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We give a fully polynomial-time approximation scheme (FPTAS) to compute the partition 
function of the hardcore model of fugacity λ on random �-regular bipartite graphs for 
all sufficiently large � and λ ≥ 4(log�)3/�. For the special case of λ = 1, where the 
partition function computes the number of independent sets, an FPTAS exists for � ≥ 50. 
Our technique is based on the polymer model, which is used by Jenssen, Keevash and 
Perkins (SODA, 2019) to obtain an FPTAS for #BIS-hard problems for the first time. The 
technique also applies to counting q-colorings: For q ≥ 3 and � ≥ �(q), there is an FPTAS 
to compute the number of q-colorings on random �-regular bipartite graphs.

© 2022 Published by Elsevier B.V.

1. Introduction

For a graph G and a parameter (called fugacity or activity) λ > 0, the hardcore model is the Gibbs measure on indepen-
dent sets I(G)

μ(I) = λ|I|/Z(G, λ),

where the normalizing factor

Z(G, λ) =
∑

I∈I(G)

λ|I|

is called the partition function. The problems of evaluating the sum and sampling an independent set from the distribution 
have been extensively studied in computer science, discrete probability and statistical physics. In this paper, we focus on 
the approximation of the partition function.

In a seminal paper, Weitz [1] first presented a fully polynomial-time approximation scheme (FPTAS) for the partition 
function on graphs of maximum degree � when λ < λc(�) = (�−1)�−1

(�−2)�
. The quantity λc(�) is the uniqueness threshold of 

the Gibbs measure on the infinite �-regular tree. On the hardness side, Sly [2] proved that, for λc(�) < λ < λc(�) + ε(�), 
no polynomial-time approximation scheme exists unless NP = RP. Later, this result was improved to any λ > λc(�) [3,4]. In 
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particular, these results state that there is an FPTAS for counting independent sets (λ = 1) on graphs of maximum degree 
� ≤ 5, and the approximation is NP-hard if � ≥ 6.

However, no NP-hardness result is known for counting independent sets on bipartite graphs (#BIS). Liu and Lu [5]
designed an FPTAS for #BIS which requires only vertices from one partition to be of maximum degree � ≤ 5. For bipartite 
graphs of maximum degree � ≥ 3 and λ > λc(�), it is #BIS-hard to approximate the partition function of the hardcore 
model [6]. The problem #BIS is conjectured to be of intermediate complexity [7]. In fact, a wide range of counting problems 
in the study of counting CSPs [8–10] and spin systems [11–13,6], have been proved to be #BIS-equivalent or #BIS-hard 
under approximation-preserving reductions (AP-reductions).

Recently, Helmuth, Perkins, and Regts [14] developed a new approach via the polymer model and gave efficient counting 
and sampling algorithms for the hardcore model at high fugacity on certain finite regions of the lattice Zd and on the 
torus (Z/nZ)d . Their approach is based on a long line of work [15–20]. The polymer model gives some new insights into 
the hardcore model on bipartite graphs [21–23]. Jenssen, Keevash, and Perkins [21] designed an FPTAS for the high fugacity 
case on bipartite expander graphs of bounded degree. They further extended the result to random �-regular bipartite graphs 
with � ≥ 3 and λ > (2e)250. A natural question is, can we design an FPTAS for lower fugacity and in particular the problem 
#BIS on random regular bipartite graphs? Indeed, we obtain such results. Let Gbip

n,� denote the set of all �-regular bipartite 
graphs with n vertices on both partitions.

Theorem 1. For sufficiently large �, there is an FPTAS such that with high probability (tending to 1 as n → ∞) for a graph G chosen 
uniformly at random from Gbip

n,� the FPTAS computes Z(G, λ) for λ ≥ 4(log �)3/�.

Theorem 2. For � ≥ 50, there is an FPTAS such that with high probability (tending to 1 as n → ∞) for a graph G chosen uniformly at 
random from Gbip

n,� the FPTAS computes the number of independent sets of G.

Counting proper q-colorings on a graph is another extensively studied problem in the field of approximate counting [24–
29]. In general graphs, if the number q of colors is no more than the maximum degree �, there may not be any proper 
coloring over the graph. Therefore, approximate counting is studied in the range that q ≥ � +1. It was conjectured that there 
is an FPTAS or FPRAS if q ≥ � + 1, but the current best result is q ≥ α� + 1 with a constant α slightly below 11

6 [30,28]. 
The conjecture was only confirmed for the special case � = 3 [31].

On bipartite graphs, the situation is quite different. For any q ≥ 2, we know that there always exist proper q-colorings 
for every bipartite graph. For any q ≥ 3, it is shown to be #BIS-hard but unknown to be #BIS-interreducible [7]. Using a 
technique analogous to that for #BIS, we obtain an FPTAS to count the number of q-colorings on random �-regular bipartite 
graphs for sufficiently large integers �(q) for any q ≥ 3.

Theorem 3. For q ≥ 3 and � ≥ 80q3 log2 q, there is an FPTAS such that with high probability (tending to 1 as n → ∞) for a graph 
chosen uniformly at random from Gbip

n,� the FPTAS computes the number of q-colorings of G.

Our technique
A classical approach for approximate counting algorithms is sampling via Markov chain Monte Carlo (MCMC). However, 

it is shown in [32] that the Glauber dynamics for independent sets is slowly mixing on random �-regular bipartite graphs 
for � ≥ 6. A typical independent set of such a graph is unbalanced: It either chooses most of its vertices from the left 
partition or the right partition. Thus, starting from an independent set with most vertices from the left partition, a Markov 
chain is unlikely to reach an independent set with most of its vertices from the right partition in polynomial time.

The beautiful work [21] exactly makes use of the above separating property to design approximate counting algorithms. 
By making the fugacity sufficiently large, they proved that most contribution of the partition function comes from extremely 
unbalanced independent sets, those which occupy almost no vertices on one partition and almost all vertices on the other 
partition. In particular, for a bipartite graph G = (L, R, E) with n vertices on both partitions, they identified two indepen-
dent sets I1 = L and I2 = R as ground states as they have the largest weight λn among all the independent sets. They 
proved that one only needs to sum up the weights of states (independent sets) which are close to the ground states, for 
no state is close to both ground states and the contribution from the states which are far away from both ground states is 
exponentially small.

However, the idea of ground states cannot be directly applied to counting independent sets and counting colorings since 
each valid configuration is of the same weight. We extend the idea of ground states to ground clusters, which is not a 
single configuration but a family of configurations. For example, we identify two ground clusters for independent sets, those 
which are entirely chosen from vertices on the left partition and those which are entirely chosen from vertices on the 
right partition. If a set of vertices is entirely chosen from vertices on one partition, it is obviously an independent set. Thus 
each cluster contains 2n different independent sets. Similarly, we want to prove that we can count the configurations which 
are close to one of the ground clusters and then add them up. For counting colorings, there are multiple ground clusters 
indexed by a subset of colors X : Colorings which map L and R to the sets X and [q] \ X , respectively.
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Unlike the ground states in [21], our ground clusters may overlap with each other and some configurations are close to 
more than one ground clusters. In addition to proving that the number of configurations which are far away from all ground 
clusters are exponentially small, we also need to prove that the number of double counted configurations are small.

After identifying ground states, the authors of [21] fixed a ground state and defined a polymer model representing 
deviations from the ground state and rewrote the original partition function as a polymer partition function. We follow this 
idea and define a polymer model representing deviations from a ground cluster. However, deviation from a ground cluster is 
much subtler than deviation from a single ground state. For example, if we define polymer as connected components from 
the deviated vertices in the graph, we cannot recover the original partition function from the polymer partition function. 
We overcome this by defining polymer as connected components in graph G2, where an edge of G2 corresponds to a path 
of length at most 2 in the original graph. Here, a compatible set of polymers also corresponds to a family of configurations 
in the original problem, while it corresponds to a single configuration in [21].

It is much more common in counting problems that most contribution is from a neighborhood of some clusters rather 
than a few isolated states. So, we believe that our development of the technique makes it suitable for a broader family of 
problems.

Independent work

The journal version of [21] obtained similar results (see [33]).

2. Preliminaries

2.1. Independent sets and colorings

Let G = (V , E) be a graph. For A, B ⊆ V , let dG (A, B) be the distance between A and B in G . For A ⊆ V , let NG(A) be 
the set of vertices of distance 1 to A. For a graph H , we use V (H) to denote the set of its vertices. If H is a subgraph of 
G , we use NG (H) to denote NG (V (H)). For u, v ∈ V , we write dG(u, v) for dG({u} , {v}) and write NG(v) for NG({v}). We 
write G[A] for the induced subgraph on A ⊆ V . We define G2 = (V , E ′) where (u, v) ∈ E ′ if u 
= v and dG (u, v) ≤ 2. Note 
that if G is of maximum degree �, then G2 has maximum degree at most �2.

A set I ⊆ V is an independent set if dG (u, v) > 1 for any u, v ∈ I with u 
= v . Let λ be a parameter and the weight of I
is λ|I| . We write I(G) for the set of all independent sets of G . Independent sets correspond to valid configurations of the 
hard-core model in statistical physics and the partition function of the model is Z(G, λ) = ∑

I∈I(G) λ|I| .
Let [n] be the set {1,2, . . . ,n}. For an integer q ≥ 3, let q = �q/2� and q = q/2�. A coloring σ ∈ [q]V of G labels each 

vertex with some color in [q]. We say σ is proper if σ(u) 
= σ(v) for any edge (u, v) ∈ E . We write C(G) for the set of 
all proper colorings of G . It will be useful to restrict the domain of a coloring and we write σA ∈ [q]A for the coloring 
that σA(v) = σ(v) for all v ∈ A. For disjoint sets A1, . . . , Ak ⊆ V and colorings σi ∈ [q]Ai , we write �k

i=1σi for the coloring 
σ ∈ [q]∪k

i=1 Ai that σ(v) = σi(v) for any i ∈ [k] and v ∈ Ai .
For positive real numbers a and b, we say a is an ε-relative approximation to b for ε > 0 if e−ε ≤ a/b ≤ eε . A fully 

polynomial-time deterministic approximation scheme (FPTAS) is a deterministic algorithm that for every ε > 0 and a prob-
lem instance I it outputs an ε-relative approximation to Z(I) in time poly(|I |, 1/ε), where Z(I) is a quantity of the instance 
I to compute.

2.2. Random regular bipartite graphs

Let � be a positive integer. Let G be a bipartite graph with n vertices on both partitions and the edges of G are �
perfect matchings of the complete bipartite graph Kn,n chosen uniformly at random and independently. We allow multiple 
edges of G because it has the same effect on independent sets and colorings as single edges. Thus G would be �-regular 
and we use G ∼ Gbip

n,� to denote such a random graph. This distribution would be very close to the one where a �-regular 
bipartite simple graph with n vertices on both partitions is chosen uniformly at random. It follows from [34] that Lemma 4
and other results in this paper also apply to the latter distribution.

We say a �-regular bipartite graph G = (L, R, E) with |L| = |R| = n is an (α, β)-expander if for all U ⊆ L, V ⊆ R with 
|U |, |V | ≤ αn, there is |NG(U )| ≥ β|U | and |NG(V )| ≥ β|V |. We also refer to this as the expansion property of G . Let G�

α,β

be the set of all �-regular bipartite (α, β)-expander graphs. The following lemma states that almost every �-regular graph 
is an expander.

Lemma 4 ([35]). If 0 < α < 1/β < 1 and � >
H(α) + H(αβ)

H(α) − αβH(1/β)
, then

lim
n→∞ Pr

G∼Gbip
n,�

[
G ∈ G�

α,β

]
= 1,

where H(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function.
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2.3. Polymer models

Let G be a graph and � be a set of values. A polymer γ = (γ , ωγ ) defined on G consists of a connected subgraph γ
of G (called the support of γ ) and a labeling ωγ which gives each vertex in γ a value in �. We use 

∣∣γ ∣∣ to denote the 
number of vertices in γ . We say two polymers γ1 and γ2 are compatible, denoted by γ1 ∼ γ2, if dG(γ1, γ2) > 1. For a set �
of polymers, it is compatible if any two different polymers in it are compatible. Let cpt(�) = {

�′ ⊆ � : �′ is compatible
}

. For 
any �′ ∈ cpt(�), let �′ be the union of the support of all polymers in �′ , which is a subgraph of G . Let 

∣∣∣�′
∣∣∣ be the number 

of vertices in �′ . Let ω
�

′ be the union of labellings ωγ of polymers γ ∈ �′ . Let w : � ×C →C be a function. Then (�, w)

is a polymer model defined on G with partition function

�(G, z) =
∑

�′∈cpt(�)

∏
γ ∈�′

w(γ , z).

The following theorem gives efficient approximation algorithms for �(G, z).

Theorem 5 ([14], Theorem 2.2, with suitable modification). Fix � and let G be a set of graphs of degree at most �. Suppose for every 
graph G ∈ G there is a polymer model (�, w) defined on G. If

• There is a constant C such that for all G ∈ G , the degree of �(G, z) is at most C |G|.
• For all G ∈ G and γ ∈ �(G), w(γ , z) = aγ z

∣∣γ ∣∣
where aγ 
= 0 can be computed in time exp(O (

∣∣γ ∣∣ + log |G|)).
• For every connected subgraph G ′ of every G ∈ G , we can list all polymers γ ∈ �(G) with γ = G ′ in time exp(O (

∣∣G ′∣∣)).
• There is a constant R > 0 such that for all G ∈ G and z ∈C with |z| < R, �(G, z) 
= 0.

Then there is an FPTAS to compute �(G, z) for all G ∈ G and |z| < R.

The following condition is useful to show that �(G, z) 
= 0.

Lemma 6 ([17], KP-condition). Fix z ∈C. Suppose there is a function a : � →R>0 and for every γ ∈ �,∑
γ ′:γ ′

�γ

ea(γ ′)∣∣w(γ ′, z)
∣∣ ≤ a(γ ).

Then �(G, z) 
= 0.

To verify KP-condition, the support of polymers γ ′ � γ is usually connected and induced, hence the following lemma is 
helpful.

Lemma 7 ([36]). For any graph G = (V , E) of maximum degree � and v ∈ V , the number of connected induced subgraphs of k ≥ 2
vertices containing v is at most (e�)k−1/2.

2.4. Some useful facts

Throughout this paper, we write log x for a shorthand of log2 x. A fact that will be heavily used is that log(1 + x) ≤ x for 
x ∈ (−1, 0] and log(1 + x) ≥ x for x ∈ [0, 1]. Sometimes we need to use a stronger version of this fact, that is, log(1 + x) ≤
x · log e for x ∈ (−1, 0). Recall that H(x) = −x log x − (1 − x) log(1 − x) for x ∈ [0, 1] with the convention 0 log 0 = 0.

Lemma 8 ([37, Lemma 10.2]). Suppose that n is a positive integer and k ∈ [0, 1] is a number such that kn is an integer. Then

2H(k)n

n + 1
≤

(
n

kn

)
≤ 2H(k)n.

Lemma 9. For 0 ≤ x ≤ 1/2, H(x) ≤ −2x log x.

Proof. Let f (x) = H(x) + 2x log x. Then f (0) = f (1/2) = 0 and convexity of f over [0, 1/2] gives the lemma. �
Lemma 10. For y > 1 and 0 ≤ x ≤ 1/y, H(x) − H(xy)/y ≥ x log y.
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Proof. Fix y > 1. For 0 < x < 1/y,

H(x) − H(xy)/y = x log y − (1 − x) log(1 − x) + 1/y(1 − xy) log(1 − xy)

≥ x log y.

The inequality holds because the function

F (x) = (1 − x) log(1 − x)

is convex and hence F (yx) ≥ yF (x). �
3. Counting independent sets

This section is devoted to the proof of Theorem 1. Let α be the solution to � = −4 logα
α , β = 1−α

α and λ∗ = α · (log �)2

throughout this section. We verify that 1
α ≤ � because otherwise −4 logα/α > 4� log � > �. Therefore α = 4 log(1/α)

�
≤

4 log�
�

.

Lemma 11. For sufficiently large integers �, lim
n→∞ Pr

G∼Gbip
n,�

[
G ∈ G�

α,β

]
= 1.

Proof. We verify the conditions in Lemma 4. Apply Lemma 10 (y = 1
αβ

≥ 1, x = α ≤ 1/y),

H(α) − αβH(1/β) ≥ α log(1/αβ) = −α log(1 − α) > α2.

Then

H(α) + H(αβ)

H(α) − αβH(1/β)
<

H(α) + H(1 − α)

α2
= 2H(α)

α2
≤ −4 logα

α
= �,

where we use Lemma 9 to bound H(α). �
In the rest of this section, if not specified, let G = (L, R, E) ∈ G�

α,β be a bipartite graph with n vertices on both partitions. 
Moreover, we assume that n > N for some sufficiently large constant N(�) > 0.

3.1. Approximating Z(G, λ)

For X ∈ {L,R}, let

IX (G) = {I ∈ I(G) : |I ∩X | ≤ αn} , ZX (G, λ) =
∑

I∈IX (G)

λ|I|.

We show that ZL(G, λ) + ZR(G, λ) is very close to Z(G, λ).

Lemma 12. For sufficiently large � and λ ≥ λ∗ , ZL(G, λ) + ZR(G, λ) is a K −n-relative approximation to Z(G, λ) for some constant 
K (�) > 1.

Proof. For an independent set I that |I ∩L| > αn, there are at least �αn� vertices of I in L. It follows from the expansion 
property that |N(I ∩L)| ≥ β�αn� ≥ β(αn −1) = (1 −α)n −β . Thus |I ∩R| ≤ n −|N(I ∩L)| ≤ αn +β . By symmetry we know 
that if I /∈ IL ∪ IR then αn < |I ∩X | ≤ αn + β for X ∈ {L,R}. Let Zomitted = ∑

I /∈IL∪IR λ|I| . Since Z(λ) ≥ (1 + λ)n ,

Zomitted(λ)

Z(λ)
≤

(∑�αn+β�
k=αn�

(n
k

)
λk

)2

(1 + λ)n
≤

(
n · maxα≤θ≤α+β/n 2H(θ)nλθn

)2

(1 + λ)n

≤ n2

(
max0≤θ≤α+o(1) 4H(θ)λ2θ

1 + λ

)n

.

We analyze this quantity later because it coincides with another quantity to appear. Let Zdouble(λ) = ∑
I∈IL∩IR λ|I| . We 

also need to prove that Zdouble(λ)/Z(λ) is small because an independent I ∈ IL ∩ IR is counted twice in ZL(λ) + ZR(λ). 
We have
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Zdouble(λ)

Z(λ)
≤

(∑�αn�
k=0

(n
k

)
λk

)2

(1 + λ)n
≤

(
n · max0≤θ≤α 2H(θ)nλθn

)2

(1 + λ)n

≤ n2

(
max0≤θ≤α+o(1) 4H(θ)λ2θ

1 + λ

)n

.

It suffices to prove that 4H(θ)λ2θ /(1 + λ) < 1 for any 0 ≤ θ ≤ α + o(1). It is straightforward to verify that λ2θ /(1 + λ) is 
decreasing in λ on [λ∗, +∞) for any 0 ≤ θ ≤ α + o(1) (by taking the derivative of the log of this function). Therefore 
4H(θ)λ2θ /(1 + λ) ≤ 4H(θ)λ2θ∗ /(1 + λ∗). Taking log we obtain

2H(θ) + 2θ logλ∗ − log(1 + λ∗) ≤ 4(α + o(1)) log
1

α + o(1)
− λ∗

≤ 4(α + o(1)) log � − α(log �)2 < 0

where we use Lemma 9 and log(1 + x) ≥ x for x ∈ [0, 1]. �
3.2. Approximating ZX (G, λ)

In this part, we approximate ZX (G, λ) for X ∈ {L,R} using the polymer model partition function. For any I ∈ IX (G), 
we can partition the graph (G2)[I ∩ X ] (first obtain G2 and then induce on I ∩ X ) into maximal connected components 
G1, G2, . . . , Gk for some k ≥ 0 (k = 0 if I ∩ X = ∅). We shall think Gi as a (connected) subgraph of G2. It is easy to verify 
that there are no edges in G2 between Gi and G j for any i 
= j. If k = 0, let polymers(I) = ∅; Otherwise let polymers(I) ={
(Gi,1V (Gi)) : i ∈ [k]} where 1V (Gi) is the unique mapping from V (Gi) to {1}. Let

�X (G) =
⋃

I∈IX (G)

polymers(I)

be the set of all polymers. Two polymers γ1 and γ2 are compatible if dG2 (γ1, γ2) > 1, equivalent to dG (γ1, γ2) > 2. We 
remark that an independent set I with |I ∩X | ≤ αn is naturally decomposed to a compatible subset of polymers in �X (G), 
which is polymers(I). For each polymer γ , define its weight function w(γ , ·) as

w(γ , z) = λ
∣∣γ ∣∣

(1 + λ)−
∣∣NG (γ )

∣∣
z
∣∣γ ∣∣

,

which can be computed in polynomial time in 
∣∣γ ∣∣. The partition function is

�X (z) =
∑

�∈cpt(�X (G))

∏
γ ∈�

w(γ , z).

Lemma 13. For X ∈ {L,R} and λ ∈C,

ZX (G, λ) = (1 + λ)n
∑

�∈cpt(�X (G)): ∣∣�∣∣≤αn

∏
γ ∈�

w(γ ,1).

Proof. It follows from the definition of polymers that polymers(I) ∈ cpt(�X ) for each I ∈ IX . Besides, for any � ∈ cpt(�X )

with 
∣∣�∣∣ ≤ αn, � is the union of all polymers in polymers(I) if and only if I ∩X = V (�). Thus

ZX (G, λ) =
∑

I∈IX
λ|I| =

∑
�∈cpt(�X ): ∣∣�∣∣≤αn

∑
I∈IX : I∩X=V (�)

λ|I|

=
∑

�∈cpt(�X ): ∣∣�∣∣≤αn

λ
∣∣�∣∣

(1 + λ)
∣∣(L∪R)\(X∪NG (�))

∣∣
.

Since � is compatible, NG (�) = ⋃
γ ∈� NG(γ ) and 

∣∣(L∪R) \ (X ∪ NG(�))
∣∣ = n − ∑

γ ∈�

∣∣NG(γ )
∣∣. Then

ZX (G, λ) =
∑

�∈cpt(�X ): ∣∣�∣∣≤αn

λ
∑

γ ∈�

∣∣γ ∣∣
(1 + λ)

n−∑
γ ∈� NG (γ )

=
∑

�∈cpt(�X ): ∣∣�∣∣≤αn

(1 + λ)n
∏
γ ∈�

λ
∣∣γ ∣∣

(1 + λ)−
∣∣NG (γ )

∣∣

= (1 + λ)n
∑

�∈cpt(� ): ∣∣�∣∣≤αn

∏
γ ∈�

w(γ ,1). �

X
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Lemma 14. For X ∈ {L,R}, sufficiently large � and λ ≥ λ∗ ,

(1 + λ)n�X (1) = (1 + λ)n
∑

�∈cpt(�X (G))

∏
γ ∈�

w(γ ,1)

is a K −n-relative approximation to ZX (G, λ) for some constant K (�) > 1.

Proof. Note that (1 + λ)n�X (1) ≥ ZX (G, λ). Using ZX (G, λ) ≥ (1 + λ)n , Lemma 13 and the expansion property we obtain

ε = (1 + λ)n�X (1) − ZX (G, λ)

ZX (G, λ)
≤

∑
�∈cpt(�X ): ∣∣�∣∣>αn

∏
γ ∈�

w(γ ,1) ≤
∑

�∈cpt(�X ): ∣∣�∣∣>αn

λ
∣∣�∣∣

(1 + λ)−β
∣∣�∣∣

.

Then we enumerate k vertices in X to represent �. This is loose but enough for our need.

ε ≤
�n/β�∑

k=αn�

(
n

k

)
λk(1 + λ)−βk ≤

�n/β�∑
k=αn�

2H(k/n)nλk(1 + λ)−βk

≤
�n/β�∑

k=αn�

(
2H(k/n)n/kλ(1 + λ)−β

)k

≤
�n/β�∑

k=αn�

(
4log(n/k)λ(1 + λ)−β

)k

≤
�n/β�∑

k=αn�

(
(1 + λ)1−β/α2

)k
,

where we use Lemma 8 and Lemma 9. It remains to prove that (1 + λ)1−β/α2 < 1. Taking log we obtain

log
(
(1 + λ)1−β/α2

)
≤ 2 log

1

α
− (β − 1) log(1 + λ∗)

≤ 2 log
1

α
− (β − 1)λ∗

≤ 2 log� − (1 − 2α) (log�)2 < 0,

where we use the inequality log(1 + x) ≥ x for x ∈ [0, 1]. �
3.3. Approximating the polymer model partition function

Lemma 15. For sufficiently large �, there is an FPTAS for �X (1) for all G = (L, R, E) ∈ G�
α,β, X ∈ {L,R} and λ ≥ λ∗ .

Proof. We use the FPTAS in Theorem 5 to design the FPTAS we need. To this end, we generate a graph H = G2[X ] (first 
obtain G2 and then induce on X ) in polynomial time in |G| for G ∈ G�

α,β . Let H be the input to the FPTAS in Theorem 5
and we also allow the FPTAS to query the original graph G . Note that |V (H)| = |L| = |R|. Let �(H) = �X (G) and �(H, z) =
�X (z) = ∑

�∈cpt(�X (G))

∏
γ ∈� w(γ , z) where w(γ , z) = λ

∣∣γ ∣∣
(1 + λ)−

∣∣NG (γ )
∣∣
z
∣∣γ ∣∣

. Fix λ ≥ λ∗ and we verify that the conditions 
in Theorem 5 hold:

• The degree of a monomial 
∏

γ ∈� w(γ , z) is at most |V (H)| since � is compatible.

• The coefficient λ
∣∣γ ∣∣

(1 + λ)−
∣∣NG (γ )

∣∣
can be computed by enumerating each vertex in V (γ ) and its adjacent vertices in G . 

This step takes O  
(∣∣V (γ )

∣∣ · |V (G)|) ≤ exp
(

O
(∣∣γ ∣∣ + log |H |)) time.

• For every connected subgraph H ′ of H , there is exactly one polymer in �(H) such that γ = H ′ .
• This one follows from Lemma 16. �

Lemma 16. There is a constant R > 1 so that �X (z) 
= 0 for sufficiently large �, λ ≥ λ∗ , G = (L, R, E) ∈ G�
α,β, X ∈ {L,R} and 

z ∈C with |z| < R.

Proof. Let R = 2. For any polymer γ , let a(γ ) = ∣∣γ ∣∣. We will verify that the KP-condition∑
γ ′:γ ′

�γ

e

∣∣∣γ ′
∣∣∣∣∣w(γ ′, z)

∣∣ ≤ ∣∣γ ∣∣

180



C. Liao, J. Lin, P. Lu et al. Theoretical Computer Science 929 (2022) 174–190
holds for any γ and |z| < R . It then follows from Lemma 6 that �X (z) 
= 0 for any |z| < R . Note that if γ ′ � γ then 
dG2 (γ ′, γ ) ≤ 1. Thus

∑
γ ′:γ ′

�γ

e

∣∣∣γ ′
∣∣∣∣∣w(γ ′, z)

∣∣ =
∑

γ ′:γ�γ

e

∣∣∣γ ′
∣∣∣∣∣w(γ ′,1)

∣∣ · |z|
∣∣∣γ ′

∣∣∣ ≤ �2
∣∣γ ∣∣ �αn�∑

k=1

(e�2)k−1ek(1 + λ)−βk Rk

≤ ∣∣γ ∣∣ ∞∑
k=1

(
e2�2(1 + λ)−β R

)k
.

It is sufficient to verify that e2�2(1 + λ)−β R ≤ 1
2 for all λ ≥ λ∗ . Taking log we obtain

2 log e + 2 log� + 1 − β log(1 + λ) ≤ 2 log e + 2 log� + 1 − βλ∗
≤ 2 log e + 2 log� + 1 − (1 − α)(log �)2

≤ −1,

where we use the inequality log(1 + x) ≥ x for x ∈ [0, 1]. �
3.4. Putting things together

Combining previous results, we obtain our main result for counting independent sets below, which simply follows from 
Lemma 11 and Lemma 17. In fact, the theorem here is a little bit stronger since λ∗ < 4(log �)3/�.

Theorem 1. For sufficiently large �, there is an FPTAS such that with high probability (tending to 1 as n → ∞) for a graph G chosen 
uniformly at random from Gbip

n,� the FPTAS computes Z(G, λ) for λ ≥ λ∗ .

Algorithm 1 Counting independent sets for sufficiently large � and λ ≥ λ∗ .
1: Input: A graph G = (L, R, E) ∈ G�

α,β with n vertices on both partitions and ε > 0

2: Output: Ẑ such that exp(−ε) Ẑ ≤ Z(G, λ) ≤ exp(ε) Ẑ
3: if n ≤ N or ε ≤ 2K −n then
4: Use the brute-force algorithm to compute ̂Z ← Z(G, λ);
5: Exit;
6: end if
7: ε′ ← ε − K −n ;
8: Use the FPTAS in Lemma 15 to obtain ̂ZL and ̂ZR , which are ε′-relative approximations to �L(1) and �R(1), respectively.
9: Ẑ ← (1 + λ)n

(
ẐL + ẐR

)
;

Lemma 17. For sufficiently large �, there is an FPTAS for Z(G, λ) for all G ∈ G�
α,β and λ ≥ λ∗ .

Proof. First we state our algorithm. See Algorithm 1 for a pseudocode description. The input is a graph G = (L, R, E) ∈ G�
α,β

and an approximation parameter ε > 0. The output is a number Ẑ to approximate Z(G, λ). We use �X (z) to denote the 
partition function of the polymer model �X (G) for X ∈ {L, R}. Let K1, K2 be the constants in Lemma 12 and Lemma 14, 
respectively. These two lemmas show that, since n > N is sufficiently large, (1 + λ)n (�L(1) + �R(1)) is a K −n

1 + K −n
2 ≤

2 min(K1, K2)
−n ≤ K −n-relative approximation to Z(G, λ) for some constant K > 1. If n ≤ N or ε ≤ 2K −n , we use the 

brute-force algorithm to compute Z(G, λ). If ε > 2K −n , we apply the FPTAS in Lemma 15 with approximation parameter 
ε′ = ε − K −n to obtain ẐL and ẐR which approximate �L(1) and �R(1), respectively. Let Ẑ = (1 + λ)n( ẐL + ẐR) be the 
output. It is clear that exp(−ε) Ẑ ≤ Z(G, λ) ≤ exp(ε) Ẑ .

Then we show that Algorithm 1 is indeed an FPTAS. It is required that the running time of our algorithm is bounded 
by (n/ε)O (1) for all large n. Suppose n > N . If ε ≤ 2K −n , the running time of the algorithm would be 2.1n ≤ (n/ε)O (1); 
Otherwise the running time of the algorithm would be 

(
n/ε′)O (1) = (

n/(ε − K −n)
)O (1) ≤ (2n/ε)O (1) = (n/ε)O (1) . �

4. A special case

In this section, we prove Theorem 2. To obtain this result, we need to set different values for parameters α, β , though 
still depending on �, and it is sufficient to obtain Theorem 2 by establishing counterparts of Lemmas 11, 12, 14 and 16.

Let φ = 0.773, ψ = 0.273, α = φ
ψ�

, β = ψ� = φ
α . Other definitions and notations are the same as previous section. We 

abbreviate notations like Z(G, 1) to Z(G).
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Lemma 18. For integers � ≥ 50, lim
n→∞ Pr

G∼Gbip
n,�

[
G ∈ G�

α,β

]
= 1.

Proof. We verify the condition in Lemma 4. Apply Lemma 10 (y = 1
φ

> 1, x = α < 1/y = φ),

H(α) − αβH(1/β) = H(α) − φH(α/φ) ≥ α log(1/φ).

Then

R(�) = H(α) + H(αβ)

H(α) − αβH(1/β)
· 1

�
≤ H(α) + H(φ)

α log(1/φ)
· ψα

φ
= ψ(H(α) + H(φ))

φ log(1/φ)

where we use Lemma 9. For � ≥ 59, it is clear that the bound we obtained for R(�) is decreasing as � increasing. Thus

R(�) ≤ ψ(H(α) + H(φ))

φ log(1/φ)

∣∣∣∣
�=59

≈ 0.998 < 1.

For � ∈ [49, 58], we can directly compute the value of R:

� 49 50 51 52 53 54 55 56 57 58
R(�) 1.003 0.9994 0.996 0.992 0.989 0.986 0.982 0.98 0.977 0.974 �

Lemma 19. For � ≥ 50, ZL(G) + ZR(G) is a K −n-relative approximation to Z(G) for some constant K (�) > 1.

Proof. As in the proof of Lemma 12, let Zomitted = |I \ (IL ∪ IR)| and Zdouble = |IL ∩ IR|. Then

Zomitted

Z
≤

∑�n−�αn�β�
k=αn�

(n
k

)
2n−β�αn�

2n
≤ n · 2H(1−(αn−1)β/n)n2n−β(αn−1)

2n

= n ·
(

2H(1−φ+β/n)+(1−φ+β/n)−1
)n

.

We verify that (taking β/n = 10−5) H(1 − φ + β/n) + (1 − φ + β/n) ≈ 0.9998 < 1. Besides,

Zdouble

Z
≤

(∑�αn�
k=0

(n
i

))2

2n
≤ n2

(
22H(α)−1

)n
.

It holds that 2H(α) ≤ 2H(α)|�=50 ≈ 0.63 < 1. �
Lemma 20. For X ∈ {L,R} and � ≥ 50,

2n�X (1) = 2n
∑

�∈cpt(�X (G))

∏
γ ∈�

w(γ ,1)

is a K −n-relative approximation to ZX (G) for some constant K (�) > 1.

Proof. We use the same proof strategy as in the proof of Lemma 14. Then we simply need to verify that

α2 · 2β ≥ α2 · 2β |�=50 ≈ 41 > 1. �
Lemma 21. There is a constant R > 1 so that �X (z) 
= 0 for � ≥ 50, G = (L, R, E) ∈ G�

α,β, X ∈ {L,R} and z ∈C with |z| < R.

Proof. Let R = 1 + 10−4. For any polymer γ , let a(γ ) = t · ∣∣γ ∣∣ where t = 0.25. We verify the KP-condition∑
γ ′:γ ′

�γ

ea(γ )
∣∣w(γ ′, z)

∣∣ ≤ a(γ )

holds for any γ and |z| < R . It then follows from Lemma 6 that �X (z) 
= 0 for any |z| < R . Note that for a vertex v ∈ G2[X ]
(first obtain G2), its degree is at most d = �(� − 1). Therefore,

∑
γ ′:γ ′

�γ

et
∣∣γ ∣∣∣∣w(γ , z)

∣∣ ≤ (d + 1)
∣∣γ ∣∣⎛⎝et2−�R +

�αn�∑
k=2

(ed)k−12−1etk2−βk Rk

⎞⎠
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where we use Lemma 7 to count the number of incompatible polymers of a fixed size. Let x = et+1d2−β R . Then

∑
γ ′:γ ′

�γ

et
∣∣γ ∣∣∣∣w(γ , z)

∣∣ ≤ x

e
· d + 1

d
· ∣∣γ ∣∣(2−(�−β) + 1

2

∞∑
k=2

xk−1

)

= x(d + 1)

ed

∣∣γ ∣∣(2−(�−β) + x

2(1 − x)

)
. (1)

It is straightforward to verify that d2−β is decreasing in � on [50, +∞). Thus

Equation (1) ≤ x(d + 1)

ed

∣∣γ ∣∣(2−(�−β) + x

2(1 − x)

)∣∣∣∣
�=50

≈ 0.243
∣∣γ ∣∣ < t

∣∣γ ∣∣ = 0.25
∣∣γ ∣∣. �

5. Counting colorings

Throughout this section, we consider q ≥ 3, � ≥ 80q3 log2 q. Set parameters α, β > 0 such that

� = −4 logα

α
,

β = 1/α − 1.

It is easy to verify that 1/α > 4q3 log q. First we show that almost all �-regular bipartite graphs are (α, β)-expanders.

Lemma 22. For q ≥ 3 and � ≥ 80q3 log2 q, lim
n→∞ Pr

G∼Gbip
n,�

[
G ∈ G�

α,β

]
= 1.

Proof. We only need to verify the condition of Lemma 4. By Lemma 10 (y = 1
αβ

≥ 1, x = α ≤ 1/y),

H(α) − αβH(1/β) ≥ α log(αβ)−1 = −α log(1 − α) > α2.

Therefore, we have

H(α) + H(αβ)

H(α) − αβH(1/β)
<

2H(α)

α2
≤ −4α logα

α2
= �,

where the second inequality follows from Lemma 9. �
In the rest of this section, let G = (L, R, E) ∈ G�

α,β be a bipartite graph with n vertices on both partitions. Moreover, we 
assume that n > N for some sufficiently large constant N = N(q) > 0.

Recall that we use C(G) to denote the set of all proper colorings of G . For a nonempty set X � [q] of colors, it naturally 
induces a “ground cluster” of colorings τ such that τ only assigns colors from the set X (resp. [q] \ X) to the vertex set L
(resp. R). Note that τ is always a proper coloring and the number of such colorings is |X |n(q − |X |)n . Similar to the case of 
independent set, we only need to consider the colorings that are “close” to ground clusters. It is even better here that any 
proper coloring is “close” to some ground cluster. Here the “distance” between a coloring σ and the ground cluster induced 
by X is defined as dX (σ ) =

∣∣∣σ−1
L ([q] \ X)

∣∣∣ +
∣∣∣σ−1

R (X)

∣∣∣, counting the number of vertices assigned “wrong” colors. We define

CX (G) = {σ ∈ C(G) : dX (σ ) < δn}
where δ = q(α + β/N) ≈ qα. For convenience, let C∅ = C[q] = ∅.

Lemma 23. For any proper coloring σ ∈ C(G), there exists some X ⊆ [q] such that σ ∈ CX (G).

Proof. We define

X =
{

c ∈ [q] :
∣∣∣σ−1

L (c)
∣∣∣ ≥ αn

}
.

Because qα < 1, the set X is nonempty. For any c ∈ X , since G is an (α, β)-expander,∣∣∣σ−1
R (c)

∣∣∣ ≤ n −
∣∣∣N(σ−1

L (c))
∣∣∣ ≤ n − β�αn� ≤ αn + β.

Thus X 
= [q] because q(αn + β) < δn < n. Moreover, 
∣∣∣σ−1(c)

∣∣∣ < αn for any color c /∈ X . Now we can simply bound
L
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dX (σ ) =
∣∣∣σ−1

L ([q] \ X)

∣∣∣ +
∣∣∣σ−1

R (X)

∣∣∣
< (q − |X |)αn + |X |(αn + β)

< δn.

So σ ∈ CX (G). �
5.1. Approximating |C(G)|

In this subsection, we simply write C = C(G) and CX = CX (G). The main result is that we can use 
∑

X : |X |∈
{

q,q
} |CX | to 

approximate |C| (recall that q = �q/2�, q = q/2�). The following lemma follows from Lemma 25 and Lemma 26.

Lemma 24. Let Z = ∑
X⊆[q]:|X |∈

{
q,q

} |CX |. Then Z is a K −n-relative approximation to |C| for some constant K (q) > 1.

Lemma 25. 
∑

X⊆[q] |CX | is a K −n-relative approximation to |C| for some constant K (q) > 1.

Proof. Fix two sets ∅ � X 
= Y � [q]. For any σ ∈ CX ∩ CY , most of the vertices on the LHS are in colors X ∩ Y and most of 
the RHS in [q] \ (X ∪ Y ). Formally, we have∣∣∣σ−1

L ([q] \ (X ∩ Y ))

∣∣∣ +
∣∣∣σ−1

R (X ∪ Y )

∣∣∣ ≤
(∣∣∣σ−1

L ([q] \ X)

∣∣∣ +
∣∣∣σ−1

L ([q] \ Y )

∣∣∣) +
(∣∣∣σ−1

R (X)

∣∣∣ +
∣∣∣σ−1

R (Y )

∣∣∣)
=

(∣∣∣σ−1
L ([q] \ X)

∣∣∣ +
∣∣∣σ−1

R (X)

∣∣∣) +
(∣∣∣σ−1

L ([q] \ Y )

∣∣∣ +
∣∣∣σ−1

R (Y )

∣∣∣)
< 2δn.

Thus we can upper bound

|CX ∩ CY | ≤
(

2n

�2δn�
)

q�2δn�|X ∩ Y |n|[q] \ (X ∪ Y )|n ≤
(

4H(δ)q2δq(q − 1)
)n

,

where the second inequality follows from Lemma 8 and |X ∩ Y | + |[q] \ (X ∪ Y )| ≤ q − 1. It is clear that |C| ≥ qnqn and we 
obtain

|CX ∩ CY |
|C| ≤

(
4H(δ)q2δ(1 − 1/q)

)n
.

Set K ′ = 4H(δ)q2δ(1 − 1/q) and K = 1/K ′ . Recall that |C| =
∣∣∣⋃X⊆[q] CX

∣∣∣, so we have

|C| ≤
∑

X⊆[q]
|CX | ≤ |C| +

∑
X 
=Y

|CX ∩ CY | ≤ (1 + 4q K ′n)|C|.

It remains to show that K ′ < 1:

log K ′ = 2H(δ) + 2δ log q + log(1 − 1/q)

< −2qα log qα2 − log e

q

< 2q
1

4q3 log q
log q(4q3 log q)2 − 2/q < 0.

Here we use the fact that 1/α > 4q3 log q. �
Lemma 26. Let Z = ∑

X⊆[q]:|X |∈
{

q,q
} |CX |. Then Z is a K −n-relative approximation to 

∑
X⊆[q] |CX | for some constant K (q) > 1.

Proof. Let Y be any subset of [q] such that |Y | < q or |Y | > q. Then we have

|CY | ≤
(

2n

�δn�
)

q�δn�|Y |n(q − |Y |)n ≤
(

4H(δ/2)qδ(q − 1)(q + 1)
)n

,

where the second inequality follows from Lemma 8 and |Y |(q − |Y |) ≤ (q − 1)(q + 1). Clearly Z ≥ qnqn and we obtain
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|CY |
Z

≤
(

4H(δ/2)qδ(1 − 1/q)(1 + 1/q)
)n ≤

(
4H(δ/2)qδ(1 − 1/q2)

)n
.

Set K ′ = 4H(δ/2)qδ(1 − 1/q2) and K = 1/K ′ . Then

Z ≤
∑

X⊆[q]
|CX | = Z +

∑
Y : |Y |/∈{q,q}

|CY | ≤ (1 + 2q K ′n)Z .

Now we show that K ′ < 1:

log K ′ = 2H(δ/2) + δ log q + log(1 − 1/q2)

< −qα log(qα2/4) − 3/q2

<
log(64q5 log2 q)

4q2 log q
− 3/q2 < 0.

This completes the proof. �
5.2. Approximating |CX (G)|

In this subsection, we use the polymer model partition function to approximate |CX (G)| for |X | ∈ {q, q}. For any σ ∈
CX (G), let U = {v ∈L : σ(v) ∈ [q] \ X} ∪ {v ∈R : σ(v) ∈ X}. We can partition the graph (G2)[U ] (first obtain G2 and then 
induce on U ) into maximal connected components G1, G2, . . . , Gk for some k ≥ 0 (k = 0 if U = ∅). We shall think Gi as a 
(connected) subgraph of G2. There are no edges in G2 between Gi and G j for any i 
= j. If k = 0, let polymers(σ ) = ∅. For 
k > 0, let polymers(σ ) = {(

Gi, σV (Gi)

) : i ∈ [k]} (recall that σV (Gi) is σ restricting to the set V (Gi)). Let

�X (G) =
⋃

σ∈CX (G)

polymers(σ ),

be the set of all polymers. Two polymers γ1, γ2 are compatible if dG2 (γ1, γ2) > 1, equivalent to dG(γ1, γ2) > 2. For each 
polymer γ ∈ �X , define its weight function w(γ , ·) as

w(γ , z) =
∣∣Dγ

∣∣
|X |n (q − |X |)n z

∣∣γ ∣∣
,

where Dγ is the set of colorings σ ∈ CX (G) such that polymers(σ ) = {
γ

}
. The size of Dγ can be computed in polynomial 

time in 
∣∣γ ∣∣. In fact,

∣∣Dγ

∣∣ =
⎛⎝ ∏

v∈L\V (γ )

|X \ Q v |
⎞⎠⎛⎝ ∏

v∈R\V (γ )

|([q] \ X) \ Q v |
⎞⎠ ,

where Q v = ωγ (N(v) ∩ V (γ )) is the set of colors for v that are occupied by its neighbors. The partition function is

�X (z) =
∑

�∈cpt(�X (G))

∏
γ ∈�

w(γ , z).

For � ∈ cpt(�X ), let D� be the set of colorings σ ∈ CX (G) such that polymers(σ ) = �.

Lemma 27. |CX (G)| =
∑

�∈cpt(�X ): ∣∣�∣∣<δn

|D�|.

Proof. It is sufficient to show that the set{
D� : � ∈ cpt(�X ) ∧ ∣∣�∣∣ < δn

}
is a partition of CX . By definition, D� ⊆ CX , and D�1 ∩ D�2 = ∅ if �1 
= �2. For any σ ∈ CX , the set � = polymers(σ ) is 
compatible and 

∣∣�∣∣ < δn, so σ ∈D� . �
Lemma 28. For � ∈ cpt(�X ), |D�| = |X |n(q − |X |)n

∏
w(γ , z).
γ ∈�
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Proof. The conclusion is trivial if |�| = 1. Suppose that |�| > 1. Let � = �1 ∪ γ . Since dG(�1, γ ) > 2, we have

|D�| = ∣∣D�1

∣∣ ·
∣∣Dγ

∣∣
|X |n(q − |X |)n

= w(γ ,1)
∣∣D�1

∣∣.
And by induction, 

∣∣D�1

∣∣ = |X |n(q − |X |)n ∏
γ ′∈�1

w(γ ′, 1). �
With Lemmas 27 and 28, we are able to write |CX (G)| as the sum of product of polymer weights with certain restriction, 

which can be approximated by the partition function of the polymer model.

Lemma 29. There exists some constant K = K (q) > 1 such that

|X |n(q − |X |)n�X (1) = |X |n(q − |X |)n
∑

�∈cpt(�X )

∏
γ ∈�

w(γ ,1)

is a K −n-relative approximation to |CX (G)| for |X | ∈
{

q,q
}

.

The approximation works because the underlying graph G has strong expansion such that 
∣∣�∣∣ cannot be too large and 

the weight 
∏

γ ∈� w(γ , 1) decays exponentially as the size grows.

Lemma 30. Let θ = β�αn�/�δn� ≈ β/q and |X | ∈
{

q,q
}

. Then for any γ ∈ �X ,

w(γ ,1) ≤ (
1 − 1/q

)θ
∣∣γ ∣∣

.

For � ∈ cpt(�X ), it holds that 
∣∣�∣∣ < 2n/θ and∏

γ ∈�

w(γ ,1) ≤ (
1 − 1/q

)θ
∣∣�∣∣

.

Proof. For γ ∈ �X , there are two cases:

• ∣∣γ ∣∣ ≤ αn. Since the graph G is an (α, β)-expander, we have 
∣∣γ ∣∣ + ∣∣N(γ )

∣∣ ≥ β
∣∣γ ∣∣. In particular, if q = 3, then γ ⊆ L or 

γ ⊆R, and hence 
∣∣N(γ )

∣∣ ≥ β
∣∣γ ∣∣.

• αn <
∣∣γ ∣∣ < δn. In this case, 

∣∣γ ∣∣ + ∣∣N(γ )
∣∣ ≥ β�αn� ≥ θ

∣∣γ ∣∣.
Therefore, it holds that

w(γ ,1) =
∣∣Dγ

∣∣
|X |n(q − |X |)n

≤ (1 − 1/q)
∣∣N(γ )

∣∣
q−∣∣γ ∣∣ ≤ (1 − 1/q)θ

∣∣γ ∣∣
.

Let � ⊆ �X be compatible. Then 
∣∣�∣∣ = ∑

γ ∈�

∣∣γ ∣∣, and∏
γ ∈�

w(γ ,1) ≤
∏
γ ∈�

(1 − 1/q)θ
∣∣γ ∣∣ = (1 − 1/q)θ

∣∣�∣∣
.

For two different polymers γ1, γ2 ∈ �, dG(γ 1, γ 2) > 2. Thus

2n ≥
∑
γ ∈�

∣∣γ ∣∣ + ∣∣N(γ )
∣∣ ≥

∑
γ ∈�

θ
∣∣γ ∣∣ = θ

∣∣�∣∣.
That is, 

∣∣�∣∣ ≤ 2n/θ . �
Proof of Lemma 29. Clearly |CX | ≥ |X |n(q − |X |)n . Then

ε = |X |n(q − |X |)n�X (1) − |CX |
|CX | ≤

∑
�∈cpt(�X ): ∣∣�∣∣≥δn

∏
γ ∈�

w(γ ,1)

≤
∑

�∈cpt(�X ): ∣∣�∣∣≥δn

(1 − 1/q)θ
∣∣�∣∣
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where θ = β�αn�/�δn� ≈ β/q. The number of polymer sets � ∈ cpt(�X ) with 
∣∣�∣∣ = k is at most 

(2n
k

)
qk . Thus

ε ≤
�2n/θ�∑
k=δn�

(
2n

k

)
qk(1 − 1/q)θk ≤

�2n/θ�∑
k=δn�

(
2H(k/2n)2n/kq(1 − 1/q)θ

)k

≤
�2n/θ�∑
k=δn�

(
(2n/k)2q(1 − 1/q)θ

)k
,

where the last inequality follows from Lemma 9. Let R = (2n/δn�)2q(1 − 1/q)θ , then

log R < −2 log(qα/2) + log q − β/q2

< 2 log
2

qα
+ log q − (1/α − 1)/q2

< 2 log(8q2 log q) + log q − (4q3 log q − 1)/q2 < 0.

Therefore, we have

ε ≤
∞∑

k=δn�
Rk = Rδn�/(1 − R) ≤ K −n

for some K = K (q) > 1. �
5.3. Approximating the polymer model partition function

Lemma 31. There is an FPTAS for �X (1) for all G ∈ G�
α,β and X ⊆ [q] with |X | ∈ {q, q}.

Proof. We use the FPTAS in Theorem 5 to design the FPTAS we need. To this end, we generate a graph H = G2 in poly-
nomial time in |G| for G ∈ G�

α,β . Let H be the input to the FPTAS in Theorem 5 and we also allow the FPTAS to query the 
original graph G . Note that |V (H)| = |V (G)|. Let �(H) = �X (G) and �(H, z) = �X (z) = ∑

�∈cpt(�X (G))

∏
γ ∈� w(γ , z) where 

w(γ , z) =
∣∣Dγ

∣∣
|X |n(q−|X |)n z

∣∣γ ∣∣
, and

∣∣Dγ

∣∣ =
⎛⎝ ∏

v∈L\V (γ )

|X \ Q v |
⎞⎠⎛⎝ ∏

v∈R\V (γ )

|([q] \ X) \ Q v |
⎞⎠ ,

and Q v = ωγ (NG(v) ∩ V (γ )) is the set of colors for v that are occupied by its neighbors. We verify that the conditions in 
Theorem 5 hold:

• The degree of a monomial 
∏

γ ∈� w(γ , z) is at most |V (H)| since � is compatible.

• To compute the quantity 
∣∣Dγ

∣∣, we enumerate each vertex v ∈ (L∪R) \ V (γ ) and compute the set Q v by enumerating 
the vertices adjacent to v in G . This step takes O  

(|V (G)| · � · ∣∣V (γ )
∣∣) ≤ exp

(
O

(∣∣γ ∣∣ + log |H |)) time.
• For every connected subgraph H ′ of H with s vertices in L and t vertices in R, there are exactly (q −|X |)s|X |t polymers 

γ in �(H) such that γ = H ′ . In addition, we can enumerate them in O  
(
qs+t

) = exp
(

O
(∣∣H ′∣∣)) time, for q is a constant 

(viewed as part of the problem description).
• This one follows from Lemma 32. �

Lemma 32. For G ∈ G�
α,β and X ⊆ [q] with |X | ∈ {q, q}, �X (z) 
= 0 for all z ∈C with |z| ≤ 2.

Proof. Let a(γ ) = ∣∣γ ∣∣ for γ ∈ �X . We will verify that the KP-condition∑
γ ′:γ ′

�γ

e

∣∣∣γ ′
∣∣∣∣∣w(γ ′, z)

∣∣ ≤ ∣∣γ ∣∣ (2)

holds for any γ ∈ �X . Let V ∗ = V (γ ) ∪ NG2 (γ ). Then every γ ′ � γ contains a vertex in V ∗ since dG2 (γ ′, γ ) ≤ 1. Recall 
that a polymer is connected in the graph G2 which is of maximum vertex degree ≤ �2. By Lemma 7, given a vertex v , the 
number of connected subgraphs of G2 containing v is at most (e�2)k−1. Therefore, we have
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∣∣∣{γ ′ : γ ′ � γ ∧
∣∣∣γ ′

∣∣∣ = k
}∣∣∣ ≤ ∣∣V ∗∣∣(e�2)k−1qk ≤ �2

∣∣γ ∣∣(e�2)k−1qk.

Then it holds that∑
γ ′:γ ′

�γ

e

∣∣∣γ ′
∣∣∣∣∣w(γ ′, z)

∣∣ ≤
�δn�∑
k=1

∣∣∣{γ ′ : γ ′ � γ ∧
∣∣∣γ ′

∣∣∣ = k
}∣∣∣ · ek · ∣∣w(γ ′,1)

∣∣ · |z|k

≤
∣∣γ ∣∣

e

∞∑
k=1

(
2e2�2q(1 − 1/q)θ

)k
,

where θ = β�αn�/�δn� ≈ β/q (see Lemma 30). Let K = 2e2�2q(1 − 1/q)θ . Then

log K < log(2e2q) + 2 log� − 3 log e

2q2
β

= log(2e2q) + 2 log (4(β + 1) log(β + 1)) − 3 log e

2q2
β.

Since β + 1 = 1/α > 4q3 log q, we have log K < −1. Therefore,∑
γ ′:γ ′

�γ

e

∣∣∣γ ′
∣∣∣∣∣w(γ ′, z)

∣∣ ≤ ∣∣γ ∣∣ ∞∑
k=1

1

2k
= ∣∣γ ∣∣.

By Lemma 6, �X (z) 
= 0. �
5.4. Putting things together

Combining Lemma 22 and Lemma 33, we obtain our main result for counting colorings.

Theorem 3. For q ≥ 3 and � ≥ 80q3 log2 q, there is an FPTAS such that with high probability (tending to 1 as n → ∞) for a graph 
chosen uniformly at random from Gbip

n,� the FPTAS computes the number of q-colorings of G.

Algorithm 2 Counting colorings for q ≥ 3 and � ≥ 80q3 log2 q.
1: Input: A graph G = (L, R, E) ∈ G�

α,β with n vertices on both partitions and ε > 0

2: Output: Ẑ such that exp(−ε) Ẑ ≤ |C(G)| ≤ exp(ε) Ẑ
3: if n ≤ N or ε ≤ 2K −n then
4: Use the brute-force algorithm to compute ̂Z ← |C(G)|;
5: Exit;
6: end if
7: ε′ ← ε − K −n ;

8: For every X ⊆ [q] with |X | ∈
{

q,q
}

, use the FPTAS in Lemma 31 to obtain Ẑ X , an ε′-relative approximation to �X (1).

9: Ẑ ← ∑
X⊆[q]:|X |∈

{
q,q

} |X |n(q − |X |)n Ẑ X .

Lemma 33. For q ≥ 3 and � ≥ 80q3 log2 q, there is an FPTAS to count the number of q-colorings for all G ∈ G�
α,β .

Proof. First we state our algorithm. See Algorithm 2 for a pseudocode description. Fix q ≥ 3 and � ≥ 80q3 log2 q. The input 
is a graph G = (L, R, E) ∈ G�

α,β and an approximation parameter ε > 0. The output is a number Ẑ to approximate |C(G)|. 
Let K2, K2 be the constants in Lemma 24 and Lemma 29, respectively. Let Z = ∑

X⊆[q]:|X |∈
{

q,q
} |X |n(q − |X |)n�X (1). These 

two lemmas show that, since n > N is sufficiently large, Z is a K −n
1 + K −n

2 ≤ 2 min(K1, K2)
−n ≤ K −n-relative approximation 

to |C(G)| for another constant K > 1. If n ≤ N or ε ≤ 2K −n , we use the brute-force algorithm to compute |C(G)|. If ε >

2K −n , we apply the FPTAS in Lemma 31 with approximation parameter ε′ = ε − K −n to obtain Ẑ X for all X ⊆ [q] with 
|X | ∈

{
q,q

}
, an ε′-relative approximation to �X (1). The output is Ẑ = ∑

X⊆[q]:|X |∈
{

q,q
} |X |n(q − |X |)n Ẑ X . It is clear that 

exp(−ε) Ẑ ≤ |C(G)| ≤ exp(ε) Ẑ .
Then we show that Algorithm 2 is indeed an FPTAS. It is required that the running time of our algorithm is bounded by 

(n/ε)O (1) for n > N . If ε ≤ 2K −n , the running time of the algorithm would be O (nqn) = (n/ε)O (1) . If ε > 2K −n , the running 
time of the algorithm would be 

(
n/ε′)O (1) = (

n/(ε − K −n)
)O (1) ≤ (2n/ε)O (1) = (n/ε)O (1) . �
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6. Open problems

Recall that λc(�) = (�−1)�−1

(�−2)�
is the uniqueness threshold and for λ < λc(�) there exists an FPTAS. The bound obtained 

in this paper 4(log �)3/� is larger than the uniqueness threshold. Even for the special case of λ = 1, the bound 50 is much 
larger than the rounding-to-integer uniqueness threshold 6. Since our technique makes use of the property that λ > λc(�), 
it is natural to ask whether we are able to obtain an FPTAS for � ≥ 3 and λ > λc(�) on random �-regular bipartite graphs. 
The main barrier is from the analysis of the zeros of the polymer partition function. In that (see Lemma 16), even we use 
some tighter ones than the KP-condition, the enumeration of connected induced subgraph is unavoidable. This requires that 
quantity (1 + λ)−β beat off the quantity (e�)2, which is not true for values of λ slightly above the uniqueness threshold.
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