as
above, and yet we find some Ĝ = (Gi1,...in)ir=0,1,3 which
is supported on t0, t1, t3. This means that [t0, t1, t3]⊗nĜ
is realizable as a standard signature of a planar matchgate.
Furthermore suppose when we restrict to t0, t1, Ĝ restricts
to G, i.e., if we restrict all entries of Ĝ whose indices are 0
or 1 (but not 3) we get G.

Let’s also consider recognizers. Suppose we wish to
construct some desired signature R. Yet we can only find
some R̂ = (Ri1,...in′ )ir=0,1,2 which restricts to R on t̃0, t̃1,
and which is supported on t̃0, t̃1, t̃2. This means that

R = R̂


t̃0

t̃1

t̃2




⊗n′

is realizable as a standard signature of

a planar matchgate. Equivalently we can say that the in-
ner product of R with any column in T⊗n′

having indices
involving 3 is zero.

In this case, the Holant, as the contraction 〈R̂, Ĝ〉, is
equal to the desired value 〈R, G〉. Also the Holand can still
be computed in polynomial time via the same FKT algo-
rithm. Therefore as an algorithmic tool, this provides more
freedom in the design of holographic algorithms.

While this is an extension of the mechanism of holo-
graphic algorithm designs, the complexity theory question
is whether this provides an inherent extension of the expres-
sive power for holographic algorithms.

In this section, we show that, in the context we outlined
above, this does not provide an inherent extension. We will
show that every holographic algorithm on bases of size 2,
where the generators are supported on t0, t1, t3 and rec-
ognizers are supported on t̃0, t̃1, t̃2, can be simulated by
another holographic algorithm using a basis of size 1.
(In the following for notational convenience in the proofs,
we will exchange the notation of G and Ĝ.)

Theorem 5.1. (Basis Folding Theorem for Generators)
Suppose G is supported by {t0, t1, t3} and is realizable.
Ĝ is G restricted on the first two basis vectors. Then Ĝ is
also realizable with the following basis of size 1:

τ0
0 = t00t

3
3 − t30t

0
3,

τ1
0 = t10t

2
3 − t20t

1
3,

τ0
1 = t01t

3
3 − t31t

0
3,

τ1
1 = t11t

2
3 − t21t

1
3.

Proof: Let G be supported by {t0, t1, t3} and realiz-
able, where the basis has size 2. This means that G =
[t0, t1, t3]⊗nG is realizable as the standard signature of
some planar matchgate Γ with 2n external nodes. We de-
sign a new matchgate Γ′ of n external nodes using either
one of the following two gadgets. If t13 and t23 are not both
0, we use the gadget to the left. If both t13 = t23 = 0 we use
the gadget to the right. Each block of two output nodes of Γ
are connected to the left hand side of a copy of this gadget
and produces a single output node which is the right most
vertex of the gadget. The parameters a, b, c, d, e, f and g
satisfy daf = −t03, ae = −t13, cf = t23, be + cg = t33.
These can be shown to be satisfiable as before. We omit the
details.
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�
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�

��

�
�

��

c
b

d
e

g
�

�

�

�

� �

1

−t03

t33
1

For convenience, we will use two bits as superscript in-
dices for vectors ti. Then the standard signature G′ of Γ′

is related to the standard signature G of Γ by the following
exponential sum:

G′l1l2···ln =
∑

jr+j′r=lr

Gj1j′1,··· ,jnj′n(−1)j1t
j̄1 j̄′1
3 · · · (−1)jnt

j̄n j̄′n
3 ,

(7)
where jr + j′r = lr is done in Z2 and j̄ denotes the comple-
ment bit of j.

By definition of support vectors,

Gj1j′1,j2j′2,··· ,jnj′n =
∑

ir∈{0,1,3}
Gi1i2···in t

j1j′1
i1

t
j2j′2
i2

· · · tj2j′2
i2

.

Substituting this in (7), we have

G′l1l2···ln

=
∑

jr+j′r=lr

n∏
r=1

(−1)jr t
j̄r j̄′r
3

∑
ir∈{0,1,3}

Gi1···in t
j1j′1
i1

· · · tj2j′2
i2

=
∑

ir∈{0,1,3}
Gi1···in

∑
jr+j′r=lr

n∏
r=1

(−1)jr t
j̄r j̄′r
3 t

jrj′r
ir

=
∑

ir∈{0,1,3}
Gi1i2···in

n∏
r=1


 ∑

jr+j′r=lr

(−1)jr t
j̄r j̄′r
3 t

jrj′r
ir




Let’s look at the inner sum. If ir = 3,∑
jr+j′r=lr

(−1)jr t
j̄r j̄′r
3 t

jrj′r
ir

= t1l̄r
3 t0lr

3 − t0lr
3 t1l̄r

3 = 0.

If ir ∈ {0, 1},∑
jr+j′r=lr

(−1)jr t
j̄r j̄′r
3 t

jrj′r
ir

= t1l̄r
3 t0lr

ir
− t0lr

3 t1l̄r
ir

= τ lr
ir

.

Substituting this in the above equation, we see that the
outer sum is over ir ∈ {0, 1}, and we get

G′l1l2···ln =
∑

ir∈{0,1}
Gi1i2···inτ l1

i1
τ l2
i2
· · · τ ln

in
.

Notice that for ir ∈ {0, 1}, Gi1i2···in = Ĝi1i2···in ,
since G restricts to Ĝ. The above equation is exactly

G′ = τ⊗nĜ. So Ĝ is realizable on τ . This completes
the proof.

Similarly, we have:

Theorem 5.2. (Basis Folding Theorem for Recognizers)
Suppose R is supported by {t̃0, t̃1, t̃2} and is realizable.
R′ is R restricted on the first two basis vectors. Then R′ is
also realizable at the following size 1 basis:

τ̃ ′0
0 = t̃00t̃

2
3 − t̃03t̃

2
0,

τ̃ ′0
1 = t̃01t̃

2
2 − t̃02t̃

2
1,

τ̃ ′1
0 = t̃10t̃

2
3 − t̃13t̃

2
0,

τ̃ ′1
1 = t̃11t̃

2
2 − t̃12t̃

2
1.

Theorem 5.3. If the basis

[(
τ0
0

τ1
0

)
,

(
τ0
1

τ1
1

)]
in Theorem 5.1

is linearly independent, then the two bases of size 1 in The-
orem 5.1 and 5.2 are inverses of each other, up to the equiv-
alence relation in the sense of Proposition 2.1.

Therefore the extended holographic algorithms using
such support vectors can be simulated by holographic al-
gorithms on bases of size 1 without such extension.

We remark that if Ĝ is realizable on τ and yet the basis
τ is not linearly independent, then Ĝ is trivial and uninter-
esting.
Proof: By Proposition 2.1, we only need to prove that

τ0
0 τ̃ ′0

1 + τ0
1 τ̃ ′1

1 = τ1
0 τ̃ ′0

0 + τ1
1 τ̃ ′1

0 = 0. We show this by
the following calculation.

τ0
0 τ̃ ′0

1 + τ0
1 τ̃ ′1

1

= (t00t
3
3 − t30t

0
3)(t̃

0
1t̃

2
2 − t̃02t̃

2
1) + (t01t

3
3 − t31t

0
3)(t̃

1
1 t̃

2
2 − t̃12 t̃

2
1)

= t33(t
0
0(t̃

0
1t̃

2
2 − t̃02t̃

2
1) + t01(t̃

1
1 t̃

2
2 − t̃12t̃

2
1))

− t03(t
3
0(t̃

0
1t̃

2
2 − t̃02t̃

2
1) + t31(t̃

1
1 t̃

2
2 − t̃12t̃

2
1))

= t33(t̃
2
2(t

0
0t̃

0
1 + t01t̃

1
1) − t̃21(t

0
0 t̃

0
2 + t01t̃

1
2))

− t03(t̃
2
2(t

3
0t̃

0
1 + t31t̃

1
1) − t̃21(t

3
0 t̃

0
2 + t31t̃

1
2))

= −t33(t̃
2
2(t

0
2 t̃

2
1 + t03 t̃

3
1) − t̃21(t

0
2t̃

2
2 + t03t̃

3
2))

+ t03(t̃
2
2(t

3
2t̃

2
1 + t33t̃

3
1) − t̃21(t

3
2 t̃

2
2 + t33t̃

3
2))

= −t33(t̃
2
2t

0
3t̃

3
1 − t̃21t

0
3 t̃

3
2) + t03(t̃

2
2t

3
3 t̃

3
1 − t̃21t

3
3 t̃

3
2)

= 0.

Here the 4th equality uses the fact that T̃ = T−1 as a 4 × 4
matrix.

Similarly, we have τ1
0 τ̃ ′0

0 + τ1
1 τ̃ ′1

0 = 0.

Even though we prove that in this natural setting, the use
of more general support vectors can be simulated by holo-
graphic algorithms which do not use this extra freedom, we



should not therefore conclude that this notion is useless.
Logically this is not dissimilar, e.g., to that of determin-
istic finite automata and non-deterministic finite automata.
Moreover our proof here only initiated the investigation of
more general possibilities of two intersecting support vector
sets.

Postcript
In this paper we could only prove the Basis Collapse

Theorem (Theorem 4.4) for bases of size 2 (dimension 4)
to bases of size 1 (dimension 2). The proof makes use of
existing results on symmetric signatures [4, 5]. In partic-
ular these results impose some technical conditions on the
characteristic of the field, namely either we have charac-
teristic 0 or the characteristic p does not divide the arity n
of any matchgate involved. This does contain the case for
#7Pl-Rtw-Mon-3CNF of Valiant from [21] where p = 7
and n = 3.

The main difficulty for arbitrary basis size k is the pres-
ence of Matchgate Identities, which are a set of exponential
sized algebraic constraints for the realizability of match-
gates. We have obtained some crucial results in this pa-
per using Matchgate Identities, especially Theorem 3.1.
Some more results are reported in [6] which were conceived
mainly as prepatory work toward a universal Basis Collapse
Theorem for arbitrary k. Working with Matchgate Identities
is quite technically demanding, and our results in [6] were
not complete.

However, for the goal of universal Basis Collapse Theo-
rem, we found a way to circumvent some use of Matchgate
Identities, and the general theorem is proved in [7], which
is currently under submission. In this proof, we still need
the Matchgate Identities, especially Theorem 3.1 explcitly,
as well as many of the ideas presented in this paper.
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6 Appendix

In [4], we gave a characterization of all the realizable
symmetric signatures over all bases of size 1.

Theorem 6.1. A symmetric signature [x0, x1, · · · , xn] is re-
alizable on some basis of size 1 iff there exists three con-
stants a, b, c (not all zero), such that ∀k, 0 ≤ k ≤ n − 2,

axk + bxk+1 + cxk+2 = 0. (8)

Based on this theorem, the following Lemmas in [5] gave
a complete and mutually exclusive list of realizable sym-
metric signatures for generators, in terms of the exact set of
bases of size 1 on which a signature is realized.

In the following, the basis manifold M is defined
to be the set of all possible size 1 bases modulo the
equivalence relation from Proposition 2.1. And the no-
tation Bgen([x0, x1, . . . , xn]) is defined to be the set of
all possible bases in M on which a symmetric signature
[x0, x1, . . . , xn] for a generator is realizable.

Lemma 6.1.

Bgen([an, an−1b, · · · , bn])

=
{[(

n0

−b

)
,

(
p0

a

)]
∈ M

∣∣∣∣n0, p0 ∈ F
}

.

Lemma 6.2.

Bgen([x0, x1, x2]) =
{[(

n0

n1

)
,

(
p0

p1

)]
∈ M

∣∣∣∣
x0n

2
0 + 2x1n0p0 + x2p

2
0 = 0, x0n

2
1 + 2x1n1p1 + x2p

2
1 = 0

or x0n0n1 + x1(n0p1 + n1p0) + x2p0p1 = 0

}
.

Lemma 6.3. Let λ1 �= 0. Suppose p = char.F � |n,

Bgen([0, 0, · · · , 0, λ1, λ2]) =
{[(−λ2

1

)
,

(
nλ1

0

)]}
.

Lemma 6.4. For AB �= 0,

Bgen([A, Aα, Aα2, · · · , Aαn + B])

=
{[(

ω − α
−α − ω

)
,

(
1
1

)]∣∣∣∣ ωn = ±B

A

}
.

Lemma 6.5. For AB �= 0 and α �= β,

Bgen({Aαi + Bβi|i = 0, 1, · · · , n})

=
{[(

βω − α
−α − βω

)
,

(
1 − ω
1 + ω

)]∣∣∣∣ ωn = ±B

A

}
.

Lemma 6.6. Let A �= 0 and suppose p = char.F � |n.

Bgen({Aiαi−1 + Bαi|i = 0, 1, · · · , n})

=
{[(

nA + Bα
−α

)
,

(−B
1

)]}
.


