
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Learning Plackett-Luce Mixtures from Partial Preferences
Ao Liu

Rensselaer Polytechnic Institute
Troy, NY 12180, USA

liua6@rpi.edu

Zhibing Zhao
Rensselaer Polytechnic Institute

Troy, NY 12180, USA
zhaoz6@rpi.edu

Chao Liao
Shanghai Jiao Tong University

Shanghai 200240, China
chao.liao.95@gmail.com

Pinyan Lu
Shanghai University of Finance and Economics

Shanghai 200433, China
lu.pinyan@mail.shufe.edu.cn

Lirong Xia
Rensselaer Polytechnic Institute

Troy, NY 12180, USA
xial@cs.rpi.edu

Abstract

We propose an EM-based framework for learning Plackett-
Luce model and its mixtures from partial orders. The core of
our framework is the efficient sampling of linear extensions
of partial orders under Plackett-Luce model. We propose two
Markov Chain Monte Carlo (MCMC) samplers: Gibbs sam-
pler and the generalized repeated insertion method tuned by
MCMC (GRIM-MCMC), and prove the efficiency of GRIM-
MCMC for a large class of preferences.
Experiments on synthetic data show that the algorithm with
Gibbs sampler outperforms that with GRIM-MCMC. Exper-
iments on real-world data show that the likelihood of test
dataset increases when (i) partial orders provide more informa-
tion; or (ii) the number of components in mixtures of Plackett-
Luce model increases.

Introduction
Rank aggregation has found applications in many areas, such
as meta-search (Dwork et al. 2001), information retrieval (Liu
2011), and recommender systems (Baltrunas, Makcinskas,
and Ricci 2010). In the rank aggregation problem, we want
to find an aggregated ranking from the rank data of a given
population. One popular approach is learning to rank, which
is to learn a statistical ranking model from the data, and
interpret the learned parameter as a ranking.

Plackett-Luce model (PL) (Plackett 1975; Luce 1959) is
one of the most widely-used models. In PL, each alternative
is assigned a positive value. The greater this value is, the
more likely its corresponding alternative is ranked at a higher
position. In recent years, mixtures of Plackett-Luce models
have drawn attention for heterogeneous data. Mixture models
provide better fitness to data (Zhao, Villamil, and Xia 2018),
and can be used for clustering. A mixture model assumes that
there are multiple clusters in the population, and each of the
clusters can be learned using a component model. In the case
of mixtures of Plackett-Luce models, each component is a
Plackett-Luce model, while the quality of a certain alternative
is usually different across different components.

Algorithms to learn a single Plackett-Luce model and its
mixtures from linear orders (full rankings) have been well

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

investigated. However, many real-world datasets are com-
posed of partial orders over a subset of alternatives (Lu and
Boutilier 2014; Hüllermeier et al. 2008), e.g. the Netflix prize
data. Some of the previously proposed algorithms work only
for special structures of partial orders or general partial orders
with ignored comparisons or dependence between pairwise
comparisons. However, modern datasets can be unstructured
or even implicit, e.g., preferences implied by comparing time
users spent on news articles or whether a user finished watch-
ing a movie (Khetan and Oh 2016b). None of the existing
algorithms is able to learn PL and its mixtures with full uti-
lization of general partial orders with no restrictions. The only
known approach to tackle general partial orders without ig-
noring information in literature is to sample linear extensions
from partial orders under a given model (Mallows’ model)
and learn the model from full rankings (Lu and Boutilier
2014).

This paper addresses the following problem: How can we
efficiently learn the Plackett-Luce model and its mixtures
from partial orders?
Our Contributions. We propose an EM framework to learn
mixtures of Plackett-Luce models from partial orders. The E
step consists of two parts: given the current estimate, (i) sam-
pling multiple linear extensions from each partial order, and
(ii) computing the membership of each sampled linear order
(full ranking). The M step can adapt any learning algorithm
for the single Plackett-Luce model. In this paper, we use the
LSR algorithm by Maystre and Grossglauser (2015) as the
subroutine.

We address the technical challenge of sampling an linear
extension of a partial order under PL in part (i) by proposing
the following two samplers.
Sampler 1: GRIM-MCMC generalizes the GRIM-based
sampling algorithm by Lu and Boutilier (2014), which was
for Mallows’ model, to PL. We further prove that GRIM-
MCMC is efficient for a large class of preferences called
layered-structure preferences in Theorem 4.
Sampler 2: Gibbs generalizes the sampler by Azari Soufi-
ani, Parkes, and Xia (2012) to deal with partial orders, and
can be naturally generalized to learn mixtures of Random
Utility Models (Thurstone 1927), which subsume PL.

We compare the performances of the proposed sampling

4328

algorithms for PL and its mixtures using experiments on
synthetic data and show that Gibbs sampler is better. Our
algorithm uses 75% information at the cost of mere 6% MSE
compared to the best algorithm for PL mixtures for linear or-
ders. Experiments on real-world data show that the likelihood
of test dataset increases when partial orders provide more
information; or the number of components in PL mixtures
increases within a certain range.
Related Work. We are not aware of any previous algorithm
that learns a mixture of Plackett-Luce models from general
partial orders without discarding information. A vast num-
ber of algorithms have been proposed to learn the Plackett-
Luce model (Hunter 2004; Azari Soufiani et al. 2013;
Maystre and Grossglauser 2015; Khetan and Oh 2016b;
2016a; Negahban, Oh, and Shah 2017; Zhao and Xia 2018)
and its mixtures (Gormley and Murphy 2008; Oh and Shah
2014; Mollica and Tardella 2016; Tkachenko and Lauw 2016;
Zhao, Piech, and Xia 2016). Some of these algorithms were
designed for linear orders (full rankings) (Azari Soufi-
ani et al. 2013; Zhao and Xia 2018; Liu et al. 2019;
Zhao, Piech, and Xia 2016), or some special structures of
partial orders (Hunter 2004; Maystre and Grossglauser 2015;
Khetan and Oh 2016b; Negahban, Oh, and Shah 2017;
Mollica and Tardella 2016; Tkachenko and Lauw 2016;
Zhao et al. 2018), e.g. top-l rankings. Very few algorithms
were designed for general partial orders, but some ignore
dependencies between pairwise comparisons with overlap-
ping alternatives (Oh and Shah 2014), and some discard
comparison information in order for the algorithm to be con-
sistent (Khetan and Oh 2016a).

Lu and Boutilier (2014) proposed an algorithm to learn the
Mallows model and its mixtures from general partial orders
by sampling linear extensions. We focus on a very different
but even more popular model: Plackett-Luce model, as well
as its mixtures. Efficiently sampling linear extensions from
arbitrary distributions is an open problem. There have been
research on generating linear extensions according to vari-
ous distributions (e.g., uniform distribution, Mallows model,
etc.). Repeated insertion methods (RIM) and MCMC are two
groups of methods widely used in those works.

We propose two algorithms to sample linear extensions
from a partial order under the Plackett-Luce model: one in-
spired by Lu and Boutilier (2014) while the other based on
the random utility nature of Plackett-Luce model. To our best
knowledge, this is the first work that exploits all information
from general partial orders by sampling linear extensions un-
der the Plackett-Luce model, as well as other random utility
models (Gibbs).

Preliminaries
Let C = {c1, · · · , cm} denote a set of m alternatives. Let
L(C) denote the set of linear orders, which are transitive, an-
tisymmetric and total binary relations, over C. A linear order
R is often denoted by ci1 � ci2 � · · · � cim , which means
that ci1 is ranked at the top, ci2 is ranked at the second, ...,
cim is ranked at the bottom. Let {1, · · · , n} denote n agents.
Each agent j is assumed to have a strict complete preference
over C, represented by a linear order Rj . However, only par-
tial preferences over a subset of alternatives ESj is observed,

represented by a partial order1, which consists of irreflexive,
transitive, and asymmetric binary relations. We call ESj the
effective alternative set of agent j and let m∗j = |ESj |. We
describe a partial order by a set of pairwise comparisons
Vj = {ci1 � ci′1 , · · · , ciq � ci′q |1 ≤ i1, i

′
1, · · · , iq, i′q ≤ m}.

Due to transitivity, such description of a partial order is not
unique. A unique representation of a partial order Vj is the
transitive closure, denoted by tc(Vj), which consists of all
pairwise comparisons in Vj considering transitivity. An ex-
ample of a partial order and its transitive closure is shown in
Figure 1. Let P = (V1, · · · , Vn) denote the data (also called
a preference profile), where Vj is agent j’s partial preference.
Let P(C) denote the set of all partial orders.

Figure 1: Example of a partial order and its transitive closure.

Let Ext(Vj) be the set of all linear extensions of Vj , which
consists of all linear orders consistent with Vj . A linear ex-
tension bridges a partial order (observed data) and a linear
order. For example, Ext(∅) is the set of all permutations on C.
In this paper, we assume each agent’s preference is generated
from the Plackett-Luce model, defined as follows.

Definition 1 (Plackett-Luce model) The sample space is
L(C)n. The parameter space is Θ = {~θ = (θ1, · · · , θm) |
∀i, θi ∈ (0, 1),

∑m
i=1 θi = 1}. Given parameter ~θ ∈ Θ, the

probability of any linear order R = ci1 �, · · · ,� cim is

PrPL(R|~θ) =
θi1∑
p≥1 θip

× θi2∑
p≥2 θip

× · · ·×
θim−1

θim−1
+ θim

.

(1)

The probability of any partial order V is the sum of
all probability of its linear extensions, i.e. PrPL(V |~θ) =∑
R∈Ext(V) Pr(R|~θ). Another probability of interest is the

probability of linear order R conditioned on a partial order
V , where R ∈ Ext(V). By the definition of conditional prob-
ability, when R ∈ Ext(V), we have

Pr PL (R|~θ, V) =
PrPL(R|~θ)
PrPL(V |~θ)

. (2)

The Plackett-Luce model has the random utility interpreta-
tion, where each alternative ci is associated with a Gumbel
distribution centered at ln θi, whose cumulative distribution
function is e−θi·e

−x
(Yellott 1977). A linear order is gen-

erated by sampling a utility for each alternative from its
corresponding utility distribution and ranking all the sam-
pled utilities in descending order. For any ~θ ∈ Θ, we fur-
ther define η~θ = θmax

θmin
, where θmax = maxi∈[m] θi and

θmin = mini∈[m] θi.
Following (Ford Jr 1957) and (Hunter 2004), we make

the following assumption on the data so that there exists a
maximum likelihood estimation.

1Throughout this paper, all partial orders are strict.

4329

Assumption 1 In every possible partition of the alternatives
into two nonempty subsets, some individual in the second set
beats some individual in the first set at least once.

We define the mixture of k Plackett-Luce models (k-PL),
which subsumes the Plackett-Luce model by letting k = 1,
as follows.

Definition 2 (k-PL) Given integers m ≥ 2 and k ≥ 1, the
k-mixture Plackett-Luce model is defined as follows. The sam-
ple space is L(C)n. The parameter space has two parts. The
first part is the mixing coefficients ~α = (α1, · · · , αk), where
for all 1 ≤ r ≤ k, αr ≥ 0 and

∑k
r=1 αr = 1 The second

part is
(
~θ(1), · · · , ~θ(k)

)
, where ~θ(r) ∈ Θ is the parameter

of the r-th Plackett-Luce component. The probability of any
linear order R is Prk-PL(R|~θ) =

∑k
r=1 αr PrPL(R|~θ(r)).

Similar to the (single) Plackett-Luce model, the
probability of any partial order V is Prk-PL(V |~θ) =∑
R∈Ext(V) Prk-PL(R|~θ), which is equivalent to

Prk-PL(V |~θ) =
∑k
r=1 αr PrPL(V |~θ(r)).

An EM Framework for Learning PL Mixtures
We propose an EM framework where the E-step has two parts:
(1) generating N linear extensions from each partial order,
and (2) computing the expected membership of each linear
order. In the next section, we will introduce the two sampling
algorithms for part (1): GRIM-MCMC (Algorithm 3) and
Gibbs Sampling (Algorithm 4).

Algorithm 1: EM Algorithm for k-PL with GRIM sam-
pler and Gibbs sampler

1 Input: Profile P = (V1, · · · , Vn), the number of
components k, number of linear extensions per partial
order N , the number of iterations T .

2 Output: For all 1 ≤ r ≤ k, α(T)
r and θ(r,T)

3 Initialization: Randomly generate ~θ(1,0), · · · , ~θ(k,0),
and mixing coefficients α(0)

1 , · · · , α(0)
k .

4 for t = 1, · · · , T do
5 E-step:
6 Sample N linear extensions for each partial order

using e.g. Algorithm 3 (GRIM-MCMC) or
Algorithm 4 (Gibbs);

7 ∀1 ≤ j ≤ n, 1 ≤ r ≤ k, compute w(t)
jr using (3).

8 M-step:

9 For all 1 ≤ r ≤ k, update α(t)
r =

∑
j w

(t)
jr

n and
compute ~θ(r) using the LSR algorithm by (Maystre
and Grossglauser 2015).

10 end

Formally, let zjr denote the membership indicator where
zjr = 1 means the linear order Rj belongs to the rth compo-
nent. Let wjr denote the weight of ranking Rj in rth com-
ponent. For all j, we have

∑
r wjr = 1. Given last iteration

Figure 2: Definition and labeling of vacancies.

estimate (~α(t−1), ~θ(1,t−1), . . . , ~θ(k,t−1)), each linear order
Rj is clustered to each component by the following equation

w
(t)
jr = Pr(zjr = 1|Rj , ~θ(r,t−1))

=
Pr(Rj |~θ(r,t−1)) · α(t−1)

r∑k
s=1 Pr(Rj |~θ(s,t−1)) · α(t−1)

s

. (3)

In the case of k = 1, the membership computation is
redundant.

In the M-step, we update the mixing coefficients by

α
(t)
r =

∑
j w

(t)
jr

n and the parameters of all compo-
nents (~θ(1), · · · , ~θ(k)) using the LSR algorithm proposed
by (Maystre and Grossglauser 2015). The algorithm is for-
mally shown as Algorithm 1.

Sampling Linear Extensions according to PL
In the section, we introduce two efficient algorithms to sam-
ple linear extensions of a partial order under PL, which are
used in step 6 of Algorithm 1.

The GRIM-MCMC Sampler for Plackett-Luce
We extend the GRIM-based algorithm by (Lu and Boutilier
2014) to Plackett-Luce model. Repeated insertion model
(RIM) (Doignon, Pekeč, and Regenwetter 2004) is a
polynomial-time tool applicable to exactly sample from
Plackett-Luce model (given an empty partial order). Then, we
generalize the Plackett-Luce RIM to an approximate sampler
for linear extensions given an arbitrary partial order.

GRIM for Plackett-Luce Model We first present the PL
RIM sampler as the building block of GRIM. RIM samples
a linear order by inserting alternatives one by one to the
temporary ranking until the ranking is complete, where the
order of insertions is arbitrary. W.l.o.g., we use the order from
c1 to cm throughout this section. Let R(t−1) = [c

(t−1)
r1 �

· · · � c(t−1)rt−1] denote the temporary ranking over alternatives
c1, · · · , ct−1. Let the i-th vacancy of this ranking as the i-th
possible position for ct to be inserted (shown in Figure 2),
we define conditional insertion probabilities for PL RIM as:

Pr RIM

(
R(t)

∣∣∣R(t−1)
)

≡ 1R(t)∈Ext(R(t−1)) ·
Pr PL

(
R(t)

∣∣ (θ1, · · · , θt))
Pr PL

(
R(t−1)

∣∣ (θ1, · · · , θt−1)
) .

(4)

The condition in indicator function 1R(t)∈Ext(R(t−1)) guar-

antees ct is inserted to one of the vacancies of R(t−1). Due

4330

to the space limit, we only present the generalized version
of RIM in Algorithm 2, which will reduce to RIM if letting
input V be ∅.

Theorem 1 PL RIM is an exact sampler for Plackett-Luce
model that runs in O(m2) time.

Proof: We first prove the correctness of PL RIM. Slightly
abusing the notation, we let R(t) be the temporary rank-
ing over c1, · · · , ct following the same order as full rank-
ing R. It’s easy to check that R(t) ∈ Ext

(
R(t−1)) and

R = R(m). Thus, for Plackett-Luce RIM defined above,
we have, Pr RIM (R|~θ) = Pr RIM

(
R(m)|R(m−1)) × · · · ×

Pr RIM
(
R(2)|R(1)

)
× Pr RIM

(
R(1)

)
= Pr PL (R|~θ).

We now analyze the complexity of calculating all in-
sertion probabilities at the t-th insertion step. In stead of
directly calculating (4) from (1), we use the following it-
erative formula to calculate Pr RIM

(
R

(t)
i

∣∣R(t−1)
)

from

Pr RIM

(
R

(t)
i−1
∣∣R(t−1)

)
:

Pr RIM

(
R

(t)
i

∣∣∣R(t−1)
)

Pr RIM

(
R

(t)
i−1

∣∣∣R(t−1)
) =

t−1∑
i′=i−1

θ
r
(t−1)

i′

θt +
t−1∑
i′=i

θ
r
(t−1)

i′

=
A

(t−1)
i

B
(t−1)
i

.

It is noteworthy that A(t−1)
i and B(t−1)

i can be calculated
through the iterative formulas A(t−1)

i = A
(t−1)
i+1 + θ

(t−1)
ri−1 and

Bi = A
(t−1)
i+1 + θt. The 2-level iteration process gives a O(t)

approach to calculate all needed probabilities and Theorem 1
follows by combining all m insertion steps. 2

Algorithm 2: Plackett-Luce GRIM
1 Input: Partial order V , Plackett-Luce parameters

~θ = (θ1, · · · , θm) (θi corresponds to alternative ci).
2 Initialization: Set R(1) = [c1] as initialized ranking.
3 for t = 2; t ≤ m do
4 Insert alternative ct to

R(t−1) = [c
(t−1)
r1 � c(t−1)r2 � . . . � c(t−1)rt−1]’s ith

vacancy (1 ≤ i ≤ t) with probability calculated by
(5).

5 end
6 return R(m).

Now we are ready to propose PL GRIM, which samples
linear extensions of any given partial order, where in each
step we only insert the current alternative to vacancies con-
sistent with the partial order. We define the GRIM insertion
probability by

Pr GRIM

(
R

(t)
i

∣∣∣R(t−1)
)

≡
1
R

(t)
i ∈Ext(V)

ZV,R(t−1),~θ

·
Pr PL

(
R

(t)
i

∣∣∣ (θ1, · · · , θt))
Pr PL

(
R(t−1)

∣∣ (θ1, · · · , θt−1)
) , (5)

where

Z
V,R(t−1),~θ

=

t∑
i=1

1
R

(t)
i
∈Ext(V)

·
Pr PL

(
R

(t)
i

∣∣∣ (θ1, · · · , θt))
Pr PL

(
R(t−1)

∣∣ (θ1, · · · , θt−1)
)

is the normalization factor. Formally, GRIM procedure is
shown in Algorithm 2 (note again its fourth-step used (5) and
thus used the information from V).
Theorem 2 PL GRIM (Algorithm 2) runs in O(m2) time,
and the probability of outputting full ranking R is
Pr GRIM

(
R
∣∣∣ ~θ, V) =

1R∈Ext(V)∏m−1
t=1 Z

V,R(t),~θ

· Pr PL

(
R
∣∣∣ ~θ) .

Table 1: Example of GRIM (probability columns show con-
ditional probabilities on given rankings)

Insert c1, c2 Insert c3
Ranking Pr Ranking Pr

c1 � c2 1
1+2 = 1

3

c1 � c3 � c2 3/5
c1 � c2 � c3 2/5

c2 � c1 2
1+2 = 2

3 c2 � c1 � c3 1

The distribution of PL GRIM is not always exactly the
distribution in (2) (See Example 1).
Example 1 Consider the Plackett-Luce model over C =
{c1, c2, c3}, partial order V = {[c1 � c3]} and parame-
ter ~θ = (1/6, 2/6, 3/6), the process of GRIM is shown in
Table 1. The comparison between GRIM and Placket-Luce
model is shown in Table 2.

Table 2: Comparing the Distributions between GRIM PL
c1 � c3 � c2 c1 � c2 � c3 c2 � c1 � c3

PrGRIM 1/5 2/15 2/3
Pr PL 2/5 4/15 1/3

Even though GRIM is not a precise sampler for Plackett-Luce
model, it provides us a good proposal distribution on linear
extensions for Metropolis–Hastings algorithm (Metropolis
et al. 1953; Hastings 1970), which is an MCMC algorithm
that tunes a proposal distribution to the target distribution. It
works as follows. For each state β we first generate a candi-
date next state γ from a proposal distribution P̂(·) (slightly
abusing this notation). Then, let the next state to be γ with
probability min

{
1, P(γ)P̂(β|γ)P(β)P̂(γ|β)

}
, otherwise the next state re-

mains β, where P(·) is the (probability of) target distribution.

GRIM-MCMC In this section, we present the Markov
Chain MPL used to tune PL GRIM in Algorithm 3. In each
step of MPL, we first use Algorithm 2 to generate a full
ranking γ, which is a linear extension of preference V . Then,
with probability min

{
Pr PL(γ|~θ)
Pr PL(β|~θ)

· Pr GRIM(β|~θ)
Pr GRIM(γ|~θ)

, 1
}

, let β = γ,
otherwise the next ranking remains current ranking β.

Before analyzing the mixing time of MPL, we first show
the probability Pr PL(γ|~θ)

Pr PL(β|~θ)
· Pr GRIM(β|~θ)

Pr GRIM(γ|~θ)
used in step 5 of Algo-

rithm 2 can be easily computed after GRIM sampling in the
following Proposition.

4331

Algorithm 3: Tuned Plackett-Luce GRIM by Markov
Chain MPL

1 Input: Plackett-Luce parameters ~θ = (θ1, · · · , θm),
partial order Vj and number of iteration I .

2 Initialization: Generate an linear extension β over
alternative set ESj by Algorithm 2.

3 for ` = 1; ` ≤ I do
4 Generate another linear extension γ using parameters

~θ over alternative set ESj using Algorithm 2.

5 With probability min
{

Pr PL(γ|~θ)
Pr PL(β|~θ)

· PrGRIM(β|~θ)
PrGRIM(γ|~θ)

, 1
}

,
let β = γ.

6 end
7 Insert all remaining alternatives in C \ ESi to β using

Algorithm 2.
8 return R.

Proposition 3 Pr PL(γ|~θ)
Pr PL(β|~θ)

· Pr GRIM(β|~θ)
Pr GRIM(γ|~θ)

=
∏m−1
t=1

Z
V,γ(t),~θ

Z
V,β(t),

~θ
.

Proof: By Theorem 2, we have,

Pr PL (γ) · PrGRIM(β)

Pr PL (β) · PrGRIM(γ)

=

1γ∈Ext(V)

ZV
· Pr PL (γ|~θ, V)

1β∈Ext(V)

ZV
· Pr PL (β|~θ, V)

·

1β∈Ext(V)∏m−1
t=1 Z

V,β(t),~θ

· Pr PL (β|~θ, V)

1γ∈Ext(V)∏m−1
t=1 Z

V,γ(t),~θ

· Pr PL (γ|~θ, V)

=

m−1∏
t=1

Z
V,γ(t),~θ

Z
V,β(t),~θ

,

where all normalization factors, ZV,β(t),~θ and ZV,γ(t),~θ are
already calculated in GRIM process. 2

We now prove that the mixing time of MPL is exponen-
tially upper bounded for a large class of profiles, called
layered-structure profiles, defined as follows. Intuitively, al-
ternatives in such a partial order can be partitioned into mul-
tiple layers, such that each layer contains alternatives among
which no comparisons are available, and there is a linear
order over layers such that alternatives in a high-ranked layer
is always preferred to alternatives in a low-ranked layer.

Definition 3 (Layered-Structure Preferences) We call
agent j’s preference is layered-structured if and only if there
exist non-overlapping sets of alternatives C1, · · · , Cl such
that:
1◦ For any l′ ∈ [l] and any two alternatives ci1 , ci2 ∈ Cl′ ,
no preference between ci1 , ci2 are given by agent j.
2◦ For any two alternatives ci1 ∈ Cl1 and ci2 ∈ Cl2 ,
ci1 �j ci2 if and only if l1 < l2.
3◦ ∪l′∈[l] Cl′ = ESj .

Theorem 4 For layered-structured preferences, the mixing
time of Markov Chain MPL is O(ηm

∗2
ln ε−1), where η =

maxi∈[m] θi
mini∈[m] θi

and m∗ = |ESj |.

Proof: Since the proposal state γ is independent to current
state β, we have the following Lemma:

Lemma 4.1 [Example 2 of (Liu 1996)] The mixing
time of MPL is O

(
smax ln ε−1

)
, where smax =

maxγ∈Ext(Vi)
Pr PL(γ|~θ)
PrGRIM(γ|~θ)

.

Armed with Lemma 4.1, we only need to provide an upper
bound of smax (shown in Lemma 4.2).

Lemma 4.2 For any layered-structured preference V ,
smax = maxγ∈Ext(Vi)

Pr PL(γ|~θ)
PrGRIM(γ|~θ)

≤ ηm∗2 .

Proof: We use ml′ to denote the number of alternatives in
Cl′ and we define smin = minγ∈Ext(Vi)

Pr PL(γ|~θ)
PrGRIM(γ|~θ)

similar to
smax. Since smax and smin are defined as maximum (mini-
mum) ratio between the probabilities of GRIM and Plackett-
Luce, we have smax ≥ 1 ≥ smin. According to Proposition 3,
we have,

smax ≤
smax

smin
= max
γ,β∈Ext(V)

(
m−1∏
t=1

ZV,γ(t),~θ

ZV,β(t),~θ

)
. (6)

Inequality (6) reduce the problem to bounding GRIM normal-
ization factors. Next, we will focus on layered-structure pref-
erences and show the their normalization factors are bounded
as:

ZV,γ(t−1),~θ

ZV,β(t−1),~θ

≤

{
1 t < m1

ηt t ≥ m1

, (7)

where γ, β ∈ Ext(V) are two extensions of V .
W.l.o.g., we let the insertion order in GRIM follow the

same order of C1 → · · · → Cl. Recalling the justification of
RIM algorithm, we know GRIM is a perfect sampler on C1
since all alternatives in C1 can be inserted to any vacancies
and the case of t < m1 follows.
Recalling the definition of ZV,γ(t−1),~θ, alternative ct ∈ Cl′ ’s
normalization factorZV,γ(t−1),~θ is

∑t
i=1 1γ(t)

i ∈Ext(γ(t−1)) ·
Pr PL

(
γ
(t)
i

∣∣∣(θ1,1,··· ,θ1,m1
,··· ,θl′,1,··· ,θl′,t−(m1+···+m

l′−1
))
)

Pr PL

(
γ
(t)
i

∣∣∣(θ1,1,··· ,θ1,m1
,··· ,θl′,1,··· ,θl′,t−(m1+···+m

l′−1
)−1)

) ,
where θi,j represent the j-th inserted alternative in Ci. Since
all alternatives in Cl′ are strictly less preferred to alternatives
in C1, · · · , Cl′−1, only the last t −

∑
i∈[l′−1]mi vacancies

are allowed by linear extension condition, and we have,

ZV,γ(t−1),~θ

=

t∑
i=m1

Pr PL

(
γ
(t)
i

∣∣∣ (θ1,1, · · · , θ1,m1
, · · · , θl′,1, · · · , θl′,t−(m1+···+ml′−1)

)
)

Pr PL

(
γ
(t)
i

∣∣∣ (θ1,1, · · · , θ1,m1
, · · · , θl′,1, · · · , θl′,t−(m1+···+ml′−1)−1)

)
=

∑i∈[l′−1]mi∏
j=1

θγj

θt +
∑t−1
i′=j θγi′

 ·
 t−1∏
j=1+

∑
i∈[l′−1]mi

θγj∑t−1
i′=j θγi′

 ,

where γj denote the j-th ranked alternative in γ(t−1).
Doing the same deviation to ranking β(t−1) and combine it
with the result of γ, for any alternative ct ∈ Cl′ we have,

4332

ZV,γ(t−1),~θ

ZV,β(t−1),~θ

=

∑i∈[l′−1]mi∏
j=1

θt +
∑t−1
i′=j θβi′

θt +
∑t−1
i′=j θγi′

 ·
 t−1∏
j=1+

∑
i∈[l′−1]mi

∑t−1
i′=j θβi′∑t−1
i′=j θγi′

≤

∑i∈[l′−1]mi∏
j=1

θmax

θmin

 ·
 t−1∏
j=1+

∑
i∈[l′−1]mi

θmax

θmin

 ≤ ηt.
Lemma 4.2 follows by combining (7) and (6). 2
Theorem 4 follows by applying Lemma 4.2 to Lemma 4.1. 2

The Gibbs Sampler for Plackett-Luce Model
We first introduce one exact Plackett-Luce sampler for full
rankings using random utility interpretation (Theorem 5). It
is noteworthy that the complexity of this sampler is O(m)
per iteration (or equivalently, the complexity of one Gibbs
iteration in Algorithm 4 is O(m∗)).

Algorithm 4: Gibbs Plackett-Luce Sampler

1 Input: Plackett-Luce parameter ~θ = (θ1, · · · , θm),
partial order Vj and number of iterations I .

2 Initialization: Arbitrarily set an 1×m array of utilities
u = (u1, · · · , um) and set of inserted alternatives
S = ∅.

3 for ` = 1; ` ≤ I do
4 for ct ∈ ESj do
5 Calculate lU = mini∈Ui e

−θt·e−ui , where
Ui = {i | (ci ∈ S) ∧ ([ci �j ct] ∈ Vj)}.

6 Calculate lL = maxi∈Li e
−θt·e−ui , where

Li = {i | (ci ∈ S) ∧ ([ct �j ci] ∈ Vj)}.
7 Uniformly generate a random number r from

interval (max{0, lL}, min{1, lU}).
8 Let ut = − ln(− ln r + ln θt) and add ct to S.
9 end

10 end
11 Sample the remaining alternatives’ utilities according to

Theorem 5.
12 Sort the utilities (u1, · · · , um) to get the linear order R.
13 return R.

Theorem 5 (Yellott 1977, Theorem 5) For sample space
S = L(C) and parameters ~θ = (θ1, · · · , θm), Plackett-
Luce sampling is equivalent to sample from Gumbel dis-
tributions whose cumulative distribution functions (CDFs)
are e−θi·e

−x
.

Our Gibbs Plackett-Luce sampler given arbitrary partial
orders (Algorithm 4) is based on the PL sampler introduced
above and the Gibbs sampler by Azari Soufiani, Parkes, and
Xia (2012). We let lU = 1 (or lL = 0) when Ui = ∅ (or
Li = ∅). We note that the sampler shown in Algorithm 4 is
applicable to any Random Utility Models with given CDF on
utility distributions.
Remark for Gibbs Sampler Bounding the mixing time of
Gibbs sampler for arbitrary (truncated) distribution is still an

open question. Moreover, the mixing time of Algorithm 4 is
even harder to bound because it focuses on the distribution
over rankings instead of utilities. Nevertheless, Gibbs sam-
pler might be a fast algorithm in experiments (or, averaged
case) because it takes the advantage of lower complexity per
iteration.

Experiments
We illustrate the performances of our algorithms on both
synthetic data and real-world data. We note that there is no
existing algorithm for learning Plackett-Luce model and its
mixtures from general partial orders without discarding any
information. All experiments with recorded runtime were run
on an Ubuntu Linux server with Intel Xeon E5 v3 CPUs each
clocked at 3.50 GHz.

Figure 3: MSE of the proposed EM algorithms for a single
Plackett-Luce model.

Figure 4: Runtime (in seconds) of the proposed EM algo-
rithms for a single Plackett-Luce model. Note ILSR-Linear
Orders is not applicable to arbitrary partial preferences.

Experiments on Synthetic Data
Learning the Plackett-Luce Model from Partial Orders.
We first generated linear orders from the Plackett-Luce
model over 10 alternatives. The ground truth parameters
~θ = (θ1, . . . , θm) were generated uniformly at random and

4333

normalized s.t.
∑m
i=1 θi = 1. The linear orders were sam-

pled by Definition 1. Then we sampled partial orders in the
following way. We fixed p = 0.5. Given any linear order, we
sampled from all m(m−1)

2 pairwise comparisons by keeping
each pairwise comparison with probability p independently.
The sampled partial order is then converted to its transitive
closure. In average, below 75% of all pairwise comparisons
were sampled. We ran our proposed EM algorithms with
GRIM-MCMC and Gibbs samplers respectively, denoted by
“ELSR-GRIM-MCMC” and “ELSR-Gibbs”. Two linear ex-
tensions were sampled for each partial order. We use five EM
iterations for each algorithm. Values were averaged over 2000
trials. To show the statistical efficiency of our algorithms, we
also learned from linear orders (which are assumed to be
unobservable) using the ILSR algorithm (denoted by “ILSR-
Linear Order”) by (Maystre and Grossglauser 2015), which
is the iterative LSR. Results are shown in Figures 3 and 4.
Observations. Both statistical efficiency and computational
efficiency of the algorithm with Gibbs sampler are slightly
better than that with GRIM sampler. The statistical efficiency
of both our algorithms are close to ILSR, which learns from
supposedly unobservable linear orders.

Figure 5: MSE of the proposed EM algorithms for mixtures
of 3 Plackett-Luce models.

Figure 6: Runtime (in seconds) of the proposed EM algo-
rithms for mixtures of 3 Plackett-Luce models.

Learning Mixtures of Plackett-Luce Models. The setup is

similar to the previous experiments. We generated the ground
truth parameters for 3-PL over 6 alternatives by generating
the mixing coefficients and the parameter of each component
uniformly at random and normalizing s.t.

∑k
r=1 αr = 1 and

for all r,
∑m
i=1 θ

(r)
i = 1. Then we sampled partial orders

using exactly the same way with a fixed p = 0.5. In average,
below 65% of all pairwise comparisons were sampled due to
fewer alternatives. 6 linear extensions were generated from
each partial order. We use five EM iterations for each algo-
rithm. Values were averaged over 2000 trials. Observations.
From Figures 5 and 6 we observe that our algorithm with
Gibbs sampler is more computationally efficient than that
with GRIM-MCMC sampler. Again, both algorithms have
similar statistical efficiency “ELSR-Linear Order”, which
learns from supposedly unobservable linear orders.

Figure 7: Log-likelihood of sushi test data as k increases
when a k-PL is learned from the training data. Values were
averaged over 100 trials.

Experiments on Real-World Data
The sushi data from Preflib (Mattei and Walsh 2013) consists
of 5000 linear orders of 10 types of sushi. We randomly
split this dataset into training data (3500 linear orders) and
test data (1500 partial orders). To generate partial orders, we
sample pairwise comparisons with p = 0.2, 0.4, 0.6, 0.8, 1
and learn a k-PL from the partial orders using the proposed
E-LSR algorithm with Gibbs sampler, where k ranges from 1
to 5. We measure the fitness of a k-PL using the likelihood of
the test data given the learned parameter. Results are shown
in Figure 7. Observations. We observe that when p increases,
the learning outcome fits the test data better. For k ≤ 5, k-PL
fits the test data better as k increases.

Conclusions and Future Work
We propose an EM-based framework with two samplers for
learning Plackett-Luce model and its mixtures from partial
orders. We demonstrate the efficiency of our algorithms with
experiments on both synthetic datasets and real-world data
and conclude that Gibbs sampler outperforms GRIM-MCMC.
For future work we plan to explore faster algorithms to sam-
ple linear extensions from partial orders or other approaches
to learn mixtures of Plackett-Luce models, as well as other
mixture models.

4334

Acknowledgments
We thank all anonymous reviewers for helpful comments and
suggestions. This work is supported by NSF #1453542 and
ONR #N00014-17-1-2621.

References
Azari Soufiani, H.; Chen, W.; Parkes, D. C.; and Xia, L. 2013.
Generalized method-of-moments for rank aggregation. In
Proceedings of Advances in Neural Information Processing
Systems (NIPS).
Azari Soufiani, H.; Parkes, D. C.; and Xia, L. 2012. Random
utility theory for social choice. In Proceedings of Advances
in Neural Information Processing Systems (NIPS), 126–134.
Baltrunas, L.; Makcinskas, T.; and Ricci, F. 2010. Group
recommendations with rank aggregation and collaborative
filtering. In Proceedings of the fourth ACM conference on
Recommender systems, 119–126. ACM.
Doignon, J.-P.; Pekeč, A.; and Regenwetter, M. 2004. The
repeated insertion model for rankings: Missing link between
two subset choice models. Psychometrika 69(1):33–54.
Dwork, C.; Kumar, R.; Naor, M.; and Sivakumar, D. 2001.
Rank aggregation methods for the web. In Proceedings of
the 10th World Wide Web Conference, 613–622.
Ford Jr, L. R. 1957. Solution of a ranking problem from
binary comparisons. The American Mathematical Monthly
64(8P2):28–33.
Gormley, I. C., and Murphy, T. B. 2008. Exploring vot-
ing blocs within the Irish electorate: A mixture modeling
approach. Journal of the American Statistical Association
103(483):1014–1027.
Hastings, W. K. 1970. Monte Carlo Sampling Methods
Using Markov Chains and Their Applications. Biometrika
57(1):97–109.
Hüllermeier, E.; Fürnkranz, J.; Cheng, W.; and Brinker, K.
2008. Label ranking by learning pairwise preferences. Artifi-
cial Intelligence 172(16-17):1897–1916.
Hunter, D. R. 2004. MM algorithms for generalized Bradley-
Terry models. In The Annals of Statistics, volume 32, 384–
406.
Khetan, A., and Oh, S. 2016a. Computational and statis-
tical tradeoffs in learning to rank. In Advances in Neural
Information Processing Systems, 739–747.
Khetan, A., and Oh, S. 2016b. Data-driven rank breaking
for efficient rank aggregation. Journal of Machine Learning
Research 17(193):1–54.
Liu, A.; Wu, Q.; Zhenming, L.; and Xia, L. 2019. Near-
neighbor methods in random preference completion. In Pro-
ceedings of 33rd AAAI Conference on Artifical Intelligence
(AAAI-19).
Liu, J. S. 1996. Metropolized independent sampling with
comparisons to rejection sampling and importance sampling.
Statistics and Computing 6(2):113–119.
Liu, T.-Y. 2011. Learning to Rank for Information Retrieval.
Springer.

Lu, T., and Boutilier, C. 2014. Effective sampling and learn-
ing for mallows models with pairwise-preference data. The
Journal of Machine Learning Research 15(1):3783–3829.
Luce, R. D. 1959. Individual Choice Behavior: A Theoretical
Analysis. Wiley.
Mattei, N., and Walsh, T. 2013. PrefLib: A Library of Prefer-
ence Data. In Proceedings of Third International Conference
on Algorithmic Decision Theory (ADT 2013), Lecture Notes
in Artificial Intelligence.
Maystre, L., and Grossglauser, M. 2015. Fast and accurate
inference of Plackett–Luce models. In Advances in Neural
Information Processing Systems, 172–180.
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller,
A. H.; and Teller, E. 1953. Equation of State Calculations
by Fast Computing Machines. Journal of Chemical Physics
21(6):1087–1092.
Mollica, C., and Tardella, L. 2016. Bayesian Plackett–Luce
mixture models for partially ranked data. Psychometrika
1–17.
Negahban, S.; Oh, S.; and Shah, D. 2017. Rank centrality:
Ranking from pairwise comparisons. Operations Research
65(1):266–287.
Oh, S., and Shah, D. 2014. Learning mixed multinomial logit
model from ordinal data. In Advances in Neural Information
Processing Systems, 595–603.
Plackett, R. L. 1975. The analysis of permutations. Journal
of the Royal Statistical Society. Series C (Applied Statistics)
24(2):193–202.
Thurstone, L. L. 1927. A law of comparative judgement.
Psychological Review 34(4):273–286.
Tkachenko, M., and Lauw, H. W. 2016. Plackett-luce re-
gression mixture model for heterogeneous rankings. In Pro-
ceedings of the 25th ACM International on Conference on
Information and Knowledge Management, 237–246. ACM.
Yellott, J. I. J. 1977. The relationship between Luce’s Choice
Axiom, Thurstone’s Theory of Comparative Judgment, and
the double exponential distribution. Journal of Mathematical
Psychology 15(2):109–144.
Zhao, Z., and Xia, L. 2018. Composite marginal likelihood
methods for random utility models. In Proceedings of The
35th International Conference on Machine Learning.
Zhao, Z.; Li, H.; Wang, J.; Kephart, J.; Mattei, N.; Su, H.;
and Xia, L. 2018. A cost-effective framework for preference
elicitation and aggregation. In Proceedings of the 34th Con-
ference on Uncertainty in Artificial Intelligence (UAI-18).
Zhao, Z.; Piech, P.; and Xia, L. 2016. Learning mixtures of
Plackett-Luce models. In Proceedings of The 33rd Interna-
tional Conference on Machine Learning.
Zhao, Z.; Villamil, T.; and Xia, L. 2018. Learning mixtures
of random utility models. In Proceedings of 32nd AAAI
Conference on Artifical Intelligence (AAAI-18).

4335

