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WEIGHTED HOLANT PROBLEMS
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Abstract. Holant is a framework of counting characterized by local
constraints. It is closely related to other well-studied frameworks such as
the counting constraint satisfaction problem (#CSP) and graph homo-
morphism. An effective dichotomy for such frameworks can immediately
settle the complexity of all combinatorial problems expressible in that
framework. Both #CSP and graph homomorphism can be viewed as
subfamilies of Holant with the additional assumption that the equality
constraints are always available. Other subfamilies of Holant such as
Holant∗ and Holantc problems, in which we assume some specific sets of
constraints to be freely available, were also studied. The Holant frame-
work becomes more expressive and contains more interesting tractable
cases with less or no freely available constraint functions, while, on the
other hand, it also becomes more challenging to obtain a complete char-
acterization of its time complexity. Recently, a complexity dichotomy
for a variety of subfamilies of Holant such as #CSP, graph homomor-
phism, Holant∗, and Holantc for Boolean domain was proved. In this
paper, we prove a dichotomy for the general Holant framework where all
the constraints are real symmetric functions on Boolean inputs. This
setting already captures most of the interesting combinatorial count-
ing problems defined by local constraints, such as (perfect) matching.
This is the first time a dichotomy is obtained for general Holant prob-
lems without any auxiliary functions. One benefit of working with the
Holant framework is some powerful new reduction technique such as
the holographic reduction. Along the proof of our dichotomy, we intro-
duce a new reduction technique, namely realizing a constraint function
by approximating it. This new technique is employed in our proof in
a situation where it seems that all previous reduction techniques fail;
thus, this new idea of reduction might also be of independent inter-
est. Besides proving a dichotomy and developing a new technique, we
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also obtained some interesting by-products. We prove a dichotomy for
#CSP, restricting to instances where each variable appears a multiple of
d times for any d. We also prove that counting the number of Eulerian
orientations on 2k-regular graphs is #P-hard for any k ≥ 2.

Keywords. Holant, #CSP, counting complexity, computational
complexity, dichotomy

Subject classification. 68Q17 Computational difficulty of problems

1. Introduction

In order to study the complexity of counting problems, several
interesting frameworks characterizing local properties have been
proposed. One is called counting constraint satisfaction problems
(#CSP) (Bulatov et al. 2009; Bulatov 2006, 2013; Bulatov & Dal-
mau 2007; Cai et al. 2011a; Dyer et al. 2009; Dyer & Richerby
2010, 2011; Feder & Vardi 1998). Another well-studied framework
is called H-coloring or graph homomorphism, which can be viewed
as a special case of #CSP (Bulatov & Grohe 2004, 2005; Cai et al.
2013a; Dyer et al. 2007; Dyer & Greenhill 2000, 2004; Goldberg
et al. 2010; Hell & Nešetřil 1990). Recently, inspired by Valiant’s
holographic algorithms (Valiant 2006, 2008), a new refined frame-
work called Holant problems was proposed (Cai et al. 2008, 2009,
2013c). One reason why such frameworks are interesting is because
the language is expressive enough so that they can express many
natural counting problems, while specific enough so that we can
prove dichotomy theorems (i.e., every problem in the class is either
in P or #P-hard) (Creignou et al. 2001). Having a dichotomy is an
important property for these languages. Ladner proved that if P �=
NP, then such a dichotomy for NP is false (Ladner 1975). His idea
can be easily adapted to show a similar dichotomy for P versus #P.
Note that although the counting frameworks mentioned above do
admit dichotomy theorems, it does not imply P = NP or P = #P,
since the expressive power of these languages is more restricted
compared to general Turing machines.

We give a brief description of the Holant framework here, and
a more formal definition is given in Section 2. A signature grid
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Ω = (G,F , π) is a tuple, where G = (V,E) is an undirected graph
and F is a set of functions. In this paper, we study the case where
the functions map sets of Boolean variables to some value. Usually,
the range of the functions is the field of complex numbers C or real
numbers R as in Bulatov (2006, 2013); Bulatov & Dalmau (2007);
Cai et al. (2008, 2009); Dyer et al. (2009); Dyer & Richerby (2010,
2011); Feder & Vardi (1998), but it is also interesting to consider
functions with finite range, such as counting the number of solu-
tions modulo some integer k, as studied in Faben (2008); Guo et al.
(2011); Papadimitriou & Zachos (1982); Valiant (1979, 2010). The
mapping π: V → F labels each v ∈ V (G) with a function fv ∈ F ,
where the arity of fv equals the degree of v. We consider all edge
assignments (0–1 assignments in this paper, since we are consider-
ing functions on Boolean variables). An assignment σ for every e ∈
E gives an evaluation

∏
v∈V fv(σ |E(v)), where σ |E(v) denotes the

sub-string of σ, where only bits corresponding to incident edges of v
are chosen. The counting problem on the instance Ω is to compute

HolantΩ =
∑

σ

∏

v∈V

fv

(
σ |E(v)

)
.

We use the notation Holant(F) to denote the class of Holant prob-
lems where all functions are taken from F . For example, consider
the Perfect Matching problem on G. This problem corre-
sponds to attaching the Exact-One function at every vertex of
G—for each 0–1 edge assignment, the product

∏
v∈V fv(σ |E(v))

evaluates to 1 when the assignment is a perfect matching, and 0
otherwise; therefore, summing over all 0–1 edge assignments gives
us the number of perfect matchings in G. If we use the At-Most-

One function at every vertex, then we count all (not necessarily
perfect) matchings. This framework can also express the parti-
tion function of a system, which is well studied in the statisti-
cal physics community, see, for example, the Ising model (Ising
1925).

The Holant framework is closely related to other frameworks
such as #CSP and graph homomorphism. In fact, in some sense,
the Holant framework provides a unified perspective for different
frameworks of counting problems. For example, the #CSP frame-
work can be viewed as a special case of the Holant framework in
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which equality relations of any arity are always assumed to be
available in addition to the stated constraints. In Cai et al. (2009),
a dichotomy for complex weighted Boolean #CSP was discovered
and proved with the help from the study of general Holant prob-
lem. On the other hand, #CSP excludes the expression of certain
important problems such as graph matchings, which, in contrast,
are expressible in the Holant framework. Besides #CSP, another
two important special families are Holant∗ problems, in which we
assume that all unary functions are available, and Holantc Prob-
lems, where we only assume two special unary functions—the Is-

Zero function 0 and the Is-One function 1—to be available. For
all the above families, a dichotomy for complex symmetric func-
tions was proved (Cai et al. 2012, 2009). However, a dichotomy
for general Holant family remained open before the current work.
The framework becomes more expressive in this general setting
and, as we prove in this work, there are more tractable families.
On the other hand, the proof for a dichotomy also becomes more
challenging. A major source of difficulty is the lack of flexibility
when we construct gadgets for reduction. One exception is the
dichotomy for the general Holant framework for symmetric func-
tion in the field Z2 (Guo et al. 2013). A couple of recent works
studied the complexity of Holant on regular graphs where all the
vertices take a same function (Cai et al. 2012; Cai & Kowalczyk
2010; Cai et al. 2011b; Kowalczyk & Cai 2010). These works can
be viewed as a dichotomy for Holant without freely available func-
tions, but have the constraint that F only contains one single func-
tion. In these papers, due to the lack of freely available equality
functions or unary function, the reductions become much more dif-
ficult and even sometimes require assistance from computer (Cai
et al. 2011b). The underlying goal of these two sequences of works
is to finally get a dichotomy for Holant.

This work achieves this final goal at least partially. We prove a
dichotomy theorem for Holant problem where all functions are sym-
metric (the values of the functions only depend on the Hamming
weight of their inputs) and take real values. Real symmetric func-
tions already capture most of the interesting combinatorial prob-
lems and physical system problems. This is the first dichotomy for
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the Holant framework for a broad set of functions without assum-
ing any freely available functions. Our work uses previous results
as our starting points. And we believe that it is an important
step to finally achieve the goal to characterize the complexity of
Holant problems for any function set F (complex weighted and
asymmetric).

One of the main innovations in this work is a new way of mak-
ing reductions between counting problems. In previous works, as
well as our current work, there are three extensively used reduc-
tion methods: (1) gadget construction, (2) polynomial interpola-
tion, and (3) holographic transformation. However, due to the
special structure of some functions, we might be in the case where
all possible gadget constructions either give trivial functions or
are very difficult to analyze, and thus classical reduction methods
might not work well. In Section 5, we introduce a new reduction
method—realizing a function by approximating it with sufficient
precision. The main idea is to construct a series of gadgets that
converge to another gadget extremely fast with only a polynomial
overhead, so that we would be able to recover the true value in
polynomial time by solving a constant dimension integer program-
ming. Although this is still some kind of gadget construction, we
do not, and probably cannot, realize the target function precisely.
It is also different from polynomial interpolation in two aspects.
One is that although we need to construct a sequence of gadgets in
both methods, polynomial interpolation produces an instance for
each gadget in the sequence, while the new approximation tech-
nique only uses the final one as a close enough approximation.
Also, in polynomial interpolation, the number of new instances
one constructs is usually linear in the size of the instance, which
is not affordable in our construction because the gadget size grows
exponentially, while the new approximation technique only needs
a logarithmic number of iterations due to the fast convergence
rate.

Another contribution of this work is a dichotomy for #CSP
where each variable appears a multiple of d times, for any posi-
tive integer d. We found some tractable cases which are #P-hard
for general #CSP. These new cases are still closely related to the



260 Huang & Lu cc 25 (2016)

tractable cases for the general #CSP, and we characterize them in
terms of holographic transformation.

We also prove that counting Eulerian orientations for 2k-regular
graphs is #P-hard. Note that the notion of Eulerian orientation
is different from Eulerian circuits in that the former only consid-
ers the direction of the edges and thus different Eulerian circuits
may correspond to a same Eulerian orientation. Previously, simi-
lar problems have been studied, such as counting Eulerian orienta-
tions and counting Eulerian circuits in general graphs (Brightwell
& Winkler 2005; Mihail & Winkler 1996), and Eulerian circuits in
regular graphs (Ge & Stefankovic 2012). All of them were shown
to be #P-hard. However, to the best of our knowledge, there is no
previous result on counting Eulerian orientations in regular graphs,
and we are not aware of any direct reductions between counting
Eulerian orientations and counting Eulerian circuits. Instead, we
use polynomial interpolation to reduce the calculation of the Tutte
polynomial at certain points to counting Eulerian orientation. The
construction is easy to analyze in the Holant framework. One of the
intriguing parts of this problem is that it arises as a very special
case along our proof for which all reduction methods—including
the approximation approach we introduced here—failed. Hence,
this problem may also serve as a new starting point of reduction
in future research.

This is the complete version of Huang & Lu (2012). After
the publication of the conference version of this paper, Cai et al.
gave an effective dichotomy for complex symmetric Boolean Holant
problems in Cai et al. (2013b), an important step toward further
understanding the nature of Holant and other counting problems.
While they do not rely on our dichotomy directly, their proof made
important use of some of our results, including the #P-hardness
of counting Eulerian orientations, and the dichotomy for #CSPd.
Moreover, it turns out that the problem of counting Eulerian orien-
tations is related to a phenomenon Cai et al. refer to as vanishing,
whose influence on tractable counting problems was never fully
realized until the resolution of the whole problem.
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2. Preliminaries

In this section, we recall some basic definitions and results. Let F
be a set of functions. A signature grid is a tuple Ω = (G,F , π),
where G = (V,E) is an undirected graph and π: V → F labels
each v ∈ V with a function fv ∈ F where the arity of fv equals the
degree of v. The Holant problem on instance Ω is to compute

HolantΩ =
∑

σ:E→{0,1}

∏

v∈V

fv

(
σ |E(v)

)
,

a sum over all 0–1 edge assignments, of the products of the function
evaluations at each vertex. Given a set of functions F , we define
the problem Holant(F):

◦ Input: A signature grid Ω = (G,F , π);

◦ Output: HolantΩ.

We would like to characterize the complexity of Holant problems
in terms of its function set F . In order to simplify notations,
we sometimes use Holant(X,Y ) to denote Holant({X,Y }) and
Holant(X,Y,F) for Holant({X,Y }∪F), where X and Y are some
given individual functions and F is a set of functions.

A function fv can be represented as a truth table. For functions
with complex values, it will be more convenient to denote them
as a tensor in (C2)⊗ deg(v), or a vector in C

2deg(v) , when we perform
holographic transformations. We also call it a signature. Replacing
a signature f ∈ F by a constant multiple cf , where c �= 0, does not
change the complexity of Holant(F), so we view f and cf as the
same signature. A function f on k Boolean variables is symmetric
if the value of the function depends only on the number of inputs
that are assigned 1 (also known as the Hamming weight of the
input) and can be expressed by [f0, f1, . . . , fk], where fj is the value
of f on inputs of Hamming weight j. Thus, for example, we can
express the following unary functions Is-Zero 0 = [1, 0], Is-One

1 = [0, 1]. We denote by =k the Equality signature of arity k,
and we have (=k) = [1, 0, . . . , 0, 1] (with (k − 1) 0’s). The binary
disequality can be written as [0, 1, 0]. A signature is degenerate iff
it is a tensor product of unary signatures, which includes all unary
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signatures themselves. In particular, a symmetric signature in F
is degenerate iff it can be expressed as λ[x, y]⊗k.

Some special families of Holant problems have already been
widely studied. For example, if F contains all Equality signa-
tures {=1, =2, =3, . . .}, then this is exactly the weighted #CSP
problem, denoted as #CSP(F). In Cai et al. (2009), the following
two special families of Holant problems were introduced by assum-
ing that some signatures are freely available. Let U denote the set
of all unary signatures. Then we define Holant∗(F) = Holant(F ∪
U). We use Holantc(F) to denote the problem Holant(F ∪{0,1}).

There are several special classes of functions. A symmetric sig-
nature [f0, f1, . . . , fk] is called a generalized Fibonacci signature if
there exist a, b not both zero such that for all i = 0, . . . , k − 2
we have afi + bfi+1 − afi+2 = 0. A k-ary function f(x1, . . . , xk)
is affine if there exist a (k + 1)-column Boolean matrix A, a set
of (k + 1)-dimension Boolean vectors {α1, . . . , αn}, some complex
number c �= 0, such that f can be represented as cχAX=0i

∑n
j=1〈αj ,X〉

where X = (x1, x2, . . . , xk, 1), 〈·, ·〉 is the dot product of two vec-
tors, i is the imaginary unit with i2 = −1, and χ is a 0–1 indi-
cator function such that χAX=0 is 1 iff AX = 0. Note that both
the matrix multiplication AX and the dot product are calculated
in Z2. We use A to denote the set of all affine functions. We
use P to denote the set of functions which can be expressed as a
product of unary functions, binary equality functions, and binary
disequality functions. These two families capture exactly tractable
#CSP problems.

Theorem 2.1 (Cai et al. 2009). Let F be a set of functions map-
ping Boolean inputs to complex numbers. Then #CSP(F) is #P-
hard unless F ⊆ A or F ⊆ P, in which case the problem is in
P.

To introduce the idea of holographic reductions, it is convenient
to consider bipartite graphs. This is without loss of generality. For
any general graph, we can make it bipartite by adding on each edge
an additional vertex labeled with the Equality function =2 on
two inputs.

We use Holant(G|R) to denote all counting problems, expressed
as Holant problems on bipartite graphs H = (U, V,E), where each
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signature for a vertex in U or V is from G or R, respectively. An
input instance for the bipartite Holant problem is a bipartite sig-
nature grid and is denoted as Ω = (H,G|R, π). Signatures in G are
denoted by column vectors (or contravariant tensors); signatures
in R are denoted by row vectors (or covariant tensors) (Dodson &
Poston 1991).

One can perform (contravariant and covariant) tensor transfor-
mations on the signatures. We will define a simple version of holo-
graphic reductions, which are invertible. Suppose T ∈ GL2(C) is
a basis. We say that there is an (invertible) holographic reduction
from Holant(G|R) to Holant(G ′|R′), if the contravariant transfor-
mation G′ = T⊗gG and the covariant transformation R = R′T⊗r

map G ∈ G to G′ ∈ G ′ and R ∈ R to R′ ∈ R′, and vice versa, where
G and R have arity g and r, respectively. Suppose that there is
a holographic reduction from Holant(G|R) to Holant(G ′|R′), map-
ping signature grid Ω to Ω′, then HolantΩ = HolantΩ′ . In partic-
ular, for invertible holographic reductions from Holant(G|R) to
Holant(G ′|R′), one problem is in P iff the other one is in P, and
similarly one problem is #P-hard iff the other one is also #P-hard.

In the study of Holant problems, we will often transfer between
bipartite and non-bipartite settings. When this does not cause
confusion, we do not distinguish signatures between column vectors
(or contravariant tensors) and row vectors (or covariant tensors).
Whenever we write a transformation as T⊗nF or TF , we view the
signatures as column vectors (or contravariant tensors); whenever
we write a transformation as FT⊗n or FT , we view the signatures
as row vectors (or covariant tensors).

Below we list some known dichotomy results and some useful
observations regarding functions. The following lemma gives some
necessary conditions for symmetric functions to be in P and A .

Lemma 2.2. Let f = [f0, f1, . . . , fk] be a real-valued symmetric
function. If f ∈ P, then up to scaling, either there exist c, r ∈ R,
such that fi = c · ri for i = 0, . . . , k, or f is a binary disequality, or
f1 = · · · = fk−1 = 0. If f ∈ A \P, then there exists some c > 0,
such that |fi| ∈ {0, c}, and that either none of fi’s are zero, or
fi = 0 for all odd i’s, or fi = 0 for all even i’s.
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Proof. We first consider the case when f ∈ P, that is f can
be expressed as a product of unary functions, binary equality func-
tions, and binary disequality functions.

Assume f is not all-zero. If the only inputs that make f nonzero
are the all-zero inputs or the all-one inputs, then f = [a, 0, . . . , 0, b]
for some a, b ∈ R. Now we assume otherwise, and let y1, . . . , yk ∈
{0, 1} be an input such that f(y1, . . . , yk) �= 0, and y1, . . . , yk are
not all equal. In other words, the weight of the input w =

∑
yi

satisfies 0 < w < k.
We can assume that each variable is only involved in one unary

function, because having multiple unary functions on one variable
is equivalent to having the product unary function of them on the
same variable.

Case 1. Suppose f is a product of unary functions only. That
is, for input variable xi, i = 1, . . . , k, we associate a unary function
[ai,0, ai,1], and f(x1, . . . , xk) =

∏k
i=1 ai,xi

. If there is some i such
that ai,0 = ai,1 = 0, then f is always zero.

Otherwise, there exists some i, ai,0 = 0 and ai,1 �= 0. Since
f(y1, . . . , yk) �= 0, it follows that yi = 1. By our assumption that
0 < w < k, we also have some j �= i such that yj = 0. Exchanging
the value of yj and yi does not change the weight, but the value
of the function changes from nonzero to zero, contradicting the
hypothesis that f is symmetric. Thus such y1, . . . , yk does not
exist and f1 = · · · = fk−1 = 0. The case where there exists some i,
ai,0 �= 0, ai,1 = 0 can be handled similarly.

Now suppose for all i, we have ai,0 �= 0, ai,1 �= 0. After scaling,
we may assume that ai,0 = 1 for all i. The fact that all inputs
of weight 1 evaluate to the same value implies that a1,1 = a2,1 =
· · · = ak,1 = r for some r �= 0. Hence f = [c, cr, cr2, . . . , crk].

Case 2. Now consider the case where there are binary equality
and inequality functions in the product. We assume that for each
pair of variables, either they are not involved in a binary function,
or they are involved in exactly one of binary equality and dise-
quality functions, since if they appear in both functions, then the
function is 0 and is thus degenerate.

Suppose f is of arity two. Also assume that the unary function
on one of the variables is [a, b], and the one on the other variable
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is [c, d]. If the binary function in the product is a binary equality
function, then f = [ac, 0, bd]. If the function is a binary disequality,
then f evaluates to 0 when the input has weight 0 or 2, and either
ad or bc when the input has weight 1. Since f is symmetric, it
must be that ad = bc, and thus f = [0, r, 0] for some r ∈ R.

Now assume that f has arity at least 3. If there are contra-
dictions, such as x1 �= x2, x2 �= x3, and x3 �= x1, then we know
that the function always evaluates to 0, thus is degenerate. If there
are no contradictions, then the set of variables is divided into sev-
eral subsets, within which variables are restricted to take the same
value, and variables in different subsets may be required to take
different values.

In fact, if f is symmetric and has size at least 3, it must be
the case that all variables are in the same set which takes equal
values. Otherwise, swapping the values of any pair of variables in
y1, . . . , yk that are taking different values (and hence are not in the
same set) always makes f zero. We thus conclude that f must
have the form [a, 0, . . . , 0, b] for some a, b ∈ R.

Now consider f ∈ A \P. It follows from definition that there
exists some c > 0, such that |fi| ∈ {0, c}. Now we focus on the
χAX=0 factor, since we are only interested in whether the values
are zero or not.

We first prove that if f2 �= 0, then fi �= 0 for all even i’s. Let

X1 = (1, 1, 0, . . . , 0, 1) ,

X2 = (0, 1, 1, 0, . . . , 0, 1) ,

X3 = (1, 0, 1, 0, . . . , 0, 1)

be (k +1)-dimensional Boolean vectors, and they all correspond to
inputs of weight 2. Note that f2 �= 0 implies that AXi = 0 for i =
1, 2, 3. This implies that A(X1+X2+X3) = 0, and since X1+X2+
X3 = (0, 0, . . . , 0, 1) corresponds exactly to the input of weight 0,
we have that f0 �= 0. If k ≥ 4, we can define Y1 = (1, 1, 0, . . . , 0, 1),
Y2 = (0, 1, 1, 0, . . . , 0, 1), and Y3 = (0, 1, 0, 1, 0, . . . , 0, 1). Y4 �
Y1 + Y2 + Y3 = (1, 1, 1, 1, 0, . . . , 0, 1) is a vector corresponding to
some input of weight 4. Then we also have AY4 = 0 and hence
f4 �= 0. Similarly, we can prove that f2t �= 0 for all 2t ≤ k. The
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proof that f1 �= 0 implies fi �= 0 for all odd i’s is essentially the
same. �

The following theorem is very useful as a way to normalize the
given signature set F .

Theorem 2.3. Let F be a set of signatures and M be a 2 × 2
orthogonal matrix. For any signature grid Ω = (G,F , π), replacing
every signature F ∈ F by M⊗nF , where n is the arity of F , we
can get a new signature grid Ω′. Then

HolantΩ = HolantΩ′ .

Proof. First we use the standard technique to reformulate the
signature grid Ω = (G,F , π). We insert a new vertex at each edge
of G with signature =2. This will not change the value of the
signature grid. Then for the new bipartite signature grid where we
have F on one side and =2 on the other, we apply a holographic
reduction with the basis M . This will map a signature F ∈ F to
M⊗nF , where n is the arity of F . It is an algebraic fact that the
=2 will map to itself. Then we view these (new) =2 as an edge and
ignore these vertices. This gives the signature grid Ω′ as required.
Due to the Holant theorem, its value is the same as Ω. �

Prior to this work, dichotomy results were proved in Cai et al.
(2009) and Cai et al. (2012) for Holant∗(F) and Holantc(F) where
F is a set of complex symmetric Boolean signatures. We list the
dichotomy for Holantc(F) here as it would be used in this paper.

Theorem 2.4 [Cai et al. (2012, 2009)]. Let F be a set of complex
symmetric signatures. Holantc(F) is #P-hard unless F satisfies
one of the following conditions, in which case it is tractable:

(i) Every signature in F is of arity no more than two;

(ii) There exist two constants a and b (not both zero, depending
only on F), such that for every signature [x0, x1, . . . , xn] ∈
F one of the two conditions is satisfied: (1) for every k =
0, 1, . . . , n − 2, we have axk + bxk+1 − axk+2 = 0; (2) n = 2
and the signature [x0, x1, x2] is of form [2aλ, bλ, −2aλ].
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(iii) For every signature [x0, x1, . . . , xn] ∈ F , one of the two con-
ditions is satisfied: (1) For every k = 0, 1, . . . , n − 2, we have
xk + xk+2 = 0; (2) n = 2 and the signature [x0, x1, x2] is of
form [λ, 0, λ].

(iv) There exists a T ∈ T such that F ⊆ TA , where T � {T |
[1, 0, 1]T⊗2, [1, 0]T, [0, 1]T ∈ A }.

Regarding models of computation for real numbers, strictly
speaking we should restrict it to computable numbers (Blum et al.
1998; Ko 1991), or algebraic numbers. However, this issue seems
not essential for our result, and we will state our theorems assuming
that we can compute +, × and solve linear equations in polynomial
time for all real numbers used. If restricted to algebraic numbers,
our proof in Section 5 can be simplified. But we do not restrict our
result by exploiting the special properties of algebraic numbers.

3. Main Dichotomy and Proof Outline

For the simplicity of statement, we define the following property
for function sets.

Definition 3.1. A set of signatures F is called A &P-compatible
if there exists a 2×2 non-singular complex matrix T such that one
of the following conditions is satisfied:

FT−1 ⊆ A and T⊗2[1, 0, 1]T ∈ A ; or

FT−1 ⊆ P and T⊗2[1, 0, 1]T ∈ P.

Our main theorem is the following.

Theorem 3.2. Let F be a set of symmetric signatures on Boolean
variables with real values. Then Holant(F) is #P-hard unless the
arity of any non-degenerate signature in F is no more than two or F
is A &P-compatible, in which case it is computable in polynomial
time.

Proof Outline. If the arity of any non-degenerate signature
in F is no more than two, then Holant(F) is obviously tractable.



268 Huang & Lu cc 25 (2016)

Otherwise, the tractability of A &P-compatible F follows directly
from the tractability of #CSP(A ) and #CSP(P) after applying
transformation under T as given in Definition 3.1. Therefore, we
only need to prove the hardness part and we can assume that F
contains a non-degenerate signature whose arity is at least 3.

Our starting point is Theorem 4.9, which states that the
dichotomy holds if F contains a non-degenerate ternary function.
To prove this, we use the relationship between Holant problems
and #CSP. In some cases, we need a dichotomy for special #CSP
where variables appear a multiple of 3 times. A general dichotomy
for such #CSP is proved in Section 4.

The idea then is to realize a non-degenerate ternary function.
In the previous dichotomy for Holant∗ or Holantc problems, this
step is easy because the freely available functions such as Is-Zero
and Is-One enable us to realize sub-signatures with smaller arities.
In our case, however, there are no longer freely available unary sig-
natures. We can only use signatures from the given set. Probably
the simplest gadget one can construct is by adding self-loops. For
a signature with arity k, we can construct a signature with arity
k−2 by adding a self-loop. If the new signature is degenerate, then
it has some very special structure and we can deal with that sep-
arately. Otherwise, we have constructed a smaller signature which
is still non-degenerate. Repeat this process of adding self-loops,
and we will finally have a non-degenerate signature of arity 3 or
4, depending on the parity of k. The ternary case is proved in
Theorem 4.9. It is not directly applicable for arity 4 case since
we would not be able to construct any signature of odd arity from
signatures of arity 4. We handle this in Theorem 7.3.

The idea of proving Theorem 7.3 is to realize degenerate binary
signatures. A degenerate binary signature can be viewed as two
unary signatures, and in this sense, we can realize a ternary func-
tion with the help of this “unary” signature. As stated in
Lemma 7.1, we can show that the dichotomy holds if we have
a non-degenerate 4-ary signature and one nonzero unary function.
Similar to the ternary case, the proof makes use of the relation
between Holant and #CSP.
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The main remaining work is to realize a nonzero degenerate
binary signature. We generalize the polynomial interpolation tech-
nique to achieve this. There are cases when this approach fails, and
for those cases, we use our new reduction tool of approximating.
This is done in Section 5. There is still one exceptional case, namely
[1, 0, 1/3, 0, 1]. We prove its hardness in Section 6. By holographic
reduction, this problem is equivalent to the counting Eulerian ori-
entations problem in 4-regular graphs, which can be proved to be
#P-hard. �

Remark 3.3. We note that our main dichotomy for Holant is only
for real-valued functions. However, the dichotomy for the #CSP
where variables appear a multiple of d times is for complex num-
bers. This is necessary to make it useful in the proof of our main
dichotomy. Even starting from real Holant problem, we may come
to the field of complex number after some holographic transfor-
mation. As mentioned at the end of Section 1, the dichotomy for
complex symmetric Boolean Holant problems in Cai et al. (2013b)
made important use of the #CSPd results.

4. #CSP where variables appear a multiple of
d times

In this section, we consider a special family of the #CSP, where
the number of occurrences of each variable must be a multiple of
d times (d is a given constant). We use #CSPd(F) to denote
this problem. For example, #CSP2(F) is the #CSP instance
where each variable appears an even number of times. Clearly, if
#CSP(F) is polynomial time computable, then so is #CSPd(F).
However, the reverse is not necessarily true. We use Td to denote

the set

{[
1 0
0 ω

]

| ωd = 1

}

. Then applying any T ∈ Td to F will not

change the value of a #CSPd(F) instance and as a result will not
change the complexity of #CSPd(F). For example,
#CSP3([1, ω3,−ω2

3]), where ω3 is the primitive third root of unity,
is computable in polynomial time since #CSP3([1, 1,−1]) is. On
the other hand, note that by Theorem 2.1, #CSP([1, ω3,−ω2

3])
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is #P-hard without the additional constraints on the number of
occurrences of variables. For a symmetric function set F , we prove
a dichotomy for #CSPd(F) which shows that these are essentially
the only new tractable cases.

Theorem 4.1. Let d ≥ 1 be an integer and F be a set of symmet-
ric functions taking complex values. Then #CSPd(F) is #P-hard
unless there exists T ∈ T4d such that (TF) ⊂ P or (TF) ⊂ A , in
which case the problem is in P.

Note that when d = 1, this is just #CSP(F), and the above
theorem follows from Theorem 2.1 and the fact that the families
A and P are invariant under transformations in T4.

Below we assume that d > 1.
The following Theorem in Cai et al. (2012) gives a reduction

between #CSP and Holant, which will be used here as a starting
point.

Theorem 4.2. Consider the bipartite Holant instance

Holant ([1, 0, 0, 1] ∪ G1|G2) .

We assume that G2 contains a non-degenerate binary signature
[y0, y1, y2]. And in the case of y0 = y2 = 0, we further assume
that G2 contains a unary signature [a, b], where ab �= 0. Then
Holant([1, 0, 0, 1] ∪ G1|G2) is #P-hard unless there exists a T ∈ T3

such that G1T ∪ T−1G2 ⊂ P or G1T ∪ T−1G2 ⊂ A , in which cases
the problem is in P.

Before proving Theorem 4.1, we prove in Lemma 4.3 that the
conclusion holds if we have Is-Zero ([1, 0]) and Is-One ([0, 1]) in
addition. For general #CSP, one can assume freely available [1, 0]
and [0, 1] by the nice pinning lemma from Dyer et al. (2009). This
is not obviously true for #CSPd. We prove in Lemma 4.7 that
we can still effectively realize the idea of pinning by a similar idea
used in Cai et al. (2010). Then Theorem 4.1 follows directly from
the following lemma.

Lemma 4.3. Let d > 1 be an integer and F be a set of symmetric
functions taking complex values. Then #CSPd(F ∪ {[1, 0], [0, 1]})
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is #P-hard unless there exists T ∈ T4d such that (TF) ⊂ P or
(TF) ⊂ A , in which case the problem is in P.

Proof. Before the main part of the proof, we list some simple
linear algebra facts which will be useful in the proof. All of them

can be verified easily by definition. Let M =

[
1 0
0 x

]

be a non-

degenerate diagonal matrix. Then, (1) both [0, 1], [1, 0] remain
unchanged (up to a scale) after a holographic reduction under
M ; (2) the property that a signature F is in P or not remains
unchanged after a holographic reduction under M ; (3) for any
d ≥ 1, M ∈ Td ⇔ M−1 ∈ Td; (4) for any d ≥ 1, =d remains
unchanged after a holographic reduction under M iff M ∈ Td; and
(5) for any d ≥ 1, M⊗d(=d) ∈ A iff M ∈ T4d.

We use the following bipartite Holant problem to represent this
#CSPd(F ∪ {[1, 0], [0, 1]})

Holant ({=d, =2d, . . . , }|F ∪ {[1, 0], [0, 1]}) .

We first show the tractability part. Let T ∈ T4d be the matrix
such that (TF) ⊂ P or (TF) ⊂ A . Applying a holographic
reduction on the above problem under basis T−1, we have

Holant ({=d, =2d, . . . , } |F ∪ {[1, 0], [0, 1]})

≡T Holant
(
{=d, =2d, . . . , } T−1| (TF) ∪ {[1, 0], [0, 1]}

)
.

Since {=d, =2d, . . . , }T−1 ⊂ P ∩ A , we have that either all the
signatures involved in the above Holant problem are in P or all
the signatures involved in the above Holant problem are in A . The
polynomial-time algorithm follows directly from that.

Now we prove the hardness part. We can actually also realize
{[1, 0], [0, 1]} on the LHS by connecting the [1, 0]’s and [0, 1]’s on
the RHS to the equality signatures, and by this we can realize
any sub-signature on the RHS. If all the binary sub-signatures of
signatures in F are degenerate, then F ⊂ P and we are done. Now
we assume that we can realize a non-degenerate binary [y0, y1, y2]
on the RHS.

Let f := [f0, f1, . . . , fr] be a function in F . If there exists some
i ∈ {0, . . . , r − 1} such that fifi+1 �= 0, then we use [1, 0] and
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[0, 1] on the LHS to realize [fi, fi+1]. After a scale, we can write
it as [1, a], where a �= 0. By connecting 3d − 3 copies of [1, a] to
a (=3d) (note that we have 3d > 3), we can realize [1, 0, 0, a3d−3]
on the LHS. Then we can apply a holographic reduction under

M =

[
1 0
0 a−(d−1)

]

, which transforms [1, 0, 0, a3d−3] into [1, 0, 0, 1].

Note that we have a non-degenerate binary signature on the RHS
and also a unary [x, y] = M [1, a] with xy �= 0. We conclude by The-
orem 4.2 that the problem is #P-hard unless there exists an N(=
MT ), where T ∈ T3, such that ({=d, =2d, . . . , }N) ∪ (N−1F) ⊂ P
or ({=d, =2d, . . . , }N)∪(N−1F) ⊂ A . We note that N is a diagonal
matrix. If N−1F ⊂ P, then F ⊂ P and we are done. Otherwise,
{=d, =2d, . . . , }N ∪N−1F ⊂ A . The fact that (=d)N ∈ A directly
implies that N ∈ T4d and the proof for this case is also complete.

Consider now all signatures and sub-signatures of F . By the
argument above, we assume that all unary signatures and sub-
signatures are of form either [1, 0], [0, 1], or [0, 0]. This also rules
out degenerate signatures of the form [a, ar, ar2, . . .] where a, r �= 0.
For a binary signature [a, b, c], by fifi+1 = 0, we have that if b �= 0,
then a = c = 0, so binary signatures must have form either [a, 0, c]
or [0, b, 0]. Now we turn to signatures and sub-signatures of arity
at least 3. If all of them are of the form [a, 0, . . . , 0, b], then F ⊆
P and we are done. Otherwise, we can find a signature or sub-
signature of arity at least 3 which is not of the form [a, 0, . . . , 0, b].
Denote it as f = [f0, f1, . . . , fr]. This means that there exists
0 < i < r, fi �= 0. We also have that fi−1 = fi+1 = 0. Since f has
arity at least 3, either i − 2 ≥ 0 or i + 2 ≤ r. So we can find a
(sub-)signature of form either [b, 0, a, 0] or [0, a, 0, b] where a �= 0.

So now we have f1 �= 0 or f2 �= 0. By symmetry, we can assume
that f1 �= 0. Then f0 = f2 = 0 and the signature is of form
[0, 1, 0, a] after scaling. If a = 0, we can prove #P-hardness as
follows. We use one copy of =d on the LHS to connect d different
copies of [0, 1, 0, 0]. Then we group the other 2d inputs into two
groups as in Figure 4.1. We claim that we can effectively reduce the
#P-hard problem #CSP([1, 1, 0]) to it— given a #CSP([1, 1, 0])
instance, we construct an instance of #CSPd([0, 1, 0, 0]) by replac-
ing =k with =dk, [1, 1, 0] with the gadget in Figure 4.1. Each
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Figure 4.1: The circle vertices has signature [0, 1, 0, 0], and the
square vertex is an equality function (we use =3 as example here;
in general, it is the corresponding =d).

group of d inputs of Figure 4.1 would be connected to d inputs of
the =dk at the corresponding vertex. This construction forces the
d edges in the same group in Figure 4.1 to take the same value.
Observe that if all 2d inputs take value 0, then all edges connected
to the =d in Figure 4.1 need to be 1 to make the overall value
of the assignment nonzero. Similarly, if one group of inputs take
value 0 and the other take value 1, then the =d edges need to
be 0. And if all 2d inputs take value 1, the overall value of the
assignment would always be 0 no matter what value the =d edges
take. Thus given an assignment to the #CSP([1, 1, 0]) instance
that has nonzero value, we assign the same value to the variables
=dk in #CSPd([0, 1, 0, 0]), and there is exactly one way to complete
this assignment to get nonzero value, and vice versa. This gives a
bijection between edge assignments that have nonzero value on the
#CSP([1, 1, 0]) instance and the #CSPd([0, 1, 0, 0]) instance. This
completes the reduction.

If a �= 0, then we can realize [1, 0, a] (a �= 0) on the RHS. If
d is odd, we can connect 3d−3

2
copies of [1, 0, a] to =3d to realize

[1, 0, 0, a
3d−3

2 ] on the LHS. We apply a suitable diagonal holographic
transformation to make it into [1, 0, 0, 1] and apply Theorem 4.2.
We note that this time we may not have a suitable unary function
on the RHS. But since we are applying a diagonal transformation,
[1, 0, a] becomes [1, 0, a′] for some a′ ∈ R, a′ �= 0, so we can still
apply Theorem 4.2. This completes the proof for the case where d
is odd.

Now assume that d is even. Suppose further that there exists a
non-degenerate signature of form [a, 0, 0, 0, . . . , 0, b], a, b �= 0, with
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odd arity on the RHS. Let r be the arity. Then by connecting all
its inputs to an equality =dk on the LHS where dk > r, we can
realize a signature of odd arity dk − r on the LHS. Connecting
[1, 0, a]’s to it, again we realize a signature of the form [c, 0, 0, d] on
the LHS and we complete the proof similarly.

Now we consider the case that d is even, and that all non-
degenerate signatures of form [a, 0, . . . , 0, b], a, b �= 0 are of even
arity. We reduce #CSP([0, 1, 0, ad]) to #CSPd([0, 1, 0, a]). Given
an instance of #CSP([0, 1, 0, ad]), we construct a #CSPd([0, 1, 0, a])
instance by replacing =k on the LHS with =dk, and for each vertex
on the RHS with [0, 1, 0, ad], we introduce d vertices with [0, 1, 0, a]
and connect them to the respective LHS neighbors. Therefore,
#CSPd([0, 1, 0, a]) is #P-hard unless [0, 1, 0, ad] ∈ P ∪ A . Since
[0, 1, 0, ad] �∈ P, we conclude that [0, 1, 0, ad] ∈ A , which implies
that ad = ±1. By applying a holographic reduction under basis

T =

[
1 0

0 a
1
2

]

, we can transform [0, 1, 0, a] on the RHS to [0, 1, 0, 1].

We note that T ∈ T4d since (a
1
2 )4d = (±1)2d = 1. All the =4kd in

the LHS will remain unchanged. We realize [1, 0, 1] from [0, 1, 0, 1]
and then connect it to =4kds to realize all of {=2, =4, =6 . . . , } on
the LHS. Since we have =2 in both sides now, we can reduce the
following non-bipartite Holant problem to the original problem

(4.4) Holant({=2, =4, =6 . . . , } ∪ TF ∪ {[1, 0], [0, 1], [0, 1, 0, 1]}).

So it is enough to show that this problem is #P-hard unless we
have (TF) ⊂ A .

Before we proceed, we highlight the two assumptions we have
at this point: 1) If there is a non-degenerate signature f of form
[a, 0, 0, . . . , 0, b], a, b �= 0 in F , then f has even arity; 2) all ternary
non-degenerate (sub-)signatures in F have form [b, 0, a, 0] or
[0, a, 0, b] where a �= 0.

We first show that if there is a signature of form [a, 0, . . . , 0, b]
which is not in A , then the problem is #P-hard. After a scale,
we can write it as [1, 0, 0, 0, . . . , 0, b], where b �= 0. Let its arity be
2k, and we can realize [1, 0, b] by connecting it to an equality func-
tion =2k−2. Similar to the above, we group signatures together to
achieve reduction from general #CSP. The difference is that here
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we group different signatures with the same arity. Specifically,
given an instance of #CSP([0, 1, 0, 1], [1, 0, b]), we construct an
instance of (4.4) by replacing =k with =2k, and for each vertex on
the RHS, we make two copies of it. If the vertex is labeled [0, 1, 0, 1],
then the new vertices are both labeled [0, 1, 0, 1]. If the vertex is
labeled [1, 0, b], then one of the new vertices is labeled [1, 0, b] and
the other is labeled [1, 0, 1]. In this way, we reduce the problem
#CSP([0, 1, 0, 1], [1, 0, b]) to (4.4), and since [0, 1, 0, 1] ∈ A \P,
we conclude that (4.4) is #P-hard if b4 �= 1. Now we prove the
same result for signatures of form [b, 0, a, 0] or [0, a, 0, b]. We can
scale [0, a, 0, b] to [0, 1, 0, b]. By grouping one copy of [0, 1, 0, b] and
one copy of [0, 1, 0, 1], we conclude that the problem is #P-hard
unless [0, 1, 0, b] ∈ A , which implies that b = ±1. Since we can
construct [0, 1, 0] from [0, 1, 0, 1] and [1, 0], the result also holds
for [b, 0, a, 0] because connecting [0, 1, 0]’s to all inputs of [b, 0, a, 0]
gives a [0, a, 0, b]. Extending this result for ternary sub-signatures
to general signatures, we conclude that either the whole signature
is in A or we can construct a longer sub-signature that are multi-
ples of [1, 0, 1, 0,−1] or [1, 0,−1, 0,−1] after scale. These two cases
are also symmetric, so it remains to prove that

Holant ([1, 0, 1, 0,−1], =2, =4, =6, . . .)(4.5)

is #P-hard. We define the following matrix notation for the signa-

ture [1, 0, 1, 0,−1] : A =

⎡

⎢
⎢
⎣

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 −1

⎤

⎥
⎥
⎦. Now we connect two inputs

of two [1, 0, 1, 0,−1]s together to form a chain. We can calculate

that A3 is

⎡

⎢
⎢
⎣

2 0 0 2
0 4 4 0
0 4 4 0
2 0 0 −2

⎤

⎥
⎥
⎦. Let A′ =

⎡

⎢
⎢
⎣

4 0 0 4
0 16 16 0
0 16 16 0
4 0 0 4

⎤

⎥
⎥
⎦ be the Hadamard

product of A3 with itself. Given a #CSP(A′) instance, we can
simulate it with #CSP2(A3) (and hence (4.5)) via grouping as the
following: For each variable in #CSP(A′), double the number of
appearances in #CSP2(A3), and for each constraint in #CSP(A′),
add two constraints of A3 connecting to the same variable. We see
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that A′ is not in A because the nonzero entries are not of the same
norm, and it is not in P because no two inputs are always equal
or always different, and it is clearly not a product of only unary
signatures. Therefore the problem is #P-hard and so is (4.5). This
completes the proof. �

We now prove the pinning lemma for #CSPd. To remove
[0, 1], [1, 0] in Lemma 4.3, we start with the following special pin-
ning lemma. Similar to Dyer et al. (2009), we have the following
claim.

Claim 4.6. #CSPd(F) ≡T #CSPd
(
F ∪

{
[1, 0]⊗d, [0, 1]⊗d

})
.

The proof is exactly the same as in Dyer et al. (2009) so we omit
it here. The only thing one need to notice is that when adding
auxiliary variables, it is important that it appears a multiple of d
times, and in our case this is guaranteed by [1, 0]⊗d and [0, 1]⊗d.
The following lemma shows that we can effectively realize pinning.
A similar idea was used in Cai et al. (2010).

Lemma 4.7. The problem #CSPd(F) is #P-hard (or in P) if and
only if the problem #CSPd(F ∪{[1, 0], [0, 1]}) is #P-hard (or in P).

Proof. Obviously, the first one can be reduced to the second
one. Hence if the second problem is in P, so is the first. We have
already proved a dichotomy theorem for the second one Lemma 4.3.
So now we may assume the second problem is #P-hard and show
that the first problem is also #P-hard.

We observe that in all the proofs in this paper and in Cai et al.
(2013c), when we prove the second problem to be #P-hard for
any signature set, we reduce one of the following three problems
to it by a chain of reductions: (a) Holant([1, 0, 0, 1]|[1, 1, 0]), (b)
Holant([1, 1, 0, 0]), or (c) Holant([0, 1, 0, 0]) (Vertex Cover or
Matching or Perfect Matching for 3-regular graph). There
are only three reduction methods in this reduction chain: direct
gadget construction, polynomial interpolation, and holographic
reduction.

Given an instance G of either of the three Holant problems
listed above, we consider the graph G⊗d, which denotes the disjoint
union of d copies of G.
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Notice that the value of the above three Holant problems on
the instance G is a nonnegative integer. Denote that value by
val(G). Then the value on G⊗d is exactly val(G⊗d) = val(G)d.
So we can compute the value on G uniquely from its dth power.
Suppose the reduction chain on the instance G produced instances
G1, G2, . . . , Gm of the second problem. The same reduction applied
to G⊗d produces instances of the form G⊗d

1 , G⊗d
2 , . . . , G⊗d

m′ (we note
that in the case of polynomial interpolation, although val(G⊗d) is a
polynomial is of higher degree, the number of unknown coefficients
we need to solve is the same and thus the number of instances we
need for the reduction remains unchanged).

For each G⊗d
i as an instance of #CSPd(F ∪ {[1, 0], [0, 1]}), the

number of occurrences of [0, 1] or [1, 0] is a multiple of d. Hence,
we can view it as an instance of #CSPd(F ∪{[1, 0]⊗d, [0, 1]⊗d}). By
the assumption that #CSPd(F∪{[1, 0], [0, 1]}) is hard, we conclude
that #CSPd(F ∪ {[1, 0]⊗d, [0, 1]⊗d}) is #P-hard. By Claim 4.6, we
have that #CSPd(F) is #P-hard. �

This completes the proof of Theorem 4.1.
In Cai et al. (2012), we proved the following dichotomy for

single ternary signature. Note that we omitted one additional
tractable case here since it cannot happen for real-valued signa-
tures.

Theorem 4.8. Let [x0, x1, x2, x3] be a real non-degenerate signa-
ture. Then Holant([x0, x1, x2, x3]) is #P-hard unless there exists
a 2 × 2 matrix T such that [x0, x1, x2, x3] = T⊗3[1, 0, 0, 1] and
[1, 0, 1]T⊗2 is in A ∪ P.

We now prove that our main dichotomy result (Theorem 3.2)
holds if F contains a non-degenerate ternary signature.

Theorem 4.9. Let F be a set of real symmetric signatures and
X be a real symmetric non-degenerate ternary signature. Then
Holant(X,F) is #P-hard unless F ∪ {X} is A &P-compatible,
for which case there is a polynomial-time algorithm.

Proof. If Holant(X) is #P-hard according to Theorem 4.8,
then we are done. Otherwise, we take T as guaranteed in Theo-
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rem 4.8, and we have the following by applying holographic reduc-
tion

Holant(X,F) ≡T Holant([1, 0, 0, 1], T−1F|[1, 0, 1]T⊗2).

We also have that [1, 0, 1]T⊗2 is non-degenerate. If [1, 0, 1]T⊗2 is
not of form [0, λ, 0], we are done by Theorem 4.2. Otherwise, we
have [0, 1, 0] on the RHS. This enables us to realize =k on the RHS
whenever =k is available on the LHS: Simply connect each of the
k inputs of a =k on the LHS to one of the inputs of k different
copies of [0, 1, 0]’s on the RHS. We can realize all equalities of
arity 3k as the following. First, construct [1, 0, 0, 1] on the RHS
as described above. Once we have a =3k on the RHS, we can
connect 3k copies of [1, 0, 0, 1] to it and realize a =6k on the LHS.
For 6k − 3(k + 1) = 3(k − 1) of the inputs of =6k, partition them
arbitrarily into (k − 1) groups of 3 inputs and connect the inputs
within the same group to a [1, 0, 0, 1] on the RHS. This gives us
=3(k+1) on the LHS. Repeating this procedure, we can realize =3k

for any k. Then we can view it as a #CSP3 problem and we are
done by Theorem 4.1. �

For a signature with arity larger than 3, it is not necessarily true
that we can transform it to [1, 0, 0, 0, 1] by holographic reduction.
But for some special signatures, we can. Formally, we have the
following two corollaries.

Corollary 4.10. Let X be a real non-degenerate generalized
Fibonacci signature of arity no less than 3 and F be a set of sym-
metric signatures. Then Holant(F , X) is #P-hard unless F ∪{X}
is A &P-compatible, for which case there is a polynomial-time
algorithm.

Proof. Let k be the arity of signature X. For a real non-
degenerate generalized Fibonacci signature, there is an orthog-
onal holographic reduction that transforms it into the form of
[1, 0, 0, . . . , 0, a] where a �= 0 after scale. By Theorem 2.3, we
assume that this is already the case with X. If the arity of X is odd,
we realize [1, 0, 0, a] by adding some self-loops and then apply The-
orem 4.9. If the arity is even, we connect two copies of the signature
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using half of their dangling edges to realize [1, 0, 0, . . . , 0, a2] with
same arity. Keep doing this, and we can realize [1, 0, 0, . . . , 0, at]
for any t. If a is a pth root of unity, we get [1, 0, 0, . . . , 0, 1] of arity
k by choosing t = p. Otherwise, we get [1, 0, 0, . . . , 0, 1] by inter-
polation. Having [1, 0, 0, . . . , 0, 1] of even arity k, we can realize all
equality functions with an even arity and the result follows from
Theorem 4.1. �

Corollary 4.11. Let x, y ∈ C, and

X = [x, y, −x, −y, x, y, −x, −y . . .]

be a non-degenerate signature of arity k ≥ 3 and F be a set of
symmetric signatures. Then Holant(F , X) is #P-hard unless F ∪
{X} is A &P-compatible, for which case there is a polynomial-
time algorithm.

Proof. Rewrite Holant(F , X) as Holant(F , X| =2). Applying

a holographic reduction under basis Z =

[
A Bi
Ai B

]

with suitable A

and B, we can make X into =k where k is the arity of X and =2

on the RHS into [0, 1, 0]. With [0, 1, 0] on the RHS, we can realize
all the equality functions whose arities are multiples of k on the
LHS. Then we can apply Theorem 4.1 for #CSPk. �

5. Realizing a signature by approximating it

In this section, we study Holant([1, a, b,−a, 1] ∪ F), an important
case in the proof of Theorem 7.3. We first normalize the signature
[1, a, b, −a, 1] by some orthogonal transformation.

Claim 5.1. There exists a real orthogonal 2 × 2 matrix Q, such
that either [1, a, b,−a, 1]Q⊗4 = c[1, 0, b′, 0, 1] for some b′, c ∈ R, or
[1, a, b, −a, 1]Q⊗4 = [0, 0, b′, 0, 0] for some b′ ∈ R.

Proof. Consider the following orthogonal matrix

Q =

[
r

√
1 − r2

√
1 − r2 −r

]

, for some r, |r| ≤ 1,
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and the 4-ary signature X = [1, a, b,−a, 1] as a vector in R
24

X = (1, a, a, b, a, b, b, −a, a, b, b, −a, b,−a,−a, 1) .

Consider transforming X under Q, and we have

XQ⊗4 =
(d′, a′, a′, b′, a′, b′,
b′, −a′, a′, b′, b′, −a′, b′, −a′, −a′, d′).

where

d′ = −4ar
√

1 − r2 + 8ar3
√

1 − r2 − 2br4 + 2br2

−4br4 + 4br2 + 2r4 − 2r2 + 1

= 4ar
√

1 − r2(2r2 − 1) − 2r2(r2 − 1)(3b − 1) + 1

a′ = −a(8r4 − 8r2 + 1) − r
√

1 − r2(2r2 − 1)(3b − 1)

b′ = 4ar
√

1 − r2 − 8ar3
√

1 − r2 + 2br4 − 2br2 + b

+4br4 − 4br2 − 2r4 + 2r2

= −d′ + 1 + b.

We have that a′ = −a when r = 0 or r = 1. Also, when r = 1/
√

2,
a′ = a. Thus by continuity of the expression of a′, there must exist
some r such that a′ = 0. If for that r we also have d′ �= 0, then we
are in the first case; otherwise, we get the second case. �

Claim 5.1 converts an instance of Holant([1, a, b,−a, 1] ∪ F) to
one of either Holant([1, 0, b′, 0, 1] ∪ (FQ)) or Holant([0, 0, 1, 0, 0] ∪
(FQ)) with the same underlying graph. We prove in Claim 5.16
that the latter is #P-hard. In the following, we simply assume
that we are given Holant([1, 0, b, 0, 1]∪F). If b ∈ {0, 1,−1}, we are
done by Corollary 4.10 and Corollary 4.11. For b �∈ {0, 1,−1}, we
will prove that Holant([1, 0, b, 0, 1]) is #P-hard, and these together
give the following main lemma of this section.

Lemma 5.2. Let X = [1, a, b,−a, 1] be a non-degenerate signa-
ture. Then Holant(F , X) is #P-hard unless F ∪ {X} is A &P-
compatible, for which case there is a polynomial-time algorithm.

In the remaining part of this section, we prove the following
result on the hardness of Holant([1, 0, b, 0, 1]).
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Lemma 5.3. If b �∈ {0, 1,−1}, then Holant([1, 0, b, 0, 1]) is #P-
hard.

To prove this lemma, observe that if we can realize [1, 0, 0, 0, 1],
then we can use it to simulate #CSP 2([1, 0, b, 0, 1]), which is #P-
hard by Theorem 4.1 and the fact b �∈ {0, 1,−1}. If we can realize
[1, 0, 1, 0, 1], then we can apply orthogonal transformation under[

1 1
1 −1

]

to convert [1, 0, 1, 0, 1] to [1, 0, 0, 0, 1] and [1, 0, b, 0, 1] to

[2 + 6b, 0, 2− 2b, 0, 2 + 6b]. To see that [2 + 6b, 0, 2− 2b, 0, 2 + 6b] is
among the hard cases in Theorem 4.1, note that |2 + 6b| �= |2 − 2b|
if b /∈ {0, 1,−1}, so it cannot be transformed into A by T ∈ T4.
It is also not hard to verify that it cannot be transformed into any
signature in P by T ∈ T4.

In the following, we introduce two new techniques for realizing
special signatures [1, 0, 0, 0, 1] or [1, 0, 1, 0, 1]. First, we generalize
the widely used interpolation technique to enable us to interpolate
4-ary signatures instead of unary signatures in the traditional set-
ting. This generalization is already powerful enough for almost all
b. The failed b are roots of some non-trivial integer coefficient poly-
nomials and thus must be algebraic numbers. For transcendental
numbers, we have the following lemma.

Lemma 5.4. For any transcendental real number b, we have

Holant ([1, 0, b, 0, 1]) ≡T Holant ([1, 0, b, 0, 1], (=4)) .

Proof. The idea of the proof is similar to the interpolation of
unary signatures. We first show how to use polynomial interpola-
tion in a slightly more general setting and then apply the result to
Holant([1, 0, b, 0, 1]).

Consider the following matrix

Q =

⎡

⎢
⎢
⎣

1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

⎤

⎥
⎥
⎦ .

Note that we can express a 4-ary signature as a 4 × 4 matrix.
Consider signature B = Q−1diag(1, x, y, 0)Q, where diag(·, ·, ·, ·)
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Figure 5.1: Recursive gadget. Nodes are assigned signature repre-
sented by B.

denotes the diagonal matrix of size 4 with corresponding elements
on the diagonal. We have

B =
1

2

⎡

⎢
⎢
⎣

1 + x 1 − x
y y
y y

1 − x 1 + x

⎤

⎥
⎥
⎦ .

We construct 4-ary gadgets as in Figure 5.1. Then the signature
of the construction with k copies of B is

Bk = Q−1diag(1, xk, yk, 0)Q

=
1

2

⎡

⎢
⎢
⎣

1 + xk 1 − xk

yk yk

yk yk

1 − xk 1 + xk

⎤

⎥
⎥
⎦ .

Consider an instance Ω with n copies of B. Then there exists
{uij}i,j∈{0,...,n}, {vij}i,j∈{0,...,n}, such that we can write the Holant
value as

HolantΩ =
∑

i,j∈{0,...,n}
i+j≤n

uij(1 + x)i(1 − x)jyn−i−j

=
∑

i,j∈{0,...,n}
vijx

iyj.

By replacing B with Bk, we get a series of new instances Ωk with
Holant value

HolantΩk
=

∑

i,j∈{0,...,n}
vijx

ikyjk.
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Let β be the column vector

β = (v00, v01, v02, . . . , v0n, v10, . . . , vnn)T ,

and let αk be the row vector

αk =
(
1, yk, y2k, . . . , ykn, xk, xkyk, . . . , xknykn

)
,

and we have that αkβ = HolantΩk
. Similar to interpolation of

unary signatures, we view vij as variables and get the following

⎡

⎢
⎢
⎢
⎣

α1

α2
...

α(n+1)2

⎤

⎥
⎥
⎥
⎦

β =

⎡

⎢
⎢
⎢
⎣

HolantΩ1

HolantΩ2

...
HolantΩ(n+1)2

⎤

⎥
⎥
⎥
⎦

.(5.5)

We denote A the matrix on the left-hand side. If A is
non-degenerate, then we can reconstruct β for any given instance.
This would enable us to interpolate HolantΩ for all instances Ω
obtained by replacing all appearances of function B with function
Q−1diag(1, a, b, 0)Q for any a and b.

To study the condition under which A is non-degenerate, we
calculate the determinant of A.

det(A) = det

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

α1

α2
...

α(n+1)2

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

= (xy)
n(n+1)2

2 det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
α1

α2
...

α(n+1)2−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= (xy)
n(n+1)2

2

∏

i1>i2 or
i1=i2,j1>j2

(
xi1yj1 − xi2yj2

)
.

The final equality is due to the fact that the resulting matrix is
a Vandermonde matrix. Therefore, det(A) = 0 only if xy = 0 or
xi1yj1 = xi2yj2 for some nonnegative integers i1, i2, j1, j2 such that
either i1 > i2, or i1 = i2 and j1 > j2.

We now try to construct [1, 0, 0, 0, 1] using polynomial interpo-
lation discussed above. Consider the signature X = [1, 0, b, 0, 1]. If
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we write X as a 4 × 4 matrix, then it is easy to verify that X =
Q−1diag(1 + b, 1 − b, 2b, 0)Q, since b is transcendental; we further
have (1+b)(1−b)(2b) �= 0, and X = (1+b)Q−1diag(1, 1−b

1+b
, 2b

1+b
, 0)Q.

Since (1 + b) is only a multiplicative constant, we can view X as
X = Q−1diag(1, 1−b

1+b
, 2b

1+b
, 0)Q without loss of generality. We can

use X to construct gadgets as in Figure 5.1, and since 1 − b �= 0,
b �= 0, this interpolation fails only when

(5.6) (1 − b)i1(2b)j1(1 + b)i2+j2 = (1 − b)i2(2b)j2(1 + b)i1+j1 .

We first argue that the above equation is non-trivial. The coeffi-
cient of the leading term of the left-hand side is (−1)i12j1 and that
of the right-hand side is (−1)i22j2 . Hence if i1 = i2, then j1 > j2

and those terms would be different. The same argument holds if
j1 �= j2, or j1 = j2, but i1 and i2 have different parity. Now we
consider the case when j1 = j2, i1 > i2, and that i1 and i2 have the
same parity. Then Equation (5.6) becomes trivial implies that the
following equation is also trivial

(5.7) (1 − b)i1−i2 = (1 + b)i1−i2 .

Since the above equation is clearly non-trivial, neither is Equation
(5.6).

This is an integer coefficient equation on variable b, and there-
fore all roots must be algebraic numbers. Since we are considering
transcendental number here, we know that Equation (5.6) would
never hold, and thus we can always use polynomial interpolation
to realize Q−1diag(1, a, b, 0)Q for any a, b. Specifically, by setting
a = 1 and b = 0, we can realize the 4-ary equality signature. This
completes the proof. �

For the cases when b is an algebraic real number, we use our
second new technique—realizing a signature by approximating it.
Here is the formal statement.

Theorem 5.8. Let f = [x0, . . . , xk] and v = [v0, . . . , vl] be sym-
metric Boolean signatures of arity k and l, and {gm} be a sequence
of signatures of arity k. We assume that all the signature values
are real algebraic numbers of degree at most d, and there exists a
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constant C > 1 such that for all m, we have |f − gm|∞ < C−m.
If we can compute Holant(gm, v) in time poly(n,m), where n is
the number of the vertices, then we can compute Holant(f, v) in
polynomial time.

To complete the proof of Theorem 5.8, we need the following
technical lemma about real algebraic numbers.

Lemma 5.9 (Corollary 3.12 of Pollard & Diamond 1998). Let a
and b be algebraic integers, and {αi}i∈{1...n}, {βi}i∈{1...m} be conju-
gates of a and b (including a and b) of the corresponding minimal
integer polynomials that define a and b, respectively. Then

n∏

i=1

m∏

j=1

(x − αi − βj)

is an integer polynomial in x with (a + b) as one of its roots.

The following lemma says that linear combinations of algebraic
numbers cannot be too close to each other. This is an important
property we use to recover the true values from approximate values.

Lemma 5.10. Let xi ∈ {−Dt, . . . , Dt} for i = 1, . . . , k be a set of
integer variables and {vi}1≤i≤k’s be a set of algebraic numbers. Let

S =

{
k∑

i=1

xivi|xi ∈ {−Dt, . . . , Dt}
}

.

Then there exists a constant C > 1 depending only on D and {vi},
such that for all t and all distinct r1, r2 ∈ S, |r1 − r2| > C−t.

Proof. We relax the range of x′
is to {−2Dt, . . . , 2Dt}, so we

have a new set S ′ which contains all |r1 − r2|’s from the original
S. Then we only need to show a lower bound for norms of nonzero
elements in S ′.

Let d be the maximum degree of vi’s. For any set of xi’s,∑k
i=1 xivi is also an algebraic number, and the norm of the product

of all its conjugates is a positive rational, which is the constant term
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in the minimal polynomial. This value is lower-bounded by L−t

for some constant L depending on D and vi’s. On the other hand,
the complex norm of these conjugates are upper-bounded by L′t,
where L′ is also a constant depending on D and vi’s. The number
of conjugates of

∑k
i=1 xivi is upper-bounded by dk. Therefore, we

have that the norm of
∑k

i=1 xivi is lower-bounded by L−t/(L′t)dk =

1/(LL′dk)t =: C−t. Note that LL′dk only depends on D and vi’s.
�

We also need an algorithm for integer programming when the
number of variables is fixed. More specifically, consider the follow-
ing problem:

(ILPR)
Given a matrix A ∈ R

m×n and vectors b ∈ R
m,

d ∈ R
n, decide whether there is x ∈ Z

n such
that Ax ≤ b, where 0 ≤ x ≤ d.

Theorem 5.11. (Lenstra (1983), Brimkov & Dantchev (2000))
There is an O(m log ‖d‖) algorithm for ILPR of fixed dimension n.

Proof (Theorem 5.8). Given a Holant instance with n vertices
labeled either f or v, we consider the error introduced by replac-
ing f with gm. We first consider the error of Holant value for a
fixed edge assignment. Suppose the vertices take values f1, f2,
. . . , fn. Then the value of the signature of F with gm replacing f
is within [min

∏n
t=1(ft ± C−m), max

∏n
t=1(ft ± C−m)], where min-

imum and maximum is taken over different choices of plus and
minus signs. Let M = max{1, |x0|, . . . , |xk|, |v0|, . . . , |vl|} be the
maximum absolute value appearing in function f and v. Then the
maximum error in the value of a single assignment is

(
M + C−m

)n − Mn =
n∑

s=1

(
n

s

)

C−msMn−s ≤ nC−m(Mn)n.

To get the last inequality, note that for each of the n terms in the
summation, C−ms ≤ C−m, Mn−s ≤ Mn,

(
n
s

)
≤ nn. There are at

most 2n max{k,l} possible edge assignments, and summing over all
of them gives us a corresponding multiplicative factor as an upper
bound. Therefore, the total error is upper-bounded by

(5.12) nC−m(Mn)n2n max{k,l},
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where M and C are some constants greater than 1 and m is a
parameter we could choose. Now we need to choose a proper m
such that given the hypothesis of the theorem, we can compute
Holant(f, v) in polynomial time.

Let S = {0, 1, 2, . . . , k}, T = {0, 1, . . . , l}. Given an edge
assignment of a Holant instance, the corresponding product for
this assignment is a product of powers of these xi and vi. Hence
the Holant of a given instance can be written as

∑

y∈{0,...,n}S
z∈{0,...,n}T

cy,z

k∏

i=0

xyi

i

l∏

i=0

vzi
i ,

where cy,z ∈ {0, . . . , 2n max{k,l}} is some integer indexed by y and z,
corresponding to the number of edge assignments that evaluates to∏k

i=0 xyi

i

∏l
i=0 vzi

i . Since xi and vi are algebraic numbers of degree

at most d, we can replace xr
i (r ≥ d) with

∑d−1
j=0 c′

jx
j
i , and similarly

for vr
i (r ≥ d). It is easy to see that the new coefficients are

rational numbers, and if we denote c′
i as pi/qi, where (pi, qi) = 1,

then |pi|, |qi| ∈ {0, . . . , Cn}, where C is a constant depending only
on xi and vi. We do this for all the xi and vi, and we have

∑

y∈{0,...,n}S
z∈{0,...,n}T

cy,z

k∏

i=0

xyi

i

l∏

i=0

vzi
i =

∑

y′∈{0,...,d−1}S
z′∈{0,...,d−1}T

c′′
y′,z′

k∏

i=0

x
y′

i
i

l∏

i=0

vz′
i

i

� 1

CH

dk+l
∑

i=1

wiui.(5.13)

Here c′′
y′,z′ are rational coefficients depending on xi, vi and cy,z,

and if we denote it as py′,z′/qy′,z′ , and (py′,z′ , qy′,z′) = 1, then
py′,z′ , qy′,z′ ∈ {−C ′n2

, . . . , C ′n2} where C ′ is a constant depending
on S, T , d, xi, vi. In the last step in Equation (5.13), we take CH as
the least common multiple of the c′′

y′,z′ ; thus, wi’s are integers, and

CH and wi are in {−Dn2
, . . . , Dn2} where D is a constant depend-

ing on S, T , d, xi and vi, while ui’s are constants that correspond to
∏k

i=1 x
y′

i
i

∏l
i=1 vz′

i
i . If we can find a group of integer coefficients wi
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Figure 5.2: The tetrahedron gadget.

such that the last summation equals the original Holant instance,
then we are done.

Let C0 be the constant guaranteed by Lemma 5.10. The idea
is to choose m in Equation (5.12), such that the error (5.12) is less

than 1
3
C−n2

0 . Such an m is still a polynomial of n, and therefore we
can approximate the Holant value in polynomial time. Also, dif-
ferent values of the form in Equation (5.13) are at least C−n2

0 away,

so the (−1
3
C−n2

0 , 1
3
C−n2

0 ) interval around these values are disjoint,
and therefore the true Holant value is in exactly one of them. We
can now form an ILPR, which has the coefficients wi’s in Equation
(5.13) as integer variables and states that the (−1

3
C−n2

0 , 1
3
C−n2

0 )
neighbor of the approximated value contains the RHS of (5.13).
By solving this ILPR, we can find out a set of coefficients wi’s
which gives the true Holant value as the RHS of (5.13).

Remark 5.14. The set of solutions may not be unique, but the
above argument guarantees that the resulting sum is unique.

�
In the following, we use the above reduction to study the com-

plexity of Holant([1, 0, b, 0, 1]). For [1, 0, b, 0, 1], using the tetrahe-
dron gadget in Figure 5.2, we realize a new symmetric signature:
[(b + 1)2(3b2 − 2b + 1), 0, 2b2(b + 1)2, 0, (b + 1)2(3b2 − 2b + 1)]. The
signature is not all-zero due to the assumption that b �= −1. On
keep doing this recursive construction, we can realize a signature

[1, 0, br, 0, 1] with br =
2b2r−1

3b2r−1−2br−1+1
. The following lemma shows
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that this recursive construction converges to a fixed point very fast.

Lemma 5.15. Let b be a real algebraic number, b �= 0, b �= ±1, b �=
1
3
. Let [1, 0, br, 0, 1] be the signature realized by the rth recursive

tetrahedron gadget starting from [1, 0, b, 0, 1]. Let β = 0 if b < 1
3
,

and β = 1 otherwise. Then |br − β| < C−2r , where C > 1 is some
constant. In other words, the recursive construction converges to
either [1, 0, 0, 0, 1] or [1, 0, 1, 0, 1], depending on whether b is smaller
than 1

3
or not.

Proof. We can rewrite the recursion

br =
2b2

r−1

3b2
r−1 − 2br−1 + 1

as

br =
2

2 +
(

1
br−1

− 1
)2 .

And we further have

1

2

(
1

br

− 1

)

=

(
1

2

(
1

br−1

− 1

))2

,

and finally
1

2

(
1

br

− 1

)

=

(
1

2

(
1

b
− 1

))2r

.

Depending on whether 1
2
(1

b
− 1) > 1 or 1

2
(1

b
− 1) < 1, we have

that the recursion br converges to 0 or 1 exponentially fast, which
is exactly what we need. The only exceptional case 1

2
(1

b
− 1) = 1

corresponds to b = 1
3
, which was excluded in the statement of the

lemma. �
The rth gadget contains 4r nodes. We do the recursive gadget

O(log n) levels so it is still of polynomial size. We note that this is
the reason why we cannot use the tetrahedron gadget to interpolate
since we would need polynomial many levels. The speed of conver-
gence in Lemma 5.15 is so fast that we can approximate the target
gadget to within C−poly(n) by a gadget with O(log n) levels of recur-
sive construction. Then by Theorem 5.8 and the above analysis,
we get the hardness for Holant([1, 0, b, 0, 1]) when b �∈ {0, 1,−1, 1

3
}.

This also gives us hardness of Holant([0, 0, 1, 0, 0]).
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Claim 5.16. The problem Holant([0, 0, 1, 0, 0]) is #P-hard.

Proof. We first apply an orthogonal holographic transforma-
tion using the following matrix

Q =

[
1√
2

1√
2

1√
2

− 1√
2

]

,

and we have

Holant([0, 0, 1, 0, 0]) ≡T Holant([1, 0,−1

3
, 0, 1]).

It follows from the argument above that the problem is #P-hard.
�

To complete the proof for Lemma 5.3, the only remaining case
is [1, 0, 1

3
, 0, 1]. This is done in Lemma 6.9 by a reduction from

counting number of Eulerian orientations on 4-regular graphs.

6. Hardness of counting Eulerian orientations
in regular undirected graphs

In this section, we prove a hardness result for a rather indepen-
dent problem: counting Eulerian orientations in regular undirected
graphs. We show hardness for this problem here in terms of the
Holant framework.

First we define Eulerian orientations.

Definition 6.1. Given a graph G = (V,E) of which all vertices
have even degree. Let σ be an orientation of its edges E. Then σ
is an Eulerian orientation iff for each vertex v ∈ V , the number of
incoming edges and outgoing edges of v are the same.

To prove the hardness of counting Eulerian orientations, we
show how to use it to calculate a certain hard-to-compute weighted
sum of orientations on the medial graph of planar graphs. We recall
the definition of medial graphs.
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Definition 6.2 (Las Vergnas 1988). Let G be a plane graph.
For simplicity, we assume that G is connected and that every edge
of G is contained in exactly two different faces. Define its medial
graph H = (VH , EH), where VH consists of the middle points of
edges in G, and for each face in G, connect the middle points on
the border of a face of G to get a cycle, and EH consists of all edges
on all cycles.

Note that medial graphs are 4-regular graphs.
The following theorem shows the relation between Eulerian ori-

entations, medial graphs, and Tutte polynomials. For the definition
of Tutte polynomial, we refer to Bollobás (1998).

Theorem 6.3 (Las Vergnas 1988). Let G be a connected planar
graph, and let O(H) be the set of all Eulerian orientations of the
medial graph H = H(G). Then

(6.4)
∑

O∈O(H)

2β(O) = 2 · T (G; 3, 3),

where β(O) is the number of saddle vertices in orientation O, i.e.,
vertices in which the edges are oriented “in, out, in, out” in cyclic
order.

It is known that calculating the right-hand side of the above is
#P-hard.

Theorem 6.5 (Jaeger et al. 1990, Vertigan 2005). For x, y ∈ R,
if (x, y) ∈ {(1, 1), (−1,−1), (0,−1), (−1, 0)} or satisfies (x−1)(y −
1) = 1, the Tutte polynomial is computable in polynomial time.
Otherwise, it is #P-hard. If the problem is restricted to the class
of planar graphs, the points on the hyperbola defined by (x−1)(y−
1) = 2 become polynomial-time computable, but all other points
remain #P-hard.

Before we prove the main theorem of this section, first observe
that Holant([0, 0, 1, 0, 0]|[0, 1, 0]) is exactly the number of Eulerian
orientations in a 4-regular graph.
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1

2

3

4

Figure 6.1: Recursive gadget. 4-ary signatures are [0, 0, 1, 0, 0], and
binary ones are [0, 1, 0].

Claim 6.6. Let G = (V,E) be a 4-regular graph. Define bipartite
graph G′ = (X,Y,E ′) as the following:

X = {vx|x ∈ V }, Y = {ve|e ∈ E}, E ′ = {(vx, ve)|x ∈
e}. Then the number of Eulerian orientations of G is equal to
HolantG′([0, 0, 1, 0, 0]|[0, 1, 0]).

Now we prove the main theorem of this section. We show how
to calculate the LHS in Theorem 6.3 given an oracle of counting
Eulerian orientations.

Theorem 6.7. Counting Eulerian orientations is #P-hard for 4-
regular graphs.

Proof. We reduce calculating the LHS of Equation (6.4) to
Holant([0, 0, 1, 0, 0]|[0, 1, 0]). Then since it is known that calcu-
lating the Tutte polynomial on graphs at (3, 3) is #P-hard, we
conclude that Holant([0, 0, 1, 0, 0]|[0, 1, 0]) is #P-hard.

Suppose we have [0, 0, 1, 0, 0] on the left and [0, 1, 0] on the right.
Consider the recursive gadget in Figure 6.1. Let

P =

⎡

⎢
⎢
⎣

1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

⎤

⎥
⎥
⎦ ,

G0 =

⎡

⎢
⎢
⎣

0 0 0 1
0 1 1 0
0 1 1 0
1 0 0 0

⎤

⎥
⎥
⎦ , G1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

For a 4-ary gadget, we can represent it as a 4×4 matrix, where the
rows indicate the two inputs on the left side, and the columns indi-
cate the two inputs on the right side, and the inputs are ordered
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in lexicographical order. Then the signature of the gadget in
Figure 6.1 is actually

G0G
k
1 = G0P

−1

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 2k 0
0 0 0 0

⎤

⎥
⎥
⎦P.

We realize the following signature via interpolation

G0P
−1

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1

2
0

0 0 0 0

⎤

⎥
⎥
⎦P =

⎡

⎢
⎢
⎣

0 0 0 1
0 1

2
1
2

0
0 1

2
1
2

0
1 0 0 0

⎤

⎥
⎥
⎦ .

We call this signature Gx. Now we show that

HolantGH
(Gx|[0, 1, 0]) =

∑

O∈O(H)

2β(O),

for a suitably constructed bipartite graph GH . The vertices on
the left side of GH correspond to vertices in H, and the vertices
on the right correspond to edges of H, and they are connected
in the natural way. Note that the resulting graph is not planar
any more, since we need to change the layout of the constructed
gadgets to match the weights. More specifically, according to the
current layout, the signature evaluates to 1 when both input bits 1
and 2 are 1, or both input bits 3 and 4 are 1, and all other inputs
of weight 2 evaluate to 1/2. Thus, when replacing it in the medial
graph, the order of edges should be 1-3-2-4, so that assignments
with two 1’s that give 1 to non-neighboring inputs evaluate to 1,
and assignments with two 1’s that give 1 to neighboring inputs
evaluate to 1/2.

Clearly, there is a 1-1 correspondence between edge assignments
with nonzero values and Eulerian orientations of H: For each edge,
its orientation in H corresponds to an assignment of 0 and 1 on
RHS vertices of GH corresponding to that edge. Also, in H, sad-
dle vertices contribute a factor of 2 to the value of the assign-
ment, while other vertices contribute 1, and correspondingly in
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GH , assignments that produce saddle vertices cause the function
at that vertex to evaluate to 1, while the others evaluate to 1

2
, dif-

fering by a factor of 2. Therefore, the weight of this assignment is
exactly 2β(O)−n, where n is the number of nodes, and we are done
with the reduction. �

Next we show that counting Eulerian orientations in all 2k-
regular graphs are also hard.

Corollary 6.8. For all 2k-regular graphs, k ≥ 2, counting
Eulerian orientations is #P-hard.

Proof. Let X be a 2k-ary signature which evaluates to 0 unless
the weight of the input is k, when it becomes 1. Similar to Claim 6.6,
observe that Holant(X|[0, 1, 0]) characterizes exactly the problem
of counting Eulerian orientations in a 2k-regular graph. Connect-
ing 2k−4

2
[0, 1, 0]’s to a single X gives a [0, 0, 1, 0, 0] on the LHS; thus,

Holant(X|[0, 1, 0]) ≥T Holant([0, 0, 1, 0, 0]|[0, 1, 0]) and is thus #P-
hard. �

Lemma 6.9. Holant([1, 0, 1
3
, 0, 1]) is #P-hard.

Proof. By applying holographic transformation

[
1 1
i −i

]

, we have

that

Holant

([

1, 0,
1

3
, 0, 1

])

≡T Holant([0, 0, 1, 0, 0]|[0, 1, 0]).

This is exactly the counting Eulerian orientations problem on 4-
regular graph. By Theorem 6.7, it is #P-hard. �

7. Dichotomy for Real Holant

In this section, we prove our main result. The idea of the proof is to
use induction on the arity of the signatures. We apply dichotomy
theorems for signatures with smaller arities for the induction step.
The base step would be dichotomy theorems for signatures of arity
three and four. The ternary case is proved in Theorem 4.9 in Sec-
tion 4. In this section, we go on to analyze complexity of signatures
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of arity four. We start with the following lemma in which we have
an additional unary signature.

Lemma 7.1. Let X be a non-degenerate real 4-ary signature and
a, b ∈ R such that they are not both zero. Then Holant(F , X, [a, b])
is #P-hard unless F ∪ {X, [a, b]} is A &P-compatible.

Proof. Since a, b are not both zero, we can apply a real orthog-
onal transformation Q, so that Q[a, b] = [1, 0]. Let Y = Q⊗4X =
[y0, y1, y2, y3, y4]. Note that Y is still a real signature. Since
Holant(QF , Y, [1, 0]) has the same value as the original problem,
it is equivalent to just considering the problem after transforma-
tion. Using [1, 0] in this transformed instance, we realize Y ′ =
[y0, y1, y2, y3]. If Y ′ is non-degenerate, we apply Theorem 4.9. Now
consider the case that Y ′ is degenerate.

If Y ′ is an all-zero signature, then Y is degenerate, which means
that X is degenerate, contradicting our hypothesis. If Y ′ = [1, 0]⊗3,
then Y = [1, 0, 0, 0, ∗] is a non-degenerate generalized Fibonacci
signature and we apply Corollary 4.10. If Y ′ = [0, 1]⊗3, by adding
a self-loop, we can realize [0, 1]. Since we have both [1, 0] and
[0, 1], we apply Theorem 2.4, the dichotomy theorem for Holantc.
Otherwise, by a scaling, we can assume that Y ′ = [1, t]⊗3, where
t ∈ R\{0}, and Y = [1, t, t2, t3, y], where y �= t4. Connecting three
copies of [1, 0] to Y , we can realize [1, t]. Connecting one copy of
[1, t] to Y , we have Y ′′ = [1 + t2, t + t3, t2 + t4, t3 + yt]. This is a
non-degenerate ternary function for any real t �= 0 and y �= t4. We
now apply Theorem 4.9 to finish the proof. �

By a similar argument as in Lemma 4.7, we can replace [a, b]
with [a, b]⊗2.

Lemma 7.2. Let X be a non-degenerate real 4-ary signature, a, b ∈
R such that they are not both zero. Then Holant(F , X, [a, b]⊗2) is
#P-hard unless F ∪ {X, [a, b]⊗2} is A &P-compatible.

We now prove a theorem for Holant problems when we have a
non-degenerate 4-ary function.

Theorem 7.3. Let X = [x0, x1, x2, x3, x4] be a non-degenerate
real-valued 4-ary signature and F be a set of symmetric real-valued
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signatures. Then Holant(X,F) is #P-hard unless F ∪ {X} is
A &P-compatible, for which there is a polynomial-time algorithm.

Proof. As usual, the tractability part follows from algorithms
for #CSP. We prove the hardness part. The main idea is to realize
a degenerate binary function and make use of Lemma 7.2.

By adding a self-loop to X, we have X ′ = [x0 +x2, x1 +x3, x2 +
x4]. If X ′ is all-zero, then we have X = [x0, x1,−x0,−x1, x0] and
we apply Corollary 4.11. If X ′ = [x0 + x2, x1 + x3, x2 + x4] is
degenerate and not all-zero, then we apply Lemma 7.2 directly.

Now we assume that X ′ is non-degenerate. We make a poly-
nomial interpolation by a chain of k copies of signature X ′. The

eigenvalues of X ′ =

[
x0 + x2 x1 + x3

x1 + x3 x2 + x4

]

are λ1,2 = (x0+2x2+x4)±
√

Δ
2

where Δ = (x4 − x0)
2 + 4(x1 + x3)

2. We can realize X ′
k by a

chain of k signature X ′. Since X ′ is real and symmetric, we have

X ′
k = P

[
λk

1 0
0 λk

2

]

P−1, where P is the orthonormal basis formed

by its eigenvectors. We already know that λ1λ2 �= 0 since X ′

is non-degenerate. If we further have that the ratio λ1

λ2
is not a

root of unity, we can interpolate all the binary signatures express-

ible as P

[
x 0
0 y

]

P−1. In particular, we can interpolate P

[
1 0
0 0

]

P−1,

which is a degenerate nonzero binary signature. We are done by
Lemma 7.2.

The exceptional case is that the ratio λ1

λ2
is a root of unity. Since

X ′ is a real symmetric function, both λ1 and λ2 are real. So the
only possible roots of unity are ±1. We have that λ1 = λ2 iff Δ = 0
iff x4 = x0 and x1 = −x3. Also, λ1 = −λ2 iff (x0+x2) = −(x2+x4).
We deal with these exceptional cases separately as follows.
Case 1: x4 = x0 �= 0 and x1 = −x3. This is of form [1, a, b,−a, 1],
and we apply Lemma 5.2.
Case 2: x4 = x0 = 0 and x1 = −x3. If we further have x2 =
0, then this is a signature of form [x, y, −x, −y, x] and we apply
Corollary 4.11. Otherwise, it is of form [0, a, 1,−a, 0]. By the
tetrahedron gadget, we can realize a signature of [6a2 + 3, a, 2a2 +
2,−a, 6a2 + 3]. Since 6a2 + 3 �= 0, this case is proved in case 1.
Case 3: (x0 + x2) = −(x2 + x4), and it does not belong to either
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case 1 or case 2. If x2 �= 0, then after scaling we can assume that
X has form [a, b, 1, c,−2 − a] for some a, b, c ∈ R. If x2 = 0, then
we can assume that X has form [a, b, 0, c,−a] for some a, b, c ∈ R.
We apply the tetrahedron gadget with X, and let the resulting
signature be Y = [y0, y1, y2, y3, y4]. We study the condition under
which (y0 + y2) = −(y2 + y4), or y0 + 2y2 + y4 = 0.

Using the tetrahedron gadget with [a, b, 1, c,−2− a], we realize
a signature of [y0, y1, y2, y3, y4] where

y0 = c4 + 6c2 + 4b3c + 12bc + 3b4 + 6a2b2 + 12ab2 + 12b2

+a4 + 4a + 3,

y1 = −ac3 + c3 + 6bc2 + 3ab2c + 9b2c + 2ab3 + 4b3 + a3b

+3a2b + 3ab + b,

y2 = c4 + 2bc3 + 2b2c2 + a2c2 + 2ac2 + 3c2 + 2b3c + 4bc

+b4 + a2b2 + 2ab2 + 3b2 + 2a2 + 4a + 2,

y3 = −2ac3 − 3abc2 + 3bc2 + 6b2c − a3c − 3a2c − 3ac − c

+ab3 + 3b3,

y4 = 3c4 + 4bc3 + 6a2c2 + 12ac2 + 12c2 + 12bc + b4 + 6b2

+a4 + 8a3 + 24a2 + 28a + 11.

In this case, y0 + 2y2 + y4 = 2((a + 1)2 + (b + c)2)((a + 1)2 + (b −
c)2 +2b2 +2c2 +8); thus, the only real solution to y0 +2y2 +y4 = 0
is a = −1, b = −c. In this case, the signature X can be written as
X = [−1, b, 1,−b,−1] and this belongs to case 1.

Using the tetrahedron gadget with [a, b, 0, c,−a] gives a signa-
ture of [y0, y1, y2, y3, y4] where

y0 = c4 + 4b3c + 3b4 + 6a2b2 + a4,

y1 = −ac3 + 3ab2c + 2ab3 + a3b,

y2 = c4 + 2bc3 + 2b2c2 + a2c2 + 2b3c + b4 + a2b2,

y3 = −2ac3 − 3abc2 − a3c + ab3,

y4 = 3c4 + 4bc3 + 6a2c2 + b4 + a4.

In this case, y0 +2y2 +y4 = 2(a2 +(b+c)2)(a2 +2b2 +2c2 +(b−c)2),
and the only real solution to y0 + 2y2 + y4 = 0 is a = 0, b = −c. In
this case, X = [0, b, 0,−b, 0] and belongs to case 2.
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To summarize, if X is of case 3 but not case 1 or case 2, then
Y is not of case 3. In particular, Y cannot be all-zero.

Now we consider whether Y can be degenerate. Assume that
y0 �= 0, and by scaling assume that y0 = 1. Signature Y being
degenerate means that y2

2 = y4. Combining this with 1+2y2+y4 =
0, we have that y2 = −1, y4 = 1. This means that y1, y3 ∈ {−i, i}.
This is not possible because X is a real-valued signature and so
must Y .

Therefore, whenever X is of case 3 but not of case 1 or case
2, we can construct Y that is non-degenerate and not of case 3.
Therefore Y can be handled in a setting that has already been
proved. This completes the proof. �

Now we are ready to prove our main result.

Proof (Theorem 3.2). As stated in the outline in Section 3, we
prove this theorem by showing that for any non-degenerate sig-
nature X with arity at least three, Holant(X,F) is tractable iff
there exists a 2 × 2 matrix satisfying the conditions. We proceed
by induction on the arity k of X.

The cases of k = 3 and k = 4 are proved in Theorem 4.9 and
Theorem 7.3.

Suppose for arity k < n, we have proved our claim. Now we
have a non-degenerate signature X of arity n ≥ 5. We obtain an
(n − 2)-ary signature X ′ by adding a self-loop to X. If X ′ is non-
degenerate, then we are done by induction hypothesis. If X ′ is all-
zero, then X is of form [x, y, −x, −y, x, y, −x, −y . . .] and we apply
Corollary 4.11. The only remaining case is that X ′ is degenerate
but not all-zero, and we assume that X ′ = [a, b]⊗(n−2) for some
real a and b that are not both zero. By applying an appropriate
real orthogonal transformation, we transform X ′ into [1, 0]⊗(n−2),
and X into Y = XQ⊗n � [y0, y1, . . . , yn]. By Theorem 2.3, we
may just assume that we actually have Y in the place of X. The
fact that X ′ is transformed into Y ′ = [1, 0]⊗(n−2) implies that Y =
[y0, y1, y2,−y1,−y2, . . .]. After adding enough self-loops to Y ′ we
can get either [1, 0] or [1, 0, 0] depending on the parity of n. Then
connecting some copies of [1, 0] or [1, 0, 0] to Y , we can get either
Y ′′ = [y0, y1, y2,−y1] or Y ′′ = [y0, y1, y2,−y1,−y2]. We argue that
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Y ′′ is not degenerate. If y1 = 0, then we must have that y2 �= 0
since otherwise Y is degenerate, contradicting the assumption that
X (and hence Y ) is non-degenerate. Otherwise, y1 �= 0. If Y ′′ is
degenerate, then y0, y1, y2,−y1, (−y2) form a geometric sequence,
and denote the ratio r = y2/y1. It must be that ±i, and y0 = −y2.
This implies that Y ′ is an all-zero signature, a contradiction. Now
we know that such a Y ′′ is not degenerate, and we can complete
the proof by Theorem 4.9 or Theorem 7.3. �
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