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Abstract

In this paper, we propose a fractional preference model for the
facility location game with two facilities that serve the similar
purpose on a line where each agent has his location informa-
tion as well as fractional preference to indicate how well they
prefer the facilities. The preference for each facility is in the
range of [0, L] such that the sum of the preference for all fa-
cilities is equal to 1. The utility is measured by subtracting
the sum of the cost of both facilities from the total length L
where the cost of facilities is defined as the multiplication of
the fractional preference and the distance between the agent
and the facilities.
We first show that the lower bound for the objective of mini-
mizing total cost is at least Ω(n

1
3 ). Hence, we use the utility

function to analyze the agents’ satification. Our objective is
to place two facilities on [0, L] to maximize the social utility
or the minimum utility. For each objective function, we pro-
pose deterministic strategy-proof mechanisms. For the objec-
tive of maximizing the social utility, we present an optimal
deterministic strategy-proof mechanism in the case where
agents can only misreport their locations. In the case where
agents can only misreport their preferences, we present a 2-
approximation deterministic strategy-proof mechanism. Fi-
nally, we present a 4-approximation deterministic strategy-
proof mechanism and a randomized strategy-proof mecha-
nism with an approximation ratio of 2 where agents can mis-
report both the preference and location information. More-
over, we also give a lower-bound of 1.06. For the objective
of maximizing the minimum utility, we give a lower-bound
of 1.5 and present a 2-approximation deterministic strategy-
proof mechanism where agents can misreport both the pref-
erence and location.

1 Introduction

In recent years, designing mechanisms to achieve desirable
properties under various constraints is a key research topic
in the literature of mechanism design and social choice the-
ory. AI researchers and computer scientists are interested in
designing mechanisms for various mechanism design prob-
lems such as voting, auctions and matching.

The facility location game is known as a special case of
voting1, where the location and preference information of
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1It is generally true that the facility loation is known as a special

agents are restricted so that well-known impossibility results
do not hold.

For example, in the traditional model of locating one fa-
cility on a continuous line, there exists a class of strategy-
proof and anonymous mechanisms called generalized me-
dian voter schemes (Moulin 1980), while in general vot-
ing situations any strategy-proof mechanism must be dic-
tatorial, under some natural assumptions, by the Gibbard-
Satterthwaite theorem (Gibbard 1973; Satterthwaite 1975).

By changing agents’ preferences on facilities as well as
the nature of facilities, the traditional facility location game
is extended to two facility location games, where researchers
have studied heterogeneous facilities or homogeneous fa-
cilities on a line. To the best of our knowledge, there does
not exist any studies of facility location games between het-
erogeneous and homogeneous versions. However, in reality
there are indeed facilities which are different but serving a
similar purpose, such as the supermarket along with the con-
venience store, the hospital along with the clinic, etc.

In order to capture this scenario, we introduce the frac-
tional preference model in this paper. Besides only zero and
one on agents’ preferences, the fractional preference model
allows agents to report a fractional preference on both facil-
ities to indicate how often they require for both facilities.

The fractional preference model complements the study
on two facility location games. We further formulate the
fractional preference model into three cases.

• Case 1: the preference information is public whereas the
location information is private.
A university town is a community that the population is
dominated by university students. Within the university
town, it contains various facilities to support the daily
lives of university students. We can find those famous uni-
versity towns in Europe like Oxford in UK, Heidelberg in
Germany, Salamanca in Spain, etc. Suppose the university
plans to build one data-science laboratory and one mul-
timedia laboratory in the university town. Students have

case of voting, but voting is usually assumed to be over a finite set
of alternatives whereas in facility location, that set in infinite.
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different preferences on both laboratories based on their
course registration records. For example, if one student
is enrolled in the course of data-science but not enrolled
in the multimedia course such as computer graphics, then
he may prefer 100% on the data-science laboratory and
0% on the multimedia laboratory. However, some students
may be enrolled in the course of data-science as well as
computer graphics, then he may need to visit the data-
science laboratory for half of the week and the multimedia
laboratory for the remaining half of the week. Therefore,
he may prefer 50% on the data-science laboratory and
50% on the multimedia laboratory. Since the course regis-
tration records for each student are known by the univer-
sity, the preference information is public. However, it is
not necessary for students to report their living addresses
to the university. Therefore the location information is pri-
vate.

• Case 2: the location information is public whereas the
preference information is private.
Suppose the government wants to build one hospital and
one clinic in a city. As the government maintains the ad-
dresses of all citizens, the location information of the pa-
tients is public. Patients may not always go to the hospital
or clinic. It is based on the the severity of the illness. If one
patient only catches a cold, clinic is good enough for him.
Therefore he may prefer 100% on the clinic and 0% on
the hospital. However, if the severity of illness is higher,
for example if they need to visit the doctor in the hospital
twice a week, and visit the clinic once a week, then they
may prefer 67% on the hospital and 33% on the clinic.
Due to the privacy and the patient protection concerns,
the government does not know the severity of illness of
patients. Therefore, the preference information is private.

• Case 3: both the location and preference information are
private.
One scenario is building two bus stops, with different bus
lines on it. The preference on bus stops depends on the
bus lines agents require for transportation. For example,
if one agent only requires the bus lines on bus stop A, he
may prefer 100% on bus stop A and 0% on bus stop B. If
he needs the bus at bus stop A to go to work in weekdays,
and requires the bus lines at bus stop B for leisure activity
in the weekends/holidays, then he may prefer 70% on bus
stop A, and 30% on bus stop B.

Related Work. The classicial facility location game was
first studied by (Moulin 1980). They characterized strategy-
proof, Pareto efficient, and anonymous facility location
mechanisms on a line. (Miyagawa 2001; Heo 2013; Fotakis
and Tzamos 2014) extended this model for locating two fa-
cilities on a line. (Schummer and Vohra 2002) studied the
characterizations of all the strategy-proof mechanisms on
other networks.

In addition, (Todo et al. 2011) also extended the original
model by fully characterizing the deterministic false-name-
proof facility location mechanisms for locating single facil-
ity on a line. Then, (Sonoda et al. 2016) extended the model
by characterizing the possible outcomes of false-name-proof

mechanisms on a line for locating two facilities on a line as
well as on a circle.

Besides characterization of facility location games, re-
searchers are also interested in analyzing the approxima-
tion ratios of strategy-proof mechanisms in facility location
games. This problem was first studied by (Procaccia and
Tennenholtz 2013). They also extended the facility location
game to the scenario with two homogeneous facilities or
with one agent possessing multiple locations. Lu et al. (Lu
et al. 2009) improved the bounds for both the two homo-
geneous facilities scenario and one agent possessing multi-
ple locations case. Fotakis and Tzamos (Fotakis and Tzamos
2014) explored the facility location game with k facilities
and showed that the strategy-proofness can be achieved by
adding winner-imposing constraints. Filos-Ratsikas et al.
(Filos-Ratsikas et al. 2015) extended the single-peaked pref-
erence to the double-peaked preference where every agent
has two ideal places for the facility on his two sides.

Serafino and Ventre (Serafino and Ventre 2014; 2015)
initiated the study on two heterogeneous facility location
games where the cost of the agent is the summation of
the distances to both facilities. Yuan et. al. (Yuan et al.
2016) extended the study on two heterogeneous facility lo-
cation games by proposing the optional preference model.
Other extensions of the classic facility location game can be
found at (Alon et al. 2010; Dokow et al. 2012; Feldman and
Wilf 2013; Fotakis and Tzamos 2014; Escoffier et al. 2011;
Zhang and Li 2014).

On the other hand, Cheng et al. (Cheng et al. 2011) in-
troduced obnoxious facility games where the facility to be
built is undesirable and all agents would like to get away
from it. After that, they extend the model into trees and cir-
cles (Cheng et al. 2013). Ye et al. (Ye et al. 2015) consid-
ered the same model with the objective of maximizing the
sum of squares of distances and the sum of distances, gave
lower bounds and proposed both deterministic and random-
ized strategy-proof mechanisms.

Another variant of the model is introduced by combin-
ing the classical facility location game and the obnoxious
facility location game, named as dual preference model or
hybrid model which was independently studied in (Zou and
Li 2015; Feigenbaum and Sethuraman 2014). In that model,
some agents would like to stay close to the facility while
other agents want to stay far away from the facility.

Our contributions. We first show that the lower bound for
the objective of minimizing total cost is at least Ω(n

1
3 ). Then

we present our results for maximizing the social utility and
maximizing the minimum utility as follows.

• Results for maximizing the social utility:
– When we restrict the power of misreport to location

only, we present an optimal deterministic strategy-
proof mechanism.

– When we restrict the power of misreport to prefer-
ence only, we present a deterministic strategy-proof
mechanism with an approximation ratio of 2 and also
a lower bound of 1.06 for any deterministic strategy-
proof mechanism.
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– When we do not restrict the power of misreport:
∗ A 4-approximation deterministic strategy-proof

mechanism.
∗ The lower bound of 1.06 carries over to this case.
∗ A 2-approximation randomized strategy-proof mech-

anism.
∗ A lower bound of 1.06 for any randomized strategy-

proof mechanism.

• Results for maximizing the minimum utility:

– We present a 2-approximation deterministic strategy-
proof mechanism.

– We give a lower bound of 1.5 for any deterministic
strategy-proof mechanism.

The remainder of the paper is organized as follows. We
first define the formulation of the problem in Section 2.
Then, we study the case for the objective of maximizing the
social utility and maximizing the minimum utility in Section
3 and Section 4 respectively. Finally, we conclude our work
in Section 5 and discuss the open questions in Section 6.

2 Preliminaries

We are given a collection of agents, N = {1, 2, . . . , n}
where each agent i has the profile ci = {xi, pi} containing
the agent location xi and a list of fractional preferences pi =
{pi,1, pi,2} on facilities F1 and F2 where 0 ≤ pi,1, pi,2 ≤ 1
and pi,1+pi,2 = 1. The agents are sorted in increasing order
of location, i.e. x1 ≤ x2 ≤ . . . xn and we are only focusing
on the one dimensional spaces.

A profile c is a collection of the location and preference
reported by all agents, c = {c1, c2, . . . , cn}. A mechanism
is a function f which maps profile c to an output (y1, y2)
containing the locations of F1 and F2 (0 ≤ y1, y2 ≤ L). Let
d(a, b) = |a− b| be the distance between a and b.

The cost of agent i is defined as cost(f(c), ci) =
d(xi, y1) · pi,1 + d(xi, y2) · pi,2. The social cost is defined
as sc(f, c) =

∑n
i=1 cost(f(c), ci) and the minimum cost is

defined as mc(f, c) = min1≤i≤ncost(f(c), ci). However,
in Theorem 1, we show that if the cost function is used as
the measurement of agents’ satisfaction, the approximation
ratio of any strategy-proof mechanism is Ω(n

1
3 ).

Theorem 1. For the objective of minimizing social cost, the
approximation ratio for any strategy-proof mechanism is at
least Ω(n

1
3 ).

Before the proof, note that the partial group strategy-
proofness defined in (Lu et al. 2010) also applies here.

Lemma 1. In a strategy-proof mechanism, a group of agents
with the same location and preference cannot benefit even if
they misreport simultaneously.

Its proof is similar to that of (Lu et al. 2010), which is
omitted here. Now we are ready to prove the lower bound.

Proof. Consider a profile c with n agents at 0 with pref-
erence of (1, 0), n

1
3 agents at 0 with preference of (0, 1),

and an agent at 1 with preference of (0, 1). The allocations
for both facilites is (y1, y2). We shall prove that there is no

Figure 1: Example to prove the lower bound of cost.

strategy-proof mechanism with an approximation ratio of
1
4n

1
3 . Assume for contradiction that there is such a mech-

anism.
For the profile c, the optimal mechanism will place both

facilities in the left extreme point, which is 0 with the costs
of 1 as illustrated in Fig. 1a. So the cost for (y1, y2) is at
most 1

4n
1
3 . Therefore, we can conclude that n|y1|+n

1
3 |y2| ≤

1
4n

1
3 . From this, we can further conclude that |y1| ≤ 1

4n
− 2

3

and |y2| ≤ 1
4 . Then we consider another profile c′ where the

n
1
3 agents located in the left extreme point misreport their

preferences to (1 − ε, ε) simulataneously where ε = n− 2
3 .

The allocations for both facilites is (y′1, y
′
2) for profile c′. In

this profile, the optimal mechanism will place F1 at 0 and
place F2 at 1 with the cost of n

1
3 ε = n− 1

3 as illustrated in
Fig. 1b. So the cost for (y′1, y

′
2) is at most 1

4n
1
3n− 1

3 = 1
4 .

Therefore, we can conclude that |y′2−1| ≤ 1
4 . From this, we

can further conclude that |y′2| ≥ 3
4 .

Now we can reach a contradiction to the partial group
strategy-proofness since the group of n

1
3 agents at point of 0

with preference of p′ = {1− ε, ε} can be better off by lying
to the preference of p = {0, 1}:

(1− ε)|y1|+ ε|y2| ≤ 2

4
n− 2

3 ,

(1− ε)|y′1|+ ε|y′2| ≥ ε|y′2| ≥
3

4
n− 2

3 .

This completes the proof (The number of agents can
be scaled down to n without affecting the asymptotic
bound).

Since we showed that the ratio is at least Ω(n
1
3 ) if the

cost function is used, in the following, we will use the utility
function defined as follows.

The utility of agent i is defined as u(f(c), ci) = L −
d(xi, y1) · pi,1 − d(xi, y2) · pi,2. The social utility is defined
as su(f, c) =

∑n
i=1 u(f(c), ci) and the minimum utility is

defined as mu(f, c) = min1≤i≤nu(f(c), ci).
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Let OPTSU(c) and OPTMU(c) be the optimal solution
for maximizing the social utility and the optimal solution
for maximizing the minimum utility respectively.

A mechanism f is strategy-proof if an agent can never
benefit by reporting a false profile. More formally, let c′i be
the false profile reported by agent i. We have u(f(c), ci) ≥
u(f(c′i, c−i), ci) where c−i is a collection of profile reported
by n agents except agent i.

We can further discuss three cases shown below.
1. restrict the power of misreport to locations only.
2. restrict the power of misreport to preferences only.
3. do not restrict the power of misreport.

We measure the performance of a mechanism f by com-
paring the social utility that f obtains and the social utility
of the optimal solution. For a mechanism f , if there exists a
number α such that for any profile c, the output from f satis-
fies OPTSU (c)

su(f,c) ≤ α, then we say the approximation ratio for
the social utility of f is α. Similarly, if there exists a num-
ber β such that for any profile c, the output from f satisfies
OPTMU (c)
mu(f,c) ≤ β, then we say the approximation ratio for the

minimum utility of f is β.

3 Maximizing the Social Utility

3.1 Misreport only the location

In this subsection, we restrict the power of misreport to lo-
cations only.
Mechanism 1. Let wj =

∑n
i=1 pi,j and define midj =

1
2wj . Put Fj at the location of agent mj where mj =

argmink{midj ≤
∑k

i=1 pi,j}.
Theorem 2. Mechanism 1 is an optimal deterministic
strategy-proof mechanism.

Proof. Firstly, we consider agents which are not m1 or m2,
if they are on the left hand side of agent mj , they cannot in-
fluence the location of Fj if they move to be still on the left
of mj and it will possibly make Fj move away from them if
they move to the right of agent mj . Therefore they have no
incentive to misreport their locations. For the agents on the
right hand side of agent mj , the analysis is similar. For agent
mj , he cannot move facility F3−j towards him by misreport-
ing due to the discussion above and on the other hand, Fj is
already at the best position for agent mj . Hence, he has no
incentive to misreport his location. Therefore, Mechanism
1 is strategy-proof if only the location can be misreported.
Moreover, it can be proved optimal using the similar way as
how the median mechanism is proved to be optimal.

3.2 Misreport only the preference

In this subsection, we restrict the power of misreport to pref-
erences only.

Firstly, we show a lower bound of approximation ratios
for deterministic strategy-proof mechanisms.
Theorem 3. There does not exist any strategy-proof deter-
ministic mechanism with an approximation ratio less than
1.06.

Figure 2: Example to prove the lower bound of social utility.

Proof. Let the length of the line segment be equal to 1, i.e.
L = 1. Consider a profile c with one agent at 0 with pref-
erence of (1, 0), another two agents at 0 with the preference
of (0, 1), and an agent at 1 with preference of (0, 1). The
allocations for both facilites is (y1, y2). We shall prove that
there is no strategy-proof mechanism with an approximation
ratio of 1.06 for social utility. Assume for contradiction that
there is such a mechanism.

For the profile c, the optimal mechanism will place both
facilities in the left extreme point 0 with the social utility
of 3 as illustrated in Fig. 2a. Hence, the social utility for
(y1, y2) is at least 3

1.06 > 2.83. Therefore, we can conclude
that 3− y1 − y2 > 2.83. From this, we can further conclude
that y1 + y2 < 0.17 and y1 < 0.17.

Then we consider another profile c′ where the two agents
located at 0 misreport their preferences to (0.7, 0.3) simul-
taneously. The allocations for both facilities is (y′1, y

′
2) for

profile c′. In this profile, the optimal mechanism will place
F1 at 0 and place F2 at 1 with the social utility of 3.4 as il-
lustrated in Fig. 2b. Hence, the social utility for (y′1, y

′
2) is at

least 3.4
1.06 > 3.2. The social utility for (y′1, y

′
2) is

1− y′1 + y′2 + 2(1− 0.7y′1 − 0.3y′2) = 3− 2.4y′1 + 0.4y′2
≤ 3 + 0.4y′2.

Therefore, we can conclude that 3 + 0.4y′2 > 3.2. From
this, we can further conclude that y′2 > 0.5.

Now we can reach a contradiction to the partial group
strategy-proofness since the group of two agents at 0 with
preference of (0.7, 0.3) can be better off by lying to the pref-
erence of (0, 1):

0.7y1 + 0.3y2 = 0.4y1 + 0.3(y1 + y2) < 0.119,

0.7y′1 + 0.3y′2 ≥ 0.3y′2 > 0.15 > 0.119.

This completes the proof.

Next, we propose the following mechanism.
Mechanism 2. Given a profile c = (x, p), for Fj , we denote
the left most agent with pj > 0 as lj and denote the right
most agent with pj > 0 as rj . Put Fj at (xlj + xrj )/2.
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Theorem 4. Mechanism 2 is a deterministic strategy-proof
mechanism with an approximation ratio of 2.

Proof. In Mechanism 2, in order to influence the output lo-
cation of Fj , there are three cases.
Case 1: lj changes his preference on Fj to zero.
Case 2: rj changes his preference on Fj to zero.
Case 3: An agent k with xk < xlj or xk > xrj misreports
the preference from zero to non-zero.

For Case 1, since the output location of Fj is (xlj +
xrj )/2, if lj misreports his preference to zero, lj will be-
come the agent i on his right with pi,j > 0, which makes the
facility move away from him. Hence, he has no incentive to
misreport his preference in this case. Case 2 is symmetric to
Case 1.

For Case 3, although the agents can pull Fj towards them
by misreporting the preference from zero to non-zero, as
they have pi,j = 0, they have no incentive to misreport their
preferences. Therefore, Mechanism 2 is strategy-proof.

Let αlen = xr1 −xl1 and βlen = xr2 −xl2 . The utility of
each agent is

u(f(c), ci) = L− d(xi, y1) · pi,1 − d(xi, y2) · pi,2
≥ L− αlen

2
· pi,1 − βlen

2
· pi,2 ≥ 1

2
L.

With n agents, the social utility of Mechanism 2 is
at least 1

2nL. On the other hand, the optimal social util-
ity is OPTSU (c) = nL. Hence, OPTSU (c)/su(f, c) ≤
nL/ 1

2nL = 2.

Moreover, we have a nearly tight example below to show
that our analysis in Theorem 4 is tight. Suppose we have
(n− 2)/2 agents with preference of (1, 0) and (0, 1) in both
extreme points. Then we have a single agent with preference
of (0, 1) located at 0 and a single agent with preference of
(1, 0) located at L. The optimal mechanism will place F1 at
0 and F2 at L. However, Mechanism 2 places both F1 and F2

at L/2. Hence, the optimal social utility will be (n − 2)L,
whereas Mechanism 2 has the social utility of n ∗ L/2 as
both F1 and F2 are at L/2. Hence, the approximation ratio
≥ OPTSU (c)

su(f,c) = (n−2)L
n · L/2 = 2− 4

n .

3.3 Misreport both the preference and location

In this subsection, we do not restrict the power of misreport.
Firstly, we can see that Mechanism 2 is not strategy-

proof if location information can be misreported. Con-
sider the profile c = (x, p) with x = {0.5, 1} and p =
{(0.5, 0.5), (0.5, 0.5)}. Since Mechanism 2 puts Fj at (lj +
rj)/2, Fj is located at 0.75 in this situation. However, if
agent 1 misreports his location as x′

1 = 0, then the location
of F1 will become 0.5 which is his real location. Therefore,
agent 1 can gain by misreporting his location, and Mecha-
nism 2 is not strategy-proof.

Mechanism 3. Given a profile c = (x, p), let A and B be
a set of agents k with pk,1 > 0 and pk,2 > 0 respectively.
Set A may intersect set B if some agent i has pi,1 > 0 and
pi,2 > 0. Let med(A) be the median agent in A and med(B)
be the median agent in B. If the set has an even number of

agents, we refer the left median as the median agent. Place
F1 at med(A) and F2 at med(B).
Theorem 5. Mechanism 3 is a deterministic strategy-proof
mechanism with an approximation ratio of n.

Proof. Firstly, an agent with preference (0,1) or (1,0) will
not misreport since the median mechanism guarantees that
truth telling (for both location and preference) is the best
strategy for the facility he likes and he also will not misre-
port the preference for the other facility since his preference
for that facility is 0. For other agents, if they only misreport
locations or change their preferences to other non-zero val-
ues for both facilities, they will not gain due to the property
of the median mechanism since any non-zero value is treated
the same way. The only possibility left is to misreport pref-
erences to (0,1) or (1,0) and misreport locations. However,
in this case, they will only influence one facility instead of
two. Again, the property of the median mechanism guaran-
tees that no facility will move closer to them after the misre-
port.

Then, we are going to show that the social utility of Mech-
anism 3 is at least L which implies an approximation ratio
of n. If the two medians coincide, then the agent at that lo-
cation can achieve a utility L and therefore the ratio holds.
Otherwise, the two locations are different, then there must be
some agents whose preferences are (0, 1) or (1, 0). Suppose
that F1 is on the left of F2, then there are more agents with
preference (1, 0) than agents with preference (0, 1) on the
left of F2. Similarly, there are more agents with preference
(0, 1) than agents with preference (1, 0) on the right of F1.
Therefore, there must be some agents with preference (1, 0)
on the left of F1 (or on F1) or some agents with preference
(0, 1) on the right of F2 (or on F2).

Suppose there is some agent with preference (1, 0) on the
left of F1, as illustrated in Fig. 3, his utility together with
F1 median’s utility is at least L − a + L − b ≥ L, where
a is the distance from 0 to F1 and b is the distance from F1

to F2 (so a + b ≤ L). Hence, we have su(f, c) ≥ L and
OPTSU (c)/su(f, c) ≤ nL

L = n.

Figure 3: Illustriation of Theorem 5.

Moreover, we have a nearly tight example below to show
that our analysis in Theorem 5 is tight. Consider a profile
c with (n − 1)/2 agents at 0 with preference of (1 − ε, ε),
(n−1)/2 agents at L with preference of (ε, 1−ε), as well as
an agent at L with preference of (1, 0). The optimal solution
will place F1 at 0 and F2 at L. However, Mechanism 3 places
F1 at L and F2 at 0.

1043



Hence, we have Mechanism 3 computes the location of
F1 and F2 separately and therefore results in a large approx-
imation ratio. In order to improve the performance of the ap-
proximation ratio as well as maintain the strategy-proofness,
we need to consider F1 and F2 together. Therefore we pro-
pose Mechanism 4.

We first classify agents into three categories below.
1. F1 agent if pi,1 > 0.5.
2. F2 agent if pi,2 > 0.5.
3. F1F2 agent if pi,1 = pi,2 = 0.5.
We say that agent i prefers Fj if pi,j > 0.5. For ease of
presentation, we denote the left segment as the range of
[0, L/2], the right segment as the range of (L/2, L].

Observe that if the solution is on the two extreme points,
either (0, L) or (L, 0), then we have only two kinds of agents
whereas the F1F2 agents can be ignored, as their utilities
will not change no matter whether (0, L) or (L, 0) is re-
turned.

1. LF1
agents: the agents who prefer F1 located in the left

extreme point and prefer F2 located in the right extreme
point. (F1 agents in the left segment and F2 agents in the
right segment).

2. RF1
agents: the agents who prefer F2 located in the left

extreme point and prefer F1 located in the right extreme
point. (F1 agents in the right segment and F2 agents in the
left segment).

Mechanism 4. Let |LF1 | and |RF1 | be the number of LF1

agents and RF1
agents respectively. If |LF1

| ≥ |RF1
|, output

(0, L), otherwise, output (L, 0).
Theorem 6. Mechanism 4 is strategy-proof.

Proof. First, we consider the F1F2 agents. As they prefer
both facilities with the same ratio, i.e. pi,1 = pi,2 = 0.5 and
the mechanism will only consider the two extreme points as
the solution, no matter it is (0, L) or (L, 0) , their utilities are
the same. Hence, they do not have incentive to misreport.

Secondly, we consider LF1
agents and RF1

agents. With-
out loss of generality, suppose the output (0, L) is returned.
We have |LF1 | ≥ |RF1 |. Since the facility F1 is already lo-
cated at the left extreme point, LF1 agents do not have incen-
tive to lie. For an RF1 agent, misreporting as an LF1 agent
would increase |LF1

| and decrease |RF2
| which keeps the re-

sult the same. If he misreports as an F1F2 agent, then |RF1
|

will decrease by 1, and the result will also remain the same.
Note that this already includes the possibility of misreport-
ing both location and preference. Hence, RF1

agent does not
have incentive to misreport.

Outputting (L, 0) is symmetric to the case above. Hence,
Mechanism 4 is strategy-proof.

Theorem 7. Mechanism 4 has an approximation ratio of 4.

Proof. We first assume Mechanism 4 outputs (y1, y2) =
(0, L). We have |LF1 | ≥ |RF1 |. Observe that LF1 consists
of two types of agents:

1. F1 agents: agents located in the left segment [0, L/2] who
prefer facility 1 more than facility 2, i.e. pi,1 > pi,2.

2. F2 agents: agents located in the right segment (L/2, L]
who prefer facility 2 more than facility 1, i.e. pi,1 < pi,2.

If an F1 agent moves to the right / F2 agent moves to the
left, his utility will decrease, and his utility will reach the
minimum if he moves to the center of the segment achieving
utility of

L− pi,1(0.5)− pi,2(0.5) = 0.5L.

Similarly, for the RF1
agents, they are the agents located

in the left segment who prefer F2, or the agents located in the
right segment who prefer F1. Hence, their minimum utility
will be zero in this case.

For F1F2 agents, as their preferences are {0.5, 0.5}, their
utilities are always

u(f(c), ci) = L− (0.5) · d(xi, y1)− (0.5) · d(xi, y2)

= L− 0.5L = 0.5L.

As |LF1
| ≥ |RF1

|, we have |RF1
| ≤ |LF1

|+|RF1
|

2 .
Therefore, we can conclude that

su(f, c) ≥ 0.5L(n− |RF1
|)

≥ 0.5L(n− |LF1
|+ |RF1

|
2

)

≥ 0.5L(n− n

2
) =

1

4
nL

Then we have OPTSU (c)/su(f, c) ≤ nL/ 1
4nL = 4,

since each agent can have utility at most L.

Notice that the lower bound 1.06 proved in subsection
3.2 is also a lower bound here. Besides deterministic mech-
anisms presented above, we also present a randomized
strategy-proof mechanism which can further improve the ap-
proximation ratio (thanks to an anonymous reviewer).

Mechanism 5. Place the facilities F1 and F2 at (0, L) and
(L, 0) with 1/2 probability.

Theorem 8. Mechanism 5 is a randomized strategy-proof
mechanism with an approximation ratio of 2.

Proof. In Mechanism 5, the expected utility for each agent
is

u(f(c), ci) = L− 1/2 · d(xi, y1) · pi,1
− 1/2 · d(xi, y2) · pi,2

≥ L− 1/2L = L/2

Then we have OPTSU (c)/su(f, c) ≤ nL/ 1
2nL = 2 since

each agent can have utility at most L.
As the mechanism places the facilities in two extreme

points with equal probability, the agents do not have incen-
tive to misreport, and Mechanism 5 is strategy-proof.

Theorem 9. There does not exist any strategy-proof ran-
domized mechanism with an approximation ratio less than
1.06.
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Proof. For the proof, we can reuse the example in Theo-
rem 3 to prove the lower bound for randomized mechanisms.
The reason is that we are using profiles where agents are at
two extreme points, where the agent’s expected cost is equal
to its distance to the expected location for the randomized
mechanism (the possible positions for the facilities are only
on one side of the agent). Therefore, we could treat the ex-
pected location of a facility as the output for a deterministic
mechanism and thus the lower bound we proved for the de-
terministic mechanisms also works here.

4 Maximizing the Minimum Utility

In this section, we do not restrict the power of misreport.
Lemma 2. There does not exist any strategy-proof deter-
ministic mechanism with an approximation ratio less than
1.5.

Proof. The proof below is inspired by (Procaccia and Ten-
nenholtz 2013). We assume there exists a strategy-proof de-
terministic mechanism with an approximation ratio less than
1.5 for maximizing the minimum utility. Consider the pro-
file of c = (x, p) where x = {0, 1} and p = {(1, 0), (1, 0)}.
Without loss of generality, we assume mu(f, c) = L/2 + ε,
where ε ≥ 0. Now consider another profile c′ = (x′, p)
where x′ = {0, L

2 }. The optimal solution has the minimum
utility of 3

4L + ε, then in order to obtain an approxima-
tion ratio less than 1.5, we need to place F1 in the range of
(0, L/2). Then in this case, agent 2 can gain by misreporting
x′ = 1 in order to move F1 to L/2 + ε, in contradiction to
strategy-proofness.

Mechanism 6. Place both facilities F1 and F2 at L/2.
Theorem 10. Mechanism 6 is a deterministic strategy-proof
mechanism with an approximation ratio of 2.

Proof. As Mechanism 6 places both facilities at the fixed
center point, agents cannot influence the result by misre-
porting their location and preference information. Therefore,
Mechanism 6 is strategy-proof. No matter where the facili-
ties are placed, the minimum utility is at least

mu(f, c) = L− d(xi, y1) · pi,1 − d(xi, y2) · pi,2
≥ L− L

2
(pi,1 + pi,2) =

L

2
.

The optimal minimum utility is OPTMU (c) = L. Hence,
OPTMU (c)/mu(f, c) ≤ L

L/2 = 2.

5 Conclusion

To conclude, we proposed a new variant of the facility loca-
tion game, named as the fractional preference model and we
mainly focused on deterministic mechanisms. The fractional
preference model allows agents to state their preferences in
a fractional form to distinguish the severity that they prefer
on the similar facilities which can cover more real life sce-
narios in comparison with the zero and one preferences in
the existing heterogenous facility location game.

In this model, we further categorized the problem into dif-
ferent cases by restricting the power of misreports. In each

case, we achieved different results in both objectives of max-
imizing the social utility and maximizing the minimum util-
ity. The results are summarized in Table 1 below.

Table 1: A summary of our results.

Objective Restrict the Power of Misreport
Loc only Pref only No Restriction

Social Utility UB: 1 UB: 2
UB: 4

Rand UB: 2
LB:1.06 LB: 1.06

Rand LB: 1.06

Min Utility UB: 2 UB: 2 UB: 2
LB:1.5 LB: 1.5

6 Future Work

We obtained the upper bound of 4 and lower bound of 1.06
for maximizing the social utility in the general case. The
results can be further strengthened if the mechanism with
a better approximation ratio can be found. Moreover, for
maximizing the minimum utility, it is unknown whether a
randomized mechanism could further improve the approxi-
mation ratio.

On the other hand, extending our results to n facilities
would also be an interesting direction. Based on our current
result, Mechanism 2 and Mechanism 3 are possible to be ex-
tended to multiple facilities, since we choose the agents with
positive preference on facilities i and pick the center point or
median point to place facility i. In other words, the positions
of facilities are independently decided. Therefore, when we
have multiple facilities, the utilities are also independently
calculated. Hence, strategyproofness can still be guaranteed
and the ratio also does not change.

However, it is unknown whether Mechanism 4 can be ex-
tended for multiple facilities since it uses the two end points
of the line segment to place two facilities. When we have
more than two facilities, there are not so many special points
to choose from. Therefore, it is more challenging to design
strategyproof mechanisms with good approximation ratios.
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