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Abstract—Holant is a framework of counting characterized
by local constraints. It is closely related to other well-studied
frameworks such as #CSP and Graph Homomorphism. An
effective dichotomy for such frameworks can immediately settle
the complexity of all combinatorial problems expressible in
that framework. Both #CSP and Graph Homomorphism can be
viewed as sub-families of Holant with the additional assumption
that the equality constraints are always available. Other sub-
families of Holant such as Holant∗ and Holantc problems, in
which we assume some specific sets of constraints to be freely
available, were also studied. The Holant framework becomes
more expressive and contains more interesting tractable cases
with less or no freely available constraint functions, while, on
the other hand, it also becomes more challenging to obtain
a complete characterization of its time complexity. Recently,
complexity dichotomy for a variety of sub-families of Holant
such as #CSP, Graph Homomorphism, Holant∗ and Holantc
were proved. The dichotomy for the general Holant framework,
which is the most desirable, still remains open. In this paper,
we prove a dichotomy for the general Holant framework where
all the constraints are real symmetric functions. This setting
already captures most of the interesting combinatorial prob-
lems defined by local constraints, such as (perfect) matching,
independent set, vertex cover and so on. This is the first time
a dichotomy is obtained for general Holant Problems without
any auxiliary functions.

One benefit of working with Holant framework is some
powerful new reduction techniques such as Holographic re-
duction. Along the proof of our dichotomy, we introduce a
new reduction technique, namely realizing a constraint function
by approximating it. This new technique is employed in our
proof in a situation where it seems that all previous reduction
techniques fail, thus this new idea of reduction might also
be of independent interest. Besides proving dichotomy and
developing new technique, we also obtained some interesting
by-products. We prove a dichotomy for #CSP restricting to
instances where each variable appears a multiple of d times
for any d. We also prove that counting the number of Eulerian-
Orientations on 2k-regular graphs is #P-hard for any k ≥ 2.

Keywords-Holant problem; #CSP; complexity dichotomy;
reduction technique

I. INTRODUCTION

In order to study the complexity of counting problems,

several interesting frameworks characterizing local proper-

ties have been proposed. One is called counting Constraint

Satisfaction Problems (#CSP) [1]–[9]. Another well studied

framework is called H-coloring or Graph Homomorphism,

which can be viewed as a special case of #CSP problems

[10]–[17]. Recently, inspired by Valiant’s Holographic Al-

gorithms [18], [19], a new refined framework called Holant

Problems [20], [21] was proposed. One reason such frame-

works are interesting is because the language is expressive
enough so that they can express many natural counting prob-

lems, while specific enough so that we can prove dichotomy
theorems (i.e., every problem in the class is either in P or

#P-hard) [22]. Having a dichotomy is an important property

for these languages since in general, Ladner [23] proved that

if P �= NP, or in our case P �= #P, then such a dichotomy

for NP (or #P) is false.

We give a brief description of the Holant framework

here and a more formal definition is given in Section II. A

signature grid Ω = (G,F , π) is a tuple, where G = (V,E)
is an undirected graph, F is a set of functions. In this paper,

we study the case where the functions map sets of Boolean

variables to some value. Usually, the range of the functions

are complex numbers C or real numbers R as in [1],

[2], [4]–[8], [20], [21], but it is also interesting to consider

functions with finite range, such as counting the number of

solutions modulo some integer k, as studied in [24]–[28].

The mapping π : V → F labels each v ∈ V (G) with a

function fv ∈ F , where the arity of fv equals the degree

of v. We consider all edge assignments (0-1 assignments

in this paper, since we are considering Boolean functions).

An assignment σ for every e ∈ E gives an evaluation∏
v∈V fv(σ |E(v)), where σ |E(v) denotes the substring of

σ where only bits corresponding to incident edges of v
are chosen. The counting problem on the instance Ω is to

compute

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v)).

We use the notation Holant(F) to denote the class of

Holant problems where all functions are taken from F .

For example, consider the PERFECT MATCHING problem

on G. This problem corresponds to attaching the EXACT-

ONE function at every vertex of G — for each 0-1 edge

assignment, the product evaluates to 1 when the assignment

is a perfect matching, and 0 otherwise, therefore summing

over all 0-1 edge assignments gives us the number of perfect

matchings in G. If we use the AT-MOST-ONE function at
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every vertex, then we count all (not necessarily perfect)

matchings. This framework can also express the partition

function of a system, which is well studied in the statistical

physics community, see for example the Ising model [29].

The Holant framework is closely related to other frame-

works such as #CSP and Graph Homomorphism. In fact,

in some sense, the Holant framework provides a unified

perspective for different frameworks of counting problems.

For example, the #CSP framework can be viewed as a

special case of the Holant framework in which equality

relations of any arity are always assumed to be available in

addition to the stated constraints. A dichotomy for complex

weighted Boolean #CSP was discovered and proved with

the help from the study of general Holant problem [21].

On the other hand, #CSP excludes the expression of certain

important problems such as graph matchings, which, in

contrast, are expressible in the Holant framework. Besides

#CSP, another two important special families are Holant∗

Problems, in which we assume that all unary functions are

available, and Holantc Problems, where we only assume

two special unary functions — IS-ZERO function 0 and

IS-ONE function 1 — to be available. For all the above

families, dichotomy for complex symmetric functions were

proved [21], [30]. However, a dichotomy for general Holant

family remains open before the current work. The framework

becomes more expressive in this general setting and, as

we proved in this work, there are more tractable families.

On the other hand, the proof for a dichotomy also became

more challenging. A major source of difficulty is the lack

of flexibility when we construct gadgets for reduction. One

exception is a dichotomy for the general Holant framework

for symmetric function in the field Z2 [31]. A couple of

recent works studied the complexity of Holant on regular

graphs where all the vertices take a same function [30], [32]–

[34]. These works can be viewed as a dichotomy for Holant

without freely available functions but have the constraint

that F only contains one single function. In these papers,

due to the lack of freely available equality functions or

unary function, the reduction become much more difficult

and even sometimes require assist from computer [32]. The

underlying goal of these two sequences of works is to finally

get a dichotomy for Holant.

This work achieves this final goal at least partially. We

prove a dichotomy theorem for Holant problem where all

functions are symmetric (the values of the functions only

depend on the Hamming weight of their inputs) and take

real values. Real symmetric functions already capture most

of the interesting combinatorial problems and physical sys-

tem problems. This is the first dichotomy for the Holant

framework for a broad set of functions without assuming

any freely available functions. Our work uses previous

results as our starting points. And we believe that it is an

important step to finally achieve the goal to characterize

the complexity of Holant problems for any function set F

(complex weighted and asymmetric).

One of the main innovation in this work is a new

way of doing reduction between counting problems. In

previous works as well as our current work, there are

three extensively-used reduction methods: (1) gadget con-

struction, (2) polynomial interpolation, and (3) holographic

transformation. However, due to the special structure of

some functions, we might be in the case that all possible

gadget constructions give trivial functions, therefore classical

reduction methods might not work well. In Section V, we

introduce a new reduction method — realizing a function

by approximating it with sufficient precision. The main idea

is to construct a series of gadgets that converge to another

gadget extremely fast with only a polynomial overhead, so

that we would be able to recover the true value in polynomial

time by solving a constant dimension integer programming.

Although this is still some kind of gadget construction,

we do not, and probably cannot, realize the target function

precisely. It is also different from polynomial interpolation in

that in polynomial interpolation, the number of gadgets one

constructs is usually linear in the size of the instance, which

is not affordable in our construction because the gadget size

grows exponentially, while the new approximation technique

only needs a logarithmic number of gadgets due to the fast

convergence rate.

Another contribution of this work is a dichotomy for #CSP

where each variable appears a multiple of d times, for any

positive integer d. We found some tractable cases which are

#P-hard for general #CSP. These new cases are still closely

related to the tractable cases for the general #CSP, and we

characterize them in terms of holographic transformation.

We also prove that counting Eulerian orientation for 2k-

regular graphs is #P-hard. Note that the notion of Eulerian

orientation is different from Eulerian circuits in that the

former only considers the direction of the edges and thus dif-

ferent Eulerian circuits may correspond to a same Eulerian

orientation. Previously, similar problems have been studied,

such as counting Eulerian orientation and counting Eulerian

circuits in general graphs [35], [36], and Eulerian circuits in

regular graphs [37]. All of them were shown to be #P-hard.

However, to the best of our knowledge, there is no previous

result on counting Eulerian orientation in regular graphs, and

we are not aware of any direct reductions between counting

Eulerian orientations and counting Eulerian circuits. Instead,

we use polynomial interpolation to reduce the calculation

of Tutte Polynomial at certain points to counting Eulerian

orientation. The construction is easy to analyze in the Holant

framework. One of the intriguing part of this problem is that

it arises as a very special case along our proof for which all

reduction methods — including the approximation approach

we introduced here — failed. Hence, this problem may also

serve as a new starting point of reduction in future research.
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II. PRELIMINARIES

In this section, we recall some basic definitions and

results. Let F be a set of functions. A signature grid is

a tuple Ω = (G,F , π), where G = (V,E) is an undirected

graph, and π : V → F labels each v ∈ V with a function

fv ∈ F where the arity of fv equals the degree of v. The

Holant problem on instance Ω is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv(σ |E(v)),

a sum over all 0-1 edge assignments, of the products of the

function evaluations at each vertex. Given a set of functions

F , we define the problem Holant(F):
• Input: A signature grid Ω = (G,F , π);
• Output: HolantΩ.

We would like to characterize the complexity of Holant

problems in terms of its function set F .

A function fv can be represented as a truth table. For

functions with complex values, it will be more convenient to

denote it as a tensor in (C2)⊗ deg(v), or a vector in C
2deg(v)

,

when we perform holographic transformations. We also call

it a signature. Replacing a signature f ∈ F by a constant

multiple cf , where c �= 0, does not change the complexity of

Holant(F), so we view f and cf as the same signature. A

function f on k Boolean variables is symmetric if the value

of the function depends only on the number of inputs that

is assigned 1 (also known as the Hamming weight of the

input), and can be expressed by [f0, f1, . . . , fk], where fj is

the value of f on inputs of Hamming weight j. Thus, for

example, we can express the following unary functions IS-

ZERO 0 = [1, 0], IS-ONE 1 = [0, 1]. We denote by =k the

EQUALITY signature of arity k, then (=k) = [1, 0, . . . , 0, 1]
(with (k−1) 0’s). The binary disequality could be written as

[0, 1, 0]. A signature is degenerate iff it is a tensor product

of unary signatures. In particular, a symmetric signature in

F is degenerate iff it can be expressed as λ[x, y]⊗k.

Some special families of Holant problems have already

been widely studied. For example, if F contains all EQUAL-

ITY signatures {=1,=2,=3, · · · }, then this is exactly the

weighted #CSP problem. In [21], the following two special

families of Holant problems were introduced by assuming

some signatures are freely available. Let U denote the set

of all unary signatures. Then we define Holant∗(F) =
Holant(F ∪U). We use Holantc(F) to denote the problem

Holant(F ∪ {0,1}).
There are several special classes of functions. A sym-

metric signature [f0, f1, . . . , fk] is called a generalized Fi-
bonacci signature if there exist a, b not both zero such that

for all i = 0, . . . , k−2 we have afi+ bfi+1−afi+2 = 0. A

k-ary function f(x1, . . . , xk) is affine if there exists a k+1
column Boolean matrix A, a set of dimension k+1 Boolean

vectors {α1, . . . , αn}, some complex number c �= 0, such

that f could be represented as cχAX=0i
∑n

j=1〈αj ,X〉 where

X = (x1, x2, . . . , xk, 1), 〈·, ·〉 is the inner product of two

vectors, i is the imaginary unit with i2 = −1, and χ is an

indicator function such that χAX=0 is 1 iff AX = 0. Note

that both the matrix multiplication AX and the inner product

are calculated in Z2. We use A to denote the set of all affine

functions. We use P to denote the set of functions which

can be expressed as a product of unary functions, binary

equality functions and binary disequality functions. These

two families capture exactly tractable #CSP problems.

Theorem II.1. [21] Let F be a set of functions mapping
Boolean inputs to complex numbers. Then #CSP(F) is #P-
hard unless F ⊆ A or F ⊆ P , in which case the problem
is in P.

To introduce the idea of holographic reductions, it is

convenient to consider bipartite graphs. This is without loss

of generality. For any general graph, we can make it bipartite

by adding on each edge an additional vertex labeled with the

EQUALITY function =2 on 2 inputs.

We use Holant(G|R) to denote all counting problems,

expressed as Holant problems on bipartite graphs H =
(U, V,E), where each signature for a vertex in U or V
is from G or R, respectively. An input instance for the

bipartite Holant problem is a bipartite signature grid and

is denoted as Ω = (H,G|R, π). Signatures in G are denoted

by column vectors (or contravariant tensors); signatures in

R are denoted by row vectors (or covariant tensors) [38].

One can perform (contravariant and covariant) tensor

transformations on the signatures. We will define a simple

version of holographic reductions, which are invertible.

Suppose T ∈ GL2(C) is a basis. We say that there is

an (invertible) holographic reduction from Holant(G|R) to

Holant(G′|R′), if the contravariant transformation G′ =
T⊗gG and the covariant transformation R = R′T⊗r

map G ∈ G to G′ ∈ G′ and R ∈ R to R′ ∈ R′,
and vice versa, where G and R have arity g and r re-

spectively. Suppose that there is a holographic reduction

from Holant(G|R) to Holant(G′|R′), mapping signature

grid Ω to Ω′, then HolantΩ = HolantΩ′ . In particular,

for invertible holographic reductions from Holant(G|R) to

Holant(G′|R′), one problem is in P iff the other one is in

P, and similarly one problem is #P-hard iff the other one is

also #P-hard.

The following theorem is very useful as a way to normal-

ize the given signature set F .

Theorem II.2. Let F be a set of signatures and M be a 2×2
orthogonal matrix. For any signature grid Ω = (G,F , π),
replacing every signature F ∈ F by M⊗nF , where n is the
arity of F , we can get a new signature grid Ω′. Then

HolantΩ = HolantΩ′ .

Proof: First we use the standard technique to reformu-

late the signature grid Ω = (G,F , π). We insert a new vertex
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at each edge of G with signature =2. This will not change

the value of the signature grid. Then for the new bipartite

signature grid F | =2, we apply a holographic reduction

on basis M . This will map a signature F ∈ F to M⊗nF ,

where n is the arity of F . It is an algebraic fact that the

=2 will map to itself. Then we view these (new) =2 as an

edge and ignore these vertices. This gives the signature grid

Ω′ as required. Due to the Holant theorem, its value is the

same as Ω.

In the study of Holant problems, we will often transfer

between bipartite and non-bipartite settings. When this does

not cause confusion, we do not distinguish signatures be-

tween column vectors (or contravariant tensors) and row

vectors (or covariant tensors). Whenever we write a transfor-

mation as T⊗nF or TF , we view the signatures as column

vectors (or contravariant tensors); whenever we write a

transformation as FT⊗n or FT , we view the signatures as

row vectors (or covariant tensors).

Regarding models of computation for real numbers,

strictly speaking we should restrict it to computable num-

bers [39], [40], or algebraic numbers. However this issue

seems not essential for our result, and we will state our

theorems assuming that we can compute +, × and solve

linear equations in polynomial time for all real numbers

used. If restricted to algebraic numbers, our proof in Section

V can be simplified. But we do not restrict our result by

exploiting the special properties of algebraic numbers.

III. MAIN DICHOTOMY THEOREM AND PROOF OUTLINE

For simplicity of statement, we define the following

property for signature sets.

Definition III.1. A set of signatures F is called good if there
exists a 2×2 complex matrix T such that one of the following
conditions is satisfied: FT−1 ⊆ A and T⊗2[1, 0, 1]T ∈ A ;
or FT−1 ⊆ P and T⊗2[1, 0, 1]T ∈ P .

Our main theorem is the following.

Theorem III.2. Let F be a set of symmetric signatures on
Boolean variables with real values. Then Holant(F) is #P-
hard unless the arity of any non-degenerate signature in F is
no more than 2 or F is good, in which case it is computable
in polynomial time.

Proof Outline: If the arity of any non-degenerate signature

in F is no more than 2, then Holant(F) is obviously

tractable. The tractability of good F follows directly from

the tractability of #CSP(A ) and #CSP(P) after applying

transformation under T . Therefore, we only need to prove

the hardness part and we can assume that F contains a non-

degenerate signature whose arity is at least 3.

Our starting point is Theorem IV.7, which states that the

dichotomy holds if F contains a non-degenerate ternary

function. To prove this, we use the relationship between

Holant problems and #CSP problems. In some cases, we

need a dichotomy for special #CSP problems where vari-

ables appear a multiple of 3 times. A general dichotomy for

such #CSP is proved in Section IV.

The idea then is to realize a non-degenerate ternary

function. In the previous dichotomy for Holant∗ or Holantc

problems, this step is easy because the freely available

functions such as IS-ZERO and IS-ONE enable us to realize

sub-signatures with small arity. In our case, however, there is

no longer freely available unary signature. We can only use

signatures from the given set. Probably the simplest gadget

one could construct is by adding self loops. For a signature

with arity k, we can construct a signature with arity k − 2
by adding a self loop. If the new signature is degenerate,

then it has some very special structure and we can deal

with that separately. Otherwise, we have constructed a

smaller signature which is still non-degenerate. Repeat this

process of adding self loop, and we will finally have a non-

degenerate signature of arity 3 or 4, depending on the parity

of k. The ternary case is proved in Theorem IV.7. It is not

directly applicable for arity 4 case since we would not be

able to construct any signature of odd arity from signatures

of arity 4. We handle this in Theorem VI.3.

The idea of proving Theorem VI.3 is to realize degen-

erate binary signatures. A degenerate binary signature can

be viewed as two unary signatures and in this sense we

can realize a ternary function with the help of this unary

signature. As stated in Lemma VI.1, we can show that the

dichotomy holds if we have a non-degenerate 4-ary signature

and one non-zero unary function. Similar to the ternary case,

the proof makes use of the relation between Holant and

#CSP.

The main remaining work is to realize a non-zero de-

generate binary signature. We generalize the polynomial

interpolation technique to achieve this. However, there are

cases when this method fails, and for those cases, we use our

new reduction tool of approximating. This is done in Section

V. There is one exceptional case, namely [1, 0, 1/3, 0, 1].
By holographic reduction, this problem is equivalent to the

COUNTING-EULERIAN-ORIENTATION in 4-regular graphs,

which can be proved to be #P-hard. We sketch the proof of

its hardness at the end of Section V.

Remark: We note that our main dichotomy for Holant is

only for real valued functions. However, the dichotomy for

the #CSP where variables appear a multiple of d times is for

complex numbers. This is necessary to make it useful in the

proof of our main dichotomy. Even starting from real Holant

problem, we may come to the field of complex number after

some holographic transformation. There are several places

in the proofs in Section VI where we use some special

properties of real numbers. We believe that the most essential

part is polynomial interpolation. To make the interpolation

work, we need that the ratio of the two eigenvalues of a

2 × 2 symmetric matrix is not a root of unity. For a real

symmetric matrix, its two eigenvalues are also real. Since
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the only real roots of unity are ±1, we can handle these two

exceptions by a careful case-by-case analysis. For complex

matrices, there are infinitely many exceptions. Overcoming

this difficulty and extending our result to complex field is

an interesting open question.

IV. #CSP WHERE VARIABLES APPEAR A MULTIPLE OF d
TIMES

In this section, we consider a special family of #CSP

problem, where the number of occurrences of each variable

must be a multiple of d times (d is a given constant). For

example, we can consider all the #CSP instance where each

variable appears even number of times. We use #CSPd(F)
to denote this problem. Clearly, if #CSP(F) is polyno-

mial time computable, then so is #CSPd(F). However, the

reverse is not necessarily true. We use Td to denote set{[
1 0
0 ω

]
| ωd = 1

}
. Then applying any T ∈ Td to F

will not change the value of a #CSPd(F) instance and

as a result will not change the complexity of #CSPd(F).
For example, #CSP3([1, ω3,−ω2

3 ]), where ω3 is the primi-

tive third root of unity, is computable in polynomial time

since #CSP3([1, 1,−1]) is. On the other hand, note that

#CSP([1, ω3,−ω2
3 ]) is #P-hard without the additional con-

straints on the number of occurrences of variables. For sym-

metric function set F , we prove a dichotomy for #CSPd(F)
which shows that these are essentially the only new tractable

cases.

Theorem IV.1. Let d ≥ 1 be an integer and F be a
set of symmetric functions taking complex values. Then
#CSPd(F) is #P-hard unless there exist T ∈ T4d such that
(TF) ⊂ P or (TF) ⊂ A , in which case the problem is in
P.

The following Theorem in [30] gives a reduction between

#CSP and Holant, which will be used here as a starting point.

Theorem IV.2. Consider the bipartite Holant instance
Holant([1, 0, 0, 1] ∪ G1|G2). We assume that G2 contains a
non-degenerate binary signature [y0, y1, y2]. And in the case
of y0 = y2 = 0, we further assume that G2 contains a unary
signature [a, b], where ab �= 0. Then Holant([1, 0, 0, 1] ∪
G1|G2) is #P-hard unless there exist a T ∈ T3 such that
G1T ∪ T−1G2 ⊂ P or G1T ∪ T−1G2 ⊂ A , in which cases
the problem is in P.

Before proving Theorem IV.1, we prove in Lemma IV.5

that the conclusion holds if we have IS-ZERO ([1, 0]) and IS-

ONE ([0, 1]) in addition. For general #CSP, one can assume

freely available [1, 0] and [0, 1] by the nice pinning lemma

from [5]. It is not obvious that this holds for #CSPd. We

start with the following special pinning lemma for #CSPd.

Lemma IV.3.

#CSPd(F) ≡T #CSPd(F ∪ {[1, 0]⊗d, [0, 1]⊗d}).

The proof is exactly the same as [5] so we omit here. The

only thing one need to notice is that when adding auxiliary

variables, it is important that they appear a multiple of d
times, and in our case this is guaranteed by [1, 0]⊗d and

[0, 1]⊗d.

Now we proceed to show that we can still effectively

realize the idea of pinning by a similar idea used in [41].

Lemma IV.4. #CSPd(F) is #P-hard (or in P) iff
#CSPd(F ∪ {[1, 0], [0, 1]}) is #P-Hard (or in P).

Proof: Obviously the first one can be reduced to the

second one. Hence if the second problem is in P, so is the

first. We have already proved a dichotomy theorem for the

second one in Lemma IV.5. So now we may assume the

second problem is #P-hard, and show that the first problem

is also #P-hard.

We observe that in all the proofs in this paper and [42],

when we prove the second problem to be #P-hard for any

signature set, we reduce one of the following three problems

to it by a chain of reductions: (a) Holant([1, 0, 0, 1]|[1, 1, 0]),
(b) Holant([1, 1, 0, 0]), or (c) Holant([0, 1, 0, 0]) (VERTEX

COVER or MATCHING or PERFECT MATCHING for 3-

regular graph). There are only three reduction methods in

this reduction chain, direct gadget construction, polynomial

interpolation, and holographic reduction.

Given an instance G of Holant([1, 0, 0, 1]|[1, 1, 0]) ,

Holant([1, 1, 0, 0]), or Holant([0, 1, 0, 0]), we consider the

graph G⊗d, which denotes the disjoint union of d copies

of G.

Notice that the value of Holant([1, 0, 0, 1]|[1, 1, 0]) ,

Holant([1, 1, 0, 0]), or Holant([0, 1, 0, 0]) on the instance G
is a non-negative integer, and the value on G⊗d is its d-th

power. So we can compute the value on G uniquely from its

d-th power. Suppose the reduction chain on the instance G
produced instances G1, G2, . . . , Gm of the second problem.

The same reduction applied to G⊗d produces instances of

the form G⊗d
1 , G⊗d

2 , . . . , G⊗d
m′ . (We note that the reduction

on G⊗d may produce polynomially more instances than on

G because of polynomial interpolation.)

For each G⊗d
i as an instance of #CSPd(F ∪

{[1, 0], [0, 1]}), the number of occurrences of [0, 1] or [1, 0]
is a multiple of d. Hence, we can view it as an instance

of #CSPd(F ∪ {[1, 0]⊗d, [0, 1]⊗d}). By the assumption

that #CSPd(F ∪ {[1, 0], [0, 1]}) is hard, we conclude that

#CSPd(F ∪ {[1, 0]⊗d, [0, 1]⊗d}) is #P-hard. By Lemma

IV.3, we have that #CSPd(F) is #P-hard.

Theorem IV.1 then follows directly from the following

lemma.

Lemma IV.5. Let d ≥ 1 be an integer and F be a
set of symmetric functions taking complex values. Then
#CSPd(F ∪ {[1, 0], [0, 1]}) is #P-hard unless there exist
T ∈ T4d such that (TF) ⊂ P or (TF) ⊂ A , in which
case the problem is in P.
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We give a sketch of proof here, some details are omitted

due to space limitation. The full proof would appear in the

full version of this paper.

Proof Sketch: We use the following bipartite Holant

problem to express #CSPd(F ∪ {[1, 0], [0, 1]})
Holant({=d,=2d, . . . , }|F ∪ {[1, 0], [0, 1]}).

We first show the tractability part. Let T ∈ T4d be the

matrix such that (TF) ⊂ P or (TF) ⊂ A . Applying

a holographic reduction on the above problem under basis

T−1, we have

Holant({=d,=2d, . . . , }|F ∪ {[1, 0], [0, 1]})
≡THolant({=d,=2d, . . . , }T−1|(TF) ∪ {[1, 0], [0, 1]}).

Since {=d,=2d, . . . , }T−1 ⊂ P ∩ A , we have that either

all the signatures involved in the above Holant problem are

in P or all the signatures involved in the above Holant

problem are in A . The polynomial time algorithm follows

directly from that.

Now we prove the hardness part. We realize {[1, 0], [0, 1]}
on the LHS with the equality signatures on the LHS and the

[1, 0]’s and [0, 1]’s on the RHS. We can then realize any sub-

signature on the RHS. The overall idea now is to analyze

the substructure of functions.

If all the binary sub-signatures of signatures in F are

degenerate, then F ⊂ P and we are done. Now we assume

that we can realize a non-degenerate binary [y0, y1, y2] on

the RHS.

Let f := [f0, f1, · · · , fr] be a function in F . If there exists

some i ∈ {0, · · · , r − 1} such that fifi+1 �= 0, then we

realize subsignature [fi, fi+1]. We then construct [∗, 0, 0, ∗]
and transform it to [1, 0, 0, 1] under some diagonal matrix

M and apply Theorem IV.2 to complete this case.

Figure 1. The circle vertices has signature [0, 1, 0, 0], and the square
vertex is an equality function (we use =3 as example here)

Now we assume that for every f := [f0, f1, · · · , fr] ∈ F
and every i ∈ {0, · · · , r − 1} we have fifi+1 = 0. Without

loss of generality, we assume that we can construct a non-

degenerate ternary signature f of form [0, f1, 0, f3] where

f1 �= 0, or [0, 1, 0, a] after scale. If a = 0, we prove #P-

hardness by using the construction in Figure 1 to reduce the

#P-hard problem #CSP([1, 1, 0]) to it. If a �= 0, then we

can realize [1, 0, a] on the RHS. If d is odd, we connect
3d−3

2 copies of [1, 0, a] to =3d to realize [1, 0, 0, a
3d−3

2 ] on

the LHS. We apply a suitable holographic transformation

to make it into [1, 0, 0, 1] and apply Theorem IV.2. We can

complete the proof similarly if d is even and there exists

a non-degenerate signature of form [∗, 0, 0, 0, . . . , 0, ∗] with

odd arity on the RHS.

Now we assume that d is even, and that all non-degenerate

signatures of form [∗, 0, · · · , 0, ∗] on the RHS have even

arity. By grouping d copies of [1, 0, a, 0], we can reduce

the problem #CSP([0, 1, 0, ad]) to #CSPd([0, 1, 0, a]). Since

[0, 1, 0, ad] �∈ P , we have that #CSPd([0, 1, 0, a]) is #P-

hard unless [0, 1, 0, ad] ∈ A , which implies that ad = ±1.

We apply a holographic reduction under some suitable basis

T ∈ T4d to transform [0, 1, 0, a] on the RHS to [0, 1, 0, 1].
Note that T ∈ T4d since (a

d
2 )4d = (±1)2 = 1, so all the

=4kd on the LHS will remain unchanged. We realize [1, 0, 1]
from [0, 1, 0, 1], and then realize all of {=2,=4,=6 . . . , }
on the LHS with it. Since we have =2 on both sides now,

we reduce the following non-bipartite Holant problem to the

original problem.

Holant({=2,=4,=6 . . . , }∪TF∪{[1, 0], [0, 1], [0, 1, 0, 1]}).

So it is enough to show that this problem is #P-hard unless

(TF) ⊂ A . To this end, we first show that if we can find

in TF a signature of form [∗, 0, 0, 0, . . . , 0, ∗] of even arity

but is not in A , then the problem is #P-hard. We realize

[1, 0, b] by connecting it to a suitable equality function.

Similar to the above, we group signatures together to achieve

reduction from general #CSP. The difference is that here

we use one copy of [1, 0, b] and one copy of [1, 0, 1] to

form a group and realize a signature [1, 0, b] in the grouped

instance, and reduce #CSP([0, 1, 0, 1], [1, 0, b]) to this and

conclude that it is #P-hard if b4 �= 1. Using a same flavor of

grouping, we prove a similar result for signatures of form

[∗, 0, ∗, 0] and [0, ∗, 0, ∗] — they are #P-hard unless they

are in A , i.e., the ratio of the two nonzero elements is ±1.

Extending this result to general signatures, we conclude that

either the whole signature is in A or we can construct a

longer sub-signature that are multiples of [1, 0, 1, 0,−1] or

[1, 0,−1, 0,−1] after scale. For those two signatures, it is

not hard to construct gadgets not in A and therefore they

are #P-hard.

Next, we show how to apply Theorem IV.1 to prove

dichotomy if we know that F contains some signature X of

certain types.

In [30], we proved the following dichotomy for single

ternary signature. Note that we omitted one additional

tractable case here since it cannot happen for real signatures.

Theorem IV.6. Let [x0, x1, x2, x3] be a real non-degenerate
signature. Then Holant([x0, x1, x2, x3]) is #P-hard unless
there exists a 2 × 2 matrix T such that [x0, x1, x2, x3] =
T⊗3[1, 0, 0, 1] and [1, 0, 1]T⊗2 is in A ∪P .

We now prove that the main dichotomy holds if F
contains a non-degenerate ternary signature.
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Theorem IV.7. Let F be a set of real signatures, and X
be a real non-degenerate ternary signature. Holant(X,F)
is #P-hard unless F ∪{X} is good, for which case there is
a polynomial-time algorithm.

Proof: If Holant(X) is #P-hard according to Theorem

IV.6, then we are done. Otherwise we take T as guar-

anteed in Theorem IV.6, and we have Holant(X,F) ≡T

Holant([1, 0, 0, 1], T−1F|[1, 0, 1]T⊗2) by applying holo-

graphic reduction. We also have that [1, 0, 1]T⊗2 is non-

degenerate. If [1, 0, 1]T⊗2 is not of form [0, λ, 0], we are

done by Theorem IV.2. Otherwise, we have [0, 1, 0] on the

RHS and can realize all the the equalities of arity 3k on the

LHS. Then we can view it as a #CSP3 problem and we are

done by Theorem IV.1.

For a signature with arity larger than 3, it is not necessarily

true that we can transform it to [1, 0, 0, 0, 1] by holographic

reduction. But for some special signatures, we can. Formally,

we have the following two corollaries.

Corollary IV.8. Let X be a real non-degenerate generalized
Fibonacci signature of arity no less than 3 and F be a set of
symmetric signatures. Then Holant(F , X) is #P-hard unless
F ∪{X} is good, for which case there is a polynomial-time
algorithm.

Proof: For a real non-degenerate generalized Fibonacci

signature, there is an orthogonal holographic reduction that

transforms it into the form of [1, 0, 0, . . . , 0, a] where a �= 0
after scale. By Theorem II.2, we assume that this is already

the case with X . If the arity of X is odd, we realize

[1, 0, 0, a] by adding some self-loops and then apply The-

orem IV.7. If the arity is even, we connect two copies of

the signature using half of their dangling edges to realize

[1, 0, 0, . . . , 0, a2] with same arity. Keep doing this, and

we can realize [1, 0, 0, . . . , 0, at] for any t. If a is a p-th

root of unity, we get [1, 0, 0, . . . , 0, 1] by choosing t = p.

Otherwise, we get [1, 0, 0, · · · , 0, 1] by interpolation. Having

[1, 0, 0, . . . , 0, 1], we can realize all equality functions with

even arity and the result follows from Theorem IV.1.

Corollary IV.9. Let X = [x, y,−x,−y, x, y,−x,−y . . .] be
a non-degenerate signature of arity k ≥ 3, and F be a set of
symmetric signatures. Then Holant(F , X) is #P-hard unless
F ∪{X} is good, for which case there is a polynomial-time
algorithm.

Proof: Rewrite Holant(F , X) as Holant(F , X| =2).

Applying holographic reduction under basis Z =

[
A Bi
Ai B

]

with suitable A and B, we can make X into =k where k is

the arity of k and =2 on the RHS into [0, 1, 0]. With [0, 1, 0]
on the RHS, we can realize all the equality function whose

arity is a multiple of k on the LHS. Then we can apply

Theorem IV.1 for #CSPk.

V. REALIZING A SIGNATURE BY APPROXIMATING IT

In this section, we study Holant([1, a, b,−a, 1] ∪ F).
We first show that we could always find an orthogonal

transformation Q that converts [1, a, b,−a, 1] to [1, 0, b′, 0, 1]
for some b′.

Claim V.1. There exists a real orthogonal 2× 2 matrix Q,
such that [1, a, b,−a, 1]Q⊗4 = [1, 0, b′, 0, 1] for some b′.

This is proved by straightforward calculations. Details

would appear in the full version of the paper.

Claim V.1 converts Holant([1, a, b,−a, 1] ∪ F) to

Holant([1, 0, b′, 0, 1] ∪ (FQ)). In the following, we sim-

ply assume that we are given Holant([1, 0, b, 0, 1] ∪ F).
If b ∈ {0, 1,−1}, we are done by Corollary IV.8 and

Corollary IV.9. For b �∈ {0, 1,−1}, we will prove that

Holant([1, 0, b, 0, 1]) is #P-hard, and these together give the

following main lemma of this section.

Lemma V.2. Let X = [1, a, b,−a, 1] be a non-degenerate
signature. Then Holant(F , X) is #P-hard unless F∪{X} is
good, for which case there is a polynomial-time algorithm.

In the remaining of this section, we prove the hardness of

Holant([1, 0, b, 0, 1]).

Lemma V.3. If b �∈ {0, 1,−1}, then Holant([1, 0, b, 0, 1]) is
#P-hard.

To prove this lemma, observe that if we can re-

alize [1, 0, 0, 0, 1], then we can use it to simulate

CSP 2([1, 0, b, 0, 1]), which is #P-hard by Theorem IV.1 and

the fact b �∈ {0, 1,−1}. If we can realize [1, 0, 1, 0, 1], then

we can apply orthogonal transformation under

[
1 1
1 −1

]

to convert [1, 0, 1, 0, 1] to [1, 0, 0, 0, 1] and [1, 0, b, 0, 1] to

[2 + 6b, 0, 2 − 2b, 0, 2 + 6b]. To see that [2 + 6b, 0, 2 −
2b, 0, 2+6b] is among the hard cases in Theorem IV.1, note

that |2 + 6b| �= |2− 2b| if b /∈ {0, 1,−1}, so it could not be

transformed into A by T ∈ T4d. It is also not hard to verify

that T /∈ P .

In the following, we introduce two new techniques for re-

alizing special signatures [1, 0, 0, 0, 1] or [1, 0, 1, 0, 1]. First,

we generalize the widely-used interpolation technique to

enable us to interpolate 4-ary signatures instead of unary

signatures in the traditional setting. This generalization is

already powerful enough for almost all b. The failed b are

roots of some integer coefficient polynomials and thus must

be algebraic numbers. So we have that Holant([1, 0, b, 0, 1])
is #P-hard if b is a transcendental real number. The idea of

the proof is similar to the interpolation of unary signatures.

For the cases when b is an algebraic real number, we

use our second new technique to realize a signature by

approximating it. Here is the formal statement.

Theorem V.4. Let f = [x0, . . . , xk] be a symmetric Boolean
signature of arity k and {gm} be a sequence of signatures
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Figure 2. The tetrahedron gadget.

of arity k. We assume that all the signature values are real
algebraic numbers, and there exists a constant C > 1 such
that for all m, we have |f − gm|∞ < C−m. If we can
compute Holant(gm) in time poly(n,m), where n is the input
size, then we can compute Holant(f) in polynomial time.

Proof Sketch: Holant value of any instance of

Holant(f) can be written as an integer combination of a fixed

number of algebraic numbers. We call the set of these integer

combinations S. Using a property of algebraic numbers, we

prove that the difference of any two distinct elements in

S is at least B−n2

, where B > 1 is an absolute constant

depending only on f . Now consider replacing f with gm in

a Holant instance. The difference in the final Holant value

is at most Dn2

C−m, where D is an absolute constant only

depending on f . Therefore, we can choose m = En2 with

sufficient large constant E only depending on D and B
(thus f ) such that Dn2

C−m < B−n2

. This Holant(gm) can

be computed in time polynomial of n and m which is a

polynomial in n. Using the above property, we know that

the true Holant value Holant(f), which is an element in S,

is Dn2

C−m close to the value returned by Holant(gm) and

in that neighborhood there is no other point from S. So

we can use integer programming to recover all the integer

coefficients and find out this unique value. Since the number

of coefficients (variables for the programming) are constant,

we can use the integer programming algorithm from [43],

[44] which runs in polynomial time.

In the following, we use the above reduction to study

the complexity of Holant([1, 0, b, 0, 1]). For [1, 0, b, 0, 1],
using the Tetrahedron gadget in Figure 2, we realize a new

symmetric signature: [(b + 1)2(3b2 − 2b + 1), 0, 2b2(b +
1)2, 0, (b + 1)2(3b2 − 2b + 1)]. Assume that b �= −1. Keep

doing this recursive construction, we can realize a signature

[1, 0, br, 0, 1] with br =
2b2r−1

3b2r−1−2br−1+1
. The following

lemma shows that this recursive construction converges to a

fixed point very fast.

Lemma V.5. Let b be a real algebraic number, b �= 0, b �=
±1, b �= 1

3 . Let [1, 0, br, 0, 1] be the signature realized by the
r-th recursive Tetrahedron gadget starting from [1, 0, b, 0, 1].
Let β = 0 if b < 1

3 , and β = 1 otherwise. Then |br − β| <
C−2r , where C < 1 is some constant. In other words, the

recursive construction either converges to [1, 0, 0, 0, 1] or
[1, 0, 1, 0, 1], depending on whether b is smaller than 1

3 or
not.

The r-th gadget contains 4r nodes. We do the recursive

gadget O(log n) levels so it is still of polynomial size. We

note that this is the reason why we cannot use the tetrahedron

gadget to interpolate since we would need polynomial many

levels. The speed of convergence in Lemma V.5 is so fast that

we can approximate the target gadget to within C−poly(n)

by a gadget with O(log n) levels of recursive construction.

Then by Theorem V.4 and the above analysis, we get the

hardness for Holant([1, 0, b, 0, 1]) when b �∈ {0, 1,−1, 1
3}.

To complete the proof for Lemma V.3, the only remaining

case is [1, 0, 1
3 , 0, 1]. By applying holographic transformation[

1 1
i −i

]
, we have that

Holant

([
1, 0,

1

3
, 0, 1

])
≡T Holant([0, 0, 1, 0, 0]|[0, 1, 0]).

We now show that the right hand side is #P-hard. To this end,

we introduce the Counting-Eulerian-Orientation problem.

First we define Eulerian orientations.

Definition V.6. Given a graph G = (V,E) of which all
vertices are of even degree. Let σ be an orientation of its
edges E. σ is an Eulerian orientation iff for each vertex
v ∈ V , the number of incoming edges and outgoing edges
of v are the same.

To prove hardness of counting Eulerian orientations, we

show how to use it to calculate a certain hard-to-compute

weighted sum of orientations on the medial graph of planar

graphs. We recall the definition of medial graphs.

Definition V.7 ( [45]). Let G be a connected planar graph.
For simplicity, we assume that every edge of G is contained
in exactly two different planes. Define its medial graph H =
(VH , EH), where VH consists of the middle points of edges
in G, and for each plane in G, connect the middle points
on the border of G to get a cycle, and EH consists of all
edges on this cycle.

Note that medial graphs are 4-regular graphs.

The following theorem shows the relation between Eule-

rian orientations, medial graphs and Tutte polynomials. For

the definition of Tutte polynomial, we refer to [46].

Theorem V.8 ( [45]). Let G be a connected planar graph
and let O(H) be the set of all Eulerian orientations of the
medial graph H = H(G). Then∑

O∈O(H)

2β(O) = 2 · T (G; 3, 3), (1)

where β(O) is the number of saddle vertices in orientation
O, i.e. vertices in which the edges are oriented “in, out, in,
out” in cyclic order.
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It is known that calculating the right hand side of the

above is #P-hard.

Theorem V.9 ( [47], [48]). If we have that (x, y) ∈
{(1, 1), (−1,−1), (0, 1), (−1, 0)} or satisfies (x − 1)(y −
1) = 1, the Tutte polynomial is computable in polynomial
time. Otherwise, it is #P-hard. If the problem is restricted
to the class of planar graphs, the points on the hyperbola
defined by (x − 1)(y − 1) = 2 become polynomial-time
computable, but all other points remain #P-hard.

Before we prove the main theorem of this section, first ob-

serve that Holant([0, 0, 1, 0, 0]|[0, 1, 0]) is exactly the number

of Eulerian orientations in a 4-regular graph.

Now we prove the main theorem. We show how to calcu-

late the LHS in Theorem V.8 given an oracle of COUNTING-

EULERIAN-ORIENTATION.

Theorem V.10. COUNTING-EULERIAN-ORIENTATION is
#P-hard for 4-regular graphs.

Proof Sketch: We reduce calculating the LHS

of Equation (1) to Holant([0, 0, 1, 0, 0]|[0, 1, 0]). Then

since it is known that calculating the Tutte polyno-

mial on graphs at (3, 3) is #P-hard, we conclude that

Holant([0, 0, 1, 0, 0]|[0, 1, 0]) is #P-hard.

1

2

3

4

Figure 3. Recursive gadget. 4-ary signatures are [0, 0, 1, 0, 0], and binary
ones are [0, 1, 0].

By polynomial interpolation, we can realize the following

signature

Gx =

⎡
⎢⎢⎣

0 0 0 1
0 1

2
1
2 0

0 1
2

1
2 0

1 0 0 0

⎤
⎥⎥⎦ .

We complete the proof by observing that

HolantGH
(Gx|[0, 1, 0]) =

∑
O∈O(H) 2

β(O), for a suitably

constructed bipartite graph GH .

VI. DICHOTOMY FOR REAL HOLANT

In this section we prove our main result. The idea of the

proof is to use induction on the arity of the functions. We

apply dichotomy theorems for functions with smaller arity

for the induction step. The base step would be dichotomy

theorems for functions of arity three and four. The ternary

case is proved in Theorem IV.7 in Section IV. In this section,

we go on to analyze complexity of signatures of arity four.

We start with the following lemma in which we have an

additional unary signature.

Lemma VI.1. Let X be a non-degenerate real 4-ary signa-
ture and a, b be two real number which are not both zero.

Then Holant(F , X, [a, b]) is #P-hard unless F ∪ {X, [a, b]}
is good.

Proof: Since a, b are not both zero, we could al-

ways apply a real orthogonal transformation Q, so that

Q[a, b] = [1, 0]. Let Y = Q⊗4X = [y0, y1, y2, y3, y4].
Note that Y is still a real signature. Since it always has

the same value as Holant(F , X, [a, b]), it is equivalent to

consider Holant(QF , Y, [1, 0]). Since we have [1, 0] in this

transformed instance, we could realize Y ′ = [y0, y1, y2, y3].
If Y ′ is non-degenerate, we apply Theorem IV.7. Now

consider the case that Y ′ is degenerate. If Y ′ is an all

zero signature, then Y is degenerate, which means that

X is degenerate, contradicts to our hypothesis. If Y ′ =
[1, 0]⊗3, then Y = [1, 0, 0, 0, ∗] is a non-degenerate gen-

eralized Fibonacci signature and we apply Corollary IV.8.

If Y ′ = [0, 1]⊗3, by adding a self-loop, we can realize

[0, 1]. Since we have both [1, 0] and [0, 1], we apply the

dichotomy theorem for Holantc. Otherwise, assume that

Y ′ = [1, t]⊗3, where t ∈ R \ {0}, and Y = [1, t, t2, t3, y],
where y �= t4. Connecting three copies of [1, 0] to Y , we can

realize [1, t]. Connecting one copy of [1, t] to Y , we have

Y ′′ = [1+t2, t+t3, t2+t4, t3+yt]. This is a non-degenerate

ternary function for any real t and y �= t4. We now apply

Theorem IV.7 to finish the proof.
By a similar argument as in Lemma IV.4, we can replace

[a, b] with [a, b]⊗2.

Lemma VI.2. Let X be a non-degenerate real 4-ary
signature and a, b be two real number which are not
both zero. Then Holant(F , X, [a, b]⊗2) is #P-hard unless
F ∪ {X, [a, b]⊗2} is good.

We now prove a theorem for Holant problems when we

have a non-degenerate 4-ary function.

Theorem VI.3. Let X be a non-degenerate 4-ary signature,
and F be a set of signatures. Then Holant(X,F) is #P-hard
unless F∪{X} is good, for which there is a polynomial-time
algorithm.

Proof: As usual, the tractability part follows from

algorithms for #CSP. We prove the hardness part. The main

idea is to realize a degenerate binary function and make use

of Lemma VI.2.
By adding a self-loop to X , we have X ′ = [x0 +

x2, x1 + x3, x2 + x4]. If X ′ is all zero, then we have

X = [x0, x1,−x0,−x1, x0] and we apply Corollary IV.9.

If X ′ = [x0 + x2, x1 + x3, x2 + x4] is degenerate and not

all zero, then we apply Lemma VI.2 directly.
Now we assume that X ′ is non-degenerate. We make a

polynomial interpolation by a chain of X ′s. The eigenvalues

of X ′ =
[
x0 + x2 x1 + x3

x1 + x3 x2 + x4

]
are λ1,2 = (x0+2x2+x4)±

√
Δ

2

where Δ = (x4−x0)
2+4(x1+x3)

2. By a chain of X ′s, we

can realize P

[
λk
1 0
0 λk

2

]
P−1, where P is the basis formed
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by its eigenvectors. We already know that λ1λ2 �= 0 since

X ′ is non-degenerate. If we further have that the ratio λ1

λ2

is not a root of unity, we can interpolate all the binary

signatures expressible as P

[
x 0
0 y

]
P−1. In particular, we

can interpolate P

[
1 0
0 0

]
P−1, which is a degenerate non-

zero binary signature. We are done by Lemma VI.2.

The exceptional case is that the ratio λ1

λ2
is a root of unity.

Since X ′ is a real symmetric function, both λ1 and λ2 are

real. So the only possible roots of unity are ±1. We have

that λ1 = λ2 iff Δ = 0 iff x4 = x0 and x1 = −x3. Also,

λ1 = −λ2 iff (x0 + x2) = −(x2 + x4). We deal with these

exceptional cases separately as follows.

Case 1: x4 = x0 �= 0 and x1 = −x3. This is of form

[1, a, b,−a, 1], and we apply Lemma V.2.

Case 2: x4 = x0 = 0 and x1 = −x3. If we further have

x2 = 0, then this is a signature of form [x, y,−x,−y, x]
and we apply Corollary IV.9. Otherwise, it is of form

[0, a, 1,−a, 0]. By the Tetrahedron gadget, we can realize

a signature of [6a2 + 3, a, 2a2 + 2,−a, 6a2 + 3]. Since

6a2 + 3 �= 0, this case is proved in Case 1.

Case 3: (x0+x2) = −(x2+x4). Using Tetrahedron gadget,

we can realize signature [y0, y1, y2, y3, y4] such that (y0 +
y2) �= −(y2+y4). We can verify that the problem is reduced

to one of the cases proved above.

Now we are ready to prove our main result.

Proof of Theorem III.2: As stated in the outline

in Section III, we prove this theorem by showing that

for any non-degenerate signature X with arity at least 3,

Holant(X,F) is tractable iff there exists a 2 × 2 matrix

satisfying the conditions. We prove by induction on the arity

k of X .

The cases of k = 3 and k = 4 are proved in Theorem

IV.7 and Theorem VI.3.

Suppose for arity k < n, we have proved our claim. Now

we have a signature X of arity n. We obtain an (n − 2)-
ary signature X ′ by adding a self-loop to X . If X ′ is non-

degenerate, then we are done by induction hypothesis. If X ′

is all zero, then X is of form [x, y,−x,−y, x, y,−x,−y . . .]
and we apply Corollary IV.9. The only remaining case

is that X ′ is degenerate but not all zero, and without

loss of generality, we assume that X ′ = [a, b]⊗(n−2). By

applying an appropriate real orthogonal transformation, we

could transform X ′ into [1, 0]⊗(n−2), and X into Y =
XQ⊗n � [y0, y1, . . . , yn]. By Theorem II.2, we may just

assume that we actually have Y in the place of X . The fact

that X ′ is transformed into Y ′ = [1, 0]⊗(n−2) implies that

Y = [y0, y1, y2,−y1,−y2, . . .]. After adding enough self-

loops to Y ′ we can either get [1, 0] or [1, 0, 0] depending

on the parity of n. Then connecting some copies of [1, 0]
or [1, 0, 0] to Y , we can either get Y ′′ = [y0, y1, y2,−y1] or

Y ′′ = [y0, y1, y2,−y1,−y2]. If Y ′′ is degenerate, then the

ratio must be ±i, and y0 = −y2. This would imply that Y ′

is an all zero signature, a contradiction. Now we know that

such a Y ′′ is not degenerate, and we can complete the proof

by Theorem IV.7 or Theorem VI.3.
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