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Abstract. We reexamine three classical settings of optimization under
uncertainty, which have been extensively studied in the past, assuming
that the several random events involved are mutually independent. Here,
we assume that such events are only pair-wise independent; this gives rise
to a much richer space of instances. Our aim has been to explore whether
positive results are possible even under the more general assumptions.
We show that this is indeed the case.
Indicatively, we show that, when applied to pair-wise independent dis-
tributions of buyer values, sequential posted pricing mechanisms get at
least 1

1.299
of the revenue they get from mutually independent distribu-

tions with the same marginals. We also adapt the well-known prophet
inequality to pair-wise independent distributions of prize values to get a
1/3-approximation using a non-standard uniform threshold strategy. Fi-
nally, in a stochastic model of generating random bipartite graphs with
pair-wise independence on the edges, we show that the expected size of
the maximum matching is large but considerably smaller than in Erdős-
Renyi random graph models where edges are selected independently. Our
techniques include a technical lemma that might find applications in
other interesting settings involving pair-wise independence.

Keywords: posted pricing · auctions · prophet inequality · revenue max-
imization · bipartite matching

1 Introduction

Optimization in environments with uncertainty has received much attention in
several research areas. It plays a central role in modern EconCS research (see,
e.g., [7, 10] for early surveys in bayesian mechanism design) and is also pervasive,
more broadly, in TCS (the rich theory of random graphs [3] is an example).
Uncertainty manifests itself in many different ways as the following three settings
indicate:
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Sequential posted pricing: A seller has a single item to sell to n buyers.
Each buyer has a random value vi for the item distributed as vi ∼ Fi. The
seller knows distributions {Fi}ni=1 and approaches buyers one by one in an
arbitrary or fixed order. She offers the item to buyer i at a price pi, which
i takes when vi ≥ pi and pays pi to the seller. The goal is to find a pricing
scheme that maximizes the seller’s revenue in expectation.

Optimal stopping: A gambler plays a series of n games, each game i ∈ [n] has
a prize vi distributed according to distribution Fi. The order of the games
and the distribution of the prize values are known in advance to the gambler.
Once the prize vi for game i is realized, the gambler must decide whether to
keep this prize and abandon the remaining games, or to discard this prize
and continue playing. The gambler wants to maximize the expected reward.

Random graph models: Well-known models for the generation of random
graphs assume a fixed set of nodes and produce each edge e between a
pair of distinct nodes with a marginal probability pe. Several graph param-
eters (e.g., the size of the maximum matching) have important meaning in
areas like brain science, networking, or social sciences, and bounding these
parameters is the subject of much research in many fields.

A simplifying assumption in most studies of the above settings is that the
marginal distributions are mutually independent, i.e., the joint distribution is a
product distribution. Under such an assumption, it is well-known that sequential
posted pricing yields approximately-optimal revenue in single-parameter settings
and generalizes nicely to multi-parameter environments [6]. Also, the optimal
stopping strategy for the gambler can be computed by backward induction. A
celebrated result, known as the prophet inequality [15], suggests that a simple
threshold strategy can give an expected reward to the gambler that is at least
50% of the reward that could be achieved by a very powerful prophet, who
has access to the maximum realized prize value [10, 14]. Finally, in the random
graph model where edges among pairs of n fixed nodes are drawn independently
with the same probability p, a value of p = Ω (lnn/n) is sufficient so that a
hamiltonian cycle and, hence, a perfect matching exists, with high probability
(see [3] for related results in random graphs). Unfortunately, such results (i.e.,
tight bounds or good approximations to revenue, gambler reward, or size of the
maximum matching) do not hold for arbitrary joint distributions.

On the other hand, a recent line of work [5, 9] on the monopoly problem for
an additive buyer has proposed an alternative correlation-robust framework to
study general distributions from the robust optimization perspective (see also [1,
2]). In this framework, the algorithm designer knows only marginal distributions
{Fi}ni=1 of each piece of the input and is given no information about correlation
across different pieces in the joint distribution. The evaluation of the algorithm’s
performance is then taken in the worst-case, over the uncertainty of the problem,
i.e., over all possible joint distributions with the specified set of marginal distri-
butions {Fi}ni=1. The fact that the joint distribution is not explicitly given has
an important practical advantage. Indeed, the representation and sampling com-
plexity for learning correlated multidimensional distributions is exponential in
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the dimension n. In this respect, learning and operating with information about
separate marginals is a much simpler task that does not suffer from the curse
of dimensionality. However, the correlation-robust framework does not allow to
incorporate any extra information about the distribution beyond the marginals.
For example in the monopoly problem, there is no obstacle for the seller to ac-
quire additional information, say, about dependencies between pairs of items by
doing more extensive market research. On the other hand, the expected per-
formance guarantees in the correlation robust framework are rather pessimistic
compared to the mutually independent case and the worst-case joint distribution
of the input often admits strong dependencies between its parts. The latter is
not something we usually expect in practice, where it is more likely to see rather
weak dependencies and significant variability between any given pair of input’s
components.

Our goal in this work is to model and study such situations with potential
(weak) dependencies between input components. A straightforward approach
would be to extend the correlation robust framework as follows: (i) specify the
set of marginal distributions for any pair of input components {Fi,j}i,j∈[n] (e.g.,
the joint distribution of values for each pair of items (vi, vj) ∼ Fi,j) and (ii) eval-
uate the expectation in the worst-case over all feasible joint distributions that
agree with {Fi,j}i,j∈[n]. Unfortunately, not all such pair-wise distributions (even
consistent with singleton marginals {Fi}ni=1) would admit a feasible joint distri-
bution4. Even when there exists a feasible joint distribution the set of pair-wise
marginal distributions can sometimes uniquely identify the joint distribution.
Moreover, the extra information does not necessarily help when we compare to
the worst case distribution π∗ for {Fi}ni=1. Indeed, one can take the worst-case
joint distribution π∗ and write down the restriction of π∗ to {π∗i,j}i,j∈[n]. Then,
the performance for this set of pair-wise marginals would not be better than that
for π∗.

To avoid these complications we consider an important special case where
pair-wise marginal distributions {Fi,j}i,j∈[n] are all independent, i.e., Fi,j =
Fi×Fj for all i, j ∈ [n]. In other words, we assume that joint distribution is pair-
wise independent. At first glance, pair-wise independence might appear rather
similar to the standard mutually independence assumption. However, there are
some important differences which we discuss below. We will also highlight the
importance of this robust optimization approach assuming a pair-wise indepen-
dent joint distribution.

1. (Statistics vs. probability model). The idealistic model with mutually inde-
pendent distributions is a probability model that is not easy to verify in the
proper statistical sense. Indeed, the joint distribution has exponential depen-
dency on the number of components, so it would take a super-polynomial
number of samples to confirm that the input distribution is close in total
variation distance to the specific product distribution. On the other hand,

4 For example, if value of item B is always equal to the values of items A and C, then
items A and C cannot be independent.
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the pair-wise independence condition is a statistical condition that can be
checked in practice with only polynomially many samples.

2. (Robustness to weak dependencies of data). In practice, a multi-dimensional
data distribution usually exhibits some form of mutual dependency that
might be noticeable at the level of pair-wise marginal distributions. However,
these dependencies are often weak and it is still reasonable to approximate
each marginal pair distribution Fi,j as the product distribution Fi × Fj . In
other words, we might want to allow small approximation errors in our model
(using a pair-wise independent distribution) to the real joint distribution.
The mutually independent model is a specific distribution, and as such can
be too far from the most likely distribution matching the data. On the other
hand, a robust guarantee for any pair-wise independent distribution is still
meaningful even if the pair-wise marginals of the true input distribution are
slightly perturbed compared to Fi × Fj .

3. (Large class of distributions). To understand the size of the class of pair-wise
independent distributions, let us consider the case of finite discrete supports,
i.e., each marginal distribution Fi has finite support of size |Fi|. In this case
the dimension of the simplex of feasible joint distributions is |F1|·. . .·|Fn| and
the mutually independent distribution is a single point. On the other hand,
there are not more than

∑
i<j |Fi| · |Fj | linear constraints in the description

of a pair-wise independent distribution. The product distribution is pair-
wise independent and has positive probability (i.e., the inequality Pr[v] ≥ 0
is not tight) for any point v in the support. Hence, the dimension of the
pair-wise independent distribution is at least

∏n
i=1 |Fi| −

∑
i<j |Fi| · |Fj |.

1.1 Our results and techniques

In this paper we study the three settings we discussed in the beginning of this
section. We show that any sequential posted pricing mechanism with a given set
of prices {pi}ni=1 has an expected revenue that is at most 1.299 times larger in
the case of mutually independent distributions of buyer values compared to the
case of pair-wise independent distributions with the same marginals. Our result
only requires that prices {pi}ni=1 are offered in Pareto-optimal order, i.e., from
higher to lower prices. The main tool we exploit to prove this result is a lemma
that is conceptually similar to Lovász Local Lemma (LLL; see [13]). Recall that
LLL bounds the probability that none among a series of events happens in terms
of the marginal probabilities of these events, provided that they have a certain
structure of dependencies. Our LLL-type statement bounds the probability that
none among a series of pair-wise independent events happen in terms of their
marginal probabilities. We believe that this lemma will find application beyond
the scope of the current paper. We give an example that shows that our lemma is
essentially tight; this implies that our bound on the revenue of sequential posted
pricing is tight as well.

We also present variations of the prophet inequality when prizes have pair-
wise independent values. A non-standard uniform threshold strategy yields the
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following guarantee. The worst expected reward of the gambler among all pair-
wise independent prize value distributions with given marginals is at least 1/3 of
the best expected prophet’s reward over all pair-wise independent distributions
with the same marginals. Again, we exploit an alternative expression of our local
lemma. Interestingly, we show that uniform threshold strategies cannot yield a
guarantee better than 40%, in contrast to the 50% guarantee of the classical
prophet inequality [15] (see also [10, 14]) for mutually independent distributions.
A non-uniform threshold strategy (exploiting ideas from [6]) is shown to break
this barrier and achieve a 41.4% guarantee, at least for continuous pair-wise
independent distributions. It is slightly more complicated though and requires
additional information on the joint distribution besides the marginals.

Notice that the prophet inequality bounds are not universal like the ones
for sequential posted pricing. Specifically, we show that there exists a uniform
threshold strategy that achieves constant approximation to the prophet’s reward
for a mutually independent prize value distribution but achieves very low ex-
pected reward for a pair-wise independent distribution with the same marginals.
Our results indicate that sequential posted pricing and optimal stopping are two
economic settings where positive results are possible by relaxing independence
to pair-wise independence. We demonstrate that such results are not possible
for second price auctions. Broadening the class of economic problems that are
“friendly” to the pair-wise independence assumption is an important direction
for future research.

Finally, we consider a stochastic model for generating random bipartite
graphs with n nodes in each side of the bipartition, so that each edge exists
with some (non-necessarily uniform) probability. We assume that the expected
degree of any node is ∆. When edges exist in the graph mutually independently,
folklore results (e.g., see [3]) suggest that a perfect matching exists almost cer-
tainly, provided that ∆ = Ω(lnn). Furthermore, we can show that the expected
size of the maximum matching is n − n · O(exp(−∆)). In contrast, in the case
of pair-wise independence (on the existence of edges), the lower bound we can
show is n − n/

√
∆, which leaves open the possibility of non-existence of per-

fect matchings for all interesting range of values for parameter ∆. Our proof is
based on a second-moment argument and exploits the fact that the maximum
matching has the same size with the minimum vertex cover in a bipartite graph.
We also present a non-trivial pair-wise independent distribution over bipartite
graphs that shows that our bound is essentially tight. These results indicate that
a revision of classical results on random graphs under the pair-wise independence
lens might reveal a very interesting new picture.

1.2 Roapmap

The rest of the paper is structured as follows. We present our local-lemma-type
statement in Section 2. Sequential posted pricing is studied in Section 3. Our
results for prophet inequalities are presented in Section 4. Section 5 is devoted
to proving our bounds for random bipartite matchings.
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2 A Local-Lemma-Type Probability Statement

We begin by proving an LLL-style probability statement for pair-wise indepen-
dent distributions. The lemma will be particularly useful in Sections 3 and 4 but
we believe that it will find applications in other settings as well.

Let {Ei}ni=1 be a set of random events with Pr[Ei] = qi. We are interested in
the probability that at least one of the random events happens. If these events
are mutually independent, this probability is exactly

Pr

[
n∨
i=1

Ei

]
= 1−

n∏
i=1

(1− qi).

We want to lower bound this probability when the events are only known to
be pair-wise independent. In Lovász local lemma (LLL), these random events
are either mutually independent or worst-case correlated, and LLL gives a low
bound on the probability that none of the events happens. In a sense, the two
lemmas both relax the independence assumption to a “local” assumption but
in different directions. LLL models situations where the dependencies are only
happening locally: an event is mutually independent with all other events except
its neighbors. In our lemma, we model the setting where independence is only
guaranteed locally: any pair of events are independent with each other but not
necessarily globally. We prove that, in any pair-wise independent distribution,
the probability is at least a constant fraction of the probability in the mutually
independent setting.

Lemma 1. Let {Ei}ni=1 be a set of random events. Let Find and Fπ be a mu-
tually independent and a pair-wise independent distribution over these events,
respectively, with Pr

Find

[Ei] = Pr
Fπ

[Ei] = qi. Then,

Pr
Fπ

[
n∨
i=1

Ei

]
≥

∑n
i=1 qi

1 +
∑n
i=1 qi

and

Pr
Fπ

[
n∨
i=1

Ei

]
≥ 1

1.299
Pr
Find

[
n∨
i=1

Ei

]
=

1

1.299

(
1−

n∏
i=1

(1− qi)

)
.

Proof. We prove only the first inequality here; the proof of the second one is
omitted. We denote by Xi the indicator random variable for event Ei and define
the random variable X =

∑n
i=1Xi. Then

∨n
i=1Ei (the event we are interested

in) is the random event {X > 0}. By definition, we have E[Xi] = qi and thus
E[X] =

∑n
i=1 qi.

Since the random variables {Xi}ni=1 are pair-wise independent, we have

Var [X] =

n∑
i=1

Var [Xi] + 2
∑
i<j

Cov(Xi, Xj) =

n∑
i=1

Var [Xi] =

n∑
i=1

qi(1− qi).
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Let fk = Pr
X∼Fπ

[X = k] for all i ∈ [n]. Using this notation and applying Cauchy-

Schwartz’s inequality, we have

Pr
X∼Fπ

[
X > 0

]
=

n∑
k=1

fk ≥
(
∑n
k=1 k · fk)

2∑n
k=1 k

2 · fk
=

E[X]2

E[X2]

=
E[X]2

Var[X] + E[X]2
=

(
∑n
i=1 qi)

2∑n
i=1 qi(1− qi) + (

∑n
i=1 qi)

2
.

This immediately gives us Pr
Fπ

[
∨n
i=1Ei] = Pr

X∼Fπ
[X > 0] ≥ (

∑n
i=1 qi)

2∑n
i=1 qi+(

∑n
i=1 qi)

2 =∑n
i=1 qi

1+
∑n
i=1 qi

. ut

The upper bound of 1.299 in the statement of Lemma 1 is almost tight. Here,
we give an example where the gap between Pr

Find

[
∨n
i=1Ei] and Pr

Fπ
[
∨n
i=1Ei] is at

least 1.296. In the example, qi = q = 2/(n−1) for all i ∈ [n]. For the distribution
Find, we have Pr

Find

[
∨n
i=1Ei] = 1− (1− q)n, which approaches 1− e−2 as n goes

to infinity.
Now consider the following probability distribution. With probability 2n

3(n−1)
a set of exactly three events among {Ei}ni=1 happen. These three events are
chosen uniformly at random among the

(
n
3

)
possible choices. With the remaining

probability of 1− 2n
3(n−1) no event happens. In this distribution, the probability

that at least one event happens approaches 2
3 as n goes to infinity. The ratio

between the two probabilities approaches (1− e−2)/( 2
3 ) = 1.29699.

It remains to show that this distribution is pair-wise independent. Indeed,
for any i 6= j, we have:

Pr [Ei ∧ Ej ] =
2n

3(n− 1)
·
(
n−2
1

)(
n
3

) =
4

(n− 1)2
= q2,

Pr
[
Ei ∧ Ej

]
= Pr

[
Ei ∧ Ej

]
=

2n

3(n− 1)
·
(
n−2
2

)(
n
3

) =
2(n− 3)

(n− 1)2
= q(1− q), and

Pr
[
Ei ∧ Ej

]
= 1− q2 − 2q(1− q) = (1− q)2,

as desired.

3 Sequential Posted Pricing

In this section, we consider the setting with a seller, who aims to sell a single
item to n potential buyers. Buyer i ∈ [n] has value vi distributed according
to distribution Fi. The seller uses a sequential posted pricing mechanism. He
considers the buyers one by one according to their index; when considering buyer
i, the seller offers her the item at price pi. We consider Pareto-efficient pricing
schemes that satisfy p1 ≥ p2 ≥ ... ≥ pn. In this way, the seller does not risk to
loose revenue to low price buyers, who will have their chance only after the item is
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offered to other buyers at a higher price. Our aim is to analyze sequential posted
pricing mechanisms assuming that the distributions Fi are pair-wise independent
and compare their revenue to the revenue they would have when applied to
mutually independent valuations with the same marginals.

Let us consider the simple case where a uniform price p is offered to all buyers.
In this case, we can directly use Lemma 1 to conclude that the expected revenue
over any pair-wise independent distribution is at least 1

1.299 of the revenue of
a corresponding mutually independent distribution. Indeed, denote by Ei =
{vi ≥ p} the event that buyer i accepts the price. As the price is the same for
all buyers, the probability guarantee immediately translates into the revenue
guarantee. Hence, the revenue of the mechanism when the events Ei are pair-
wise independent is at least 1

1.299 times the revenue of the mechanism when these
events are mutually independent but have the same probabilities.

For the general case where prices can be different, we also need to pay at-
tention to who gets the item. To do so, we apply Lemma 1 n times, each time
considering the first k buyers for k = 1, 2, · · · , n. Let λ = 1.299 be the approx-
imation guarantee from Lemma 1. Let Xi be the random variable indicating
whether the value of buyer i is at least pi, and let qi be the probability that
Xi = 1. Using the second inequality from Lemma 1, we have

λ ·Pr

[
k∑
i=1

Xi > 0

]
≥ 1−

k∏
i=1

(1− qi).

We multiply this inequality by the price difference pk − pk+1 to get

λ(pk − pk+1)Pr

[
k∑
i=1

Xi > 0

]
≥ (pk − pk+1)

(
1−

k∏
i=1

(1− qi)

)
,

where pn+1 = 0. After summing these inequalities for k ∈ {1, . . . , n}, we get

λ ·
n∑
k=1

pk ·Pr [Xk = 1, ∀i < k, Xi = 0] ≥
n∑
k=1

pkqk

k−1∏
i=1

(1− qi) (1)

Observe that the LHS of equation (1) is equal to λ times the revenue generated
by the sequential posted pricing mechanism, while the RHS of (1) is equal to
the revenue the mechanism would have if the valuations of buyers were mutually
independent. We summarize this observation in the following statement.

Theorem 1. A posted pricing mechanism under a pairwise independent distri-
bution of buyer valuations achieves at least 1/1.299 fraction of the revenue under
a mutually independent distribution with the same marginals.

Our lower bound from Section 2 directly translates to a posted pricing instance
with uniform prices. Thus, a sequential posted pricing mechanism for mutually
independent distributions can generate revenue at least 1.296 time more than
for pair-wise independent distributions.
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We note that such robust properties do not necessary hold in other mecha-
nism design settings. In particular, in a second price auction, the revenue gap in
the cases of pair-wise independent and mutually independent buyer valuations
can be huge. The reason is that in the mutually independent case, the second
largest bid is high with large probability, while in the pairwise independent case,
this probability can be very small.

First, consider the following setting. There are n i.i.d. buyers. Each buyer has
value 1 with probability 1

n−1 and value 0 otherwise. The revenue of the second
price auction is then the probability that at least two buyers have value 1, i.e.,

1−
(

1− 1
n−1

)n
− n

n−1

(
1− 1

n−1

)n−1
= 1− 2

(
1− 1

n−1

)n−1
≥ 1− 2/e.

We now construct a pairwise independent distribution in which the value
of each buyer is 1 with probability 1

n−1 and 0 otherwise, and under which the
generated revenue is very small. In this distribution, there are two kinds of val-
uation profiles. The first profile appears with probability 1

(n−1)2 and all buyers

have value 1. In the second profile, one buyer, selected uniformly at random,
has value 1 and the rest of the buyers have value 0. The second price auction
has expected revenue of 1

(n−1)2 as it gets a revenue of 1 only on the first pro-

file. One can easily verify that the probability distribution is indeed pair-wise
independent.

4 Prophet Inequality

Sequential posted pricing is closely related to the prophet inequality from optimal
stopping theory [15]. In this scenario a gambler plays sequentially a series of n
games. Each game i ∈ [n] has prize vi distributed according to distribution Fi.
The order of the games and the distribution of the prize values are known in
advance to the gambler. Once the prize vi for game i is realized, the gambler
must decide whether to keep this prize and abandon the remaining games, or
to discard this prize and continue playing. A prophet in this setting knows the
realization of all prizes in advance and therefore can stop at the right moment
and take the highest prize.

4.1 A uniform threshold policy

It is well-known that the gambler can achieve a 2-approximation of the optimal
prize by following a simple uniform threshold strategy, which is given by a single
threshold v̂ and requires the gambler to accept the first prize i with vi ≥ v̂.
The standard assumption in the prophet inequality literature is that the prize
distributions {Fi}ni=1 for different games are mutually independent.5 Here, we
only assume that the distributions {Fi}ni=1 are pair-wise independent.

5 We note that prophet inequalities for classes of prize distributions with limited cor-
relation have been studied before. The survey of Hill and Kertz [11] discusses early
related results in stopping theory while the papers [4, 8, 12] are representative of re-
cent related work by the EconCS community. However, such results are rarely based
on the use of simple threshold strategies as the one we use here.
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Theorem 2. For any set of marginal prize distributions {Fi}ni=1, there exists a
threshold v̂ such that the expected reward of the uniform threshold strategy for
any pair-wise independent joint distribution is at least 1/3 of the expected value
of the maximum prize6.

Proof. Let REF denote the expected reward of the prophet, i.e., the expected
maximum prize E[maxi vi], and APX denote the expected reward of the gambler
with a uniform threshold strategy. We denote by v̂ the uniform threshold (to be
defined later). Let x =

∑n
i=1 Pr[vi ≥ v̂].

We use the same upper bound for REF as in the standard exposition of the
prophet inequality (e.g., see [10, 14]).

REF = E
v∼F

[
max
i
vi

]
≤ v̂ + E

v∼F

[
max
i

(vi − v̂)+
]
≤ v̂ +

∑
i

E
vi∼Fi

[
(vi − v̂)+

]
.

We note that this upper bound holds for any joint distribution with the given
marginal distributions (not necessary pair-wise independent). In this bound the
RHS depends only on the marginal distributions.

We will split the gambler’s reward APX into two parts: (i) the first part,
APX1, is the guaranteed contribution of v̂ if some reward is taken and (ii) the
second part, APX2, is the extra contribution of vi− v̂ when i is chosen . To bound
APX1, we use Lemma 1:

APX1 = Prπ

[
max
i
vi ≥ v̂

]
· v̂ ≥

∑n
i=1 Pr[vi ≥ v̂]

1 +
∑n
i=1 Pr[vi ≥ v̂]

· v̂ =
x

1 + x
· v̂, (2)

where x
def
=
∑n
i=1 Pr[vi ≥ v̂]. In general, the notation Prπ[·] is used when pair-

wise independent prizes are considered.

To bound APX2, we define the event Ei,v
def
= {v |vi = v; ∀j 6= i, vj < v̂ } for

every v ≥ v̂, i.e., the reward in game i is vi = v while all the remaining prizes
are below the threshold. The crucial property of any joint pair-wise independent
distribution π is that Prπ[Ei,v] ≥ (1 − x)PrFi [vi = v] which we show below.
Indeed, by definition

Prπ [Ei,v] = PrFi [vi = v] ·Prπ

⋂
j 6=i

[vj < v̂]

∣∣∣∣∣∣ vi = v

 .
By the union bound, we have

Pr
π

⋂
j 6=i

[vj < v̂]

∣∣∣∣∣∣ vi = v

 ≥ 1−
∑
j 6=i

Pr
π

[
vj ≥ v̂|vi = v

]
.

6 We remark that, while the expectation for the threshold strategy is taken in the worst
case over any pair-wise independent distribution, the expectation for the prophet is
taken in the best case over any distribution with the given marginals.
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Due to pair-wise independence, Prπ[vj ≥ v̂|vi = v] = PrFj [vj ≥ v̂]. By definition
of x, we know that

∑
j 6=iPr[vj ≥ v̂] ≤ x. Hence,

Pr [Ei,v] ≥ Pr [vi = v] ·

1−
∑
j 6=i

Pr [vj ≥ v̂]

 ≥ (1− x)Pr [vi = v] .

When Ei,vi happens, we get the additional contribution of vi − v̂. As all
random events {Ei,vi}i∈[n],vi≥v̂ are disjoint, we have

APX2 ≥ (1− x)

n∑
i=1

∫
vi≥v̂

(vi − v̂) dFi(vi) = (1− x)

n∑
i=1

E
[
(vi − v̂)+

]
. (3)

Since
∑n
i=1 E[(vi− v̂)+] is a continuous function of v̂ decreasing to zero when

v̂ →∞, we can choose7 the threshold v̂ so that

v̂ = 2 ·
n∑
i=1

E
[
(vi − v̂)+

]
.

Then, by the definition of REF, we have

v̂ ≥ 2

3
· REF, and

n∑
i=1

E
[
(vi − v̂)+

]
≥ 1

3
· REF.

If x ≥ 1, then the lower bound (3) is trivial and we only use (2) to get

APX ≥ APX1 ≥
1

2
· v̂ ≥ 1

3
· REF.

Otherwise, if 0 ≤ x ≤ 1, we combine (2) and (3) to get

APX = APX1 + APX2 ≥
(

2

3

x

1 + x
+

1

3
(1− x)

)
REF

≥
(

2

3

x

2
+

1

3
(1− x)

)
REF =

1

3
· REF.

This completes the proof. ut
7 If the distributions were continuous, we could choose the threshold v̂ so that x =√

5−1
2

. For this value of x we have x
1+x

= 1− x = 3−
√
5

2
= 0.382. Then, we could get

a lower bound on APX by combining (2) and (3) as follows:

APX = APX1 + APX2 ≥ 0.382

(
v̂ +

n∑
i=1

E
[
(vi − v̂)+

])
≥ 0.382 · REF.

In our proof, we assume that distributions can be discontinuous and, thus, we may
not be able to set v̂ to get a particular value of x.
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We now present limitations of uniform threshold strategies for pair-wise in-
dependent distributions. These limitations come in contrast with the case of
mutually independent distributions, where some of such policies can give at
least 50% of the prophet’s value as reward.

Theorem 3. Uniform threshold strategies cannot guarantee more than 40% of
prophet’s value for some pair-wise independent distributions of prize values.

Proof. In the proof, we use the following distribution. There are n + 2 items.
Item 1 has a deterministic value of 1. Item n + 2 has value n with probability
1
n and value 0 otherwise. The values of items 2, ..., n+ 1 have identical marginal
distributions: value 2 with probability 1

n and 0 with probability n−1
n . The joint

distribution π is constructed as follows. When item n+ 2 has value n:

– With probability 1
n −

1
n2 , all items 2, ..., n+ 1 have value 0.

– With probability 1− 1
n , exactly one item among 2, ..., n+ 1 has value 2 and

the remaining items have value 0. The high-value item is selected uniformly
at random among the items 2, ..., n+ 1.

– With probability 1
n2 , items 2, ..., n+ 1 have all values 2.

When item n+ 2 has value 0,

– With probability n−1
2n , items 2, ..., n+ 1 have all value 0.

– With probability 1
n , exactly one item (selected uniformly at random) among

2, ..., n+ 1 has value 2 and the remaining items have value 0.
– With probability n−1

2n , exactly two items among 2, ..., n+ 1 have value 2 and
the remaining items have value 0. The two items are chosen uniformly at
random among the

(
n
2

)
possible pairs.

It is straightforward to verify that this is a pair-wise independent distribution.
The expected value of the prophet is

n · 1

n
+

(
1− 1

n

)
·
(

1 · n− 1

2n
+ 2 · n+ 1

2n

)
=

5

2
− 1

n
− 1

2n2
.

Using a threshold that is smaller than 1, the reward of the gambler is (deter-
ministically) 1. Using a threshold higher than 2, her expected reward is n · 1n = 1,
too. Now, assume that a threshold in (1, 2] is used. Then, the expected reward
of the gambler is

1

n

(
n

(
1

n
− 1

n2

)
+ 2

(
1− 1

n
+

1

n2

))
+

(
1− 1

n

)(
2 · n+ 1

2n

)
= 1+

3

n
− 4

n2
+

2

n3
.

Hence, as n approaches infinity, the reward of the prophet approaches 5/2, while
the reward of the gambler approaches 1 when using any uniform threshold strat-
egy. The theorem follows. ut

We have proved that there exists a threshold such that prophet inequality
still holds with a slightly worse constant. However, unlike the case of sequential
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posted pricing where a constant gap holds for any choice of prices, this is not true
for all choices of thresholds in the prophet inequality setting. We give an example
where a certain threshold strategy achieves constant fraction of the maximum
welfare in the mutually independent case, but it gets almost zero fraction in the
pairwise independent case.

Our example has four items. The values of the first three items are 0 and 1,
equally likely; the fourth item has large deterministic value V > 1. Assuming
mutually independent values, the expected gain of the gambler when she uses
a uniform threshold strategy with the threshold 1 is 7+V

8 . Now, consider the
following pair-wise independent distribution, in which the gambler always gets a
value of 1 when she uses 1 as a uniform threshold. The first three items have val-
ues (1, 1, 1), (0, 1, 0), (1, 0, 0), (0, 0, 1) with equal probabilities. Our claim follows
for large values of V .

4.2 Non-uniform threshold strategies

We now demonstrate that non-uniform threshold strategies can be more powerful
than uniform ones. We adapt a technique from [6]. The gambler uses different
thresholds τ1, τ2, ..., τn and n coins where the probability of the i-th coin toss to
be heads is qi. At step i, if the award has not been given before and the prize vi
exceeds the thresholds τi, the gambler tosses the i-th coin and gets the prize if it
comes heads. In our analysis, we assume that the prize values follow continuous
distributions.

Theorem 4. For any set of continuous marginal prize distributions {Fi}ni=1,
there exist thresholds (τi)i∈[n] and probabilities (qi)i∈[n] so that the expected re-

ward of the gambler’s strategy is at least
√

2 − 1 ≈ 41.4% of the expected value
of the maximum prize.

Proof. For i = 1, 2, ..., n, let pi = Pr[vi ≥ vj ,∀j ∈ [n]] and define τi to be such
that Pr[vi ≥ τi] = pi. Then, E[vi · 1{vi ≥ vj ,∀j ∈ [n]}] ≤ E[vi · 1{vi ≥ τi}] and

E
[
max
i
vi

]
≤
∑
i

E [vi · 1 {vi ≥ τi} ] . (4)

For i = 1, 2, ..., n, let Ri be the event that no award has been given at steps
1, 2, ..., i− 1, Pi the event that vi ≥ τi (i.e., Pr[Pi] = pi), and Qi the event that
the random coin toss at step i comes heads (i.e., Pr[Qi] = qi). For i ≥ 2, we
have

Pr [Ri|vi = v] = Pr
[
Ri−1 ∧ Pi−1 ∧Qi−1 | vi = v

]
≥ Pr [Ri−1 | vi = v] + Pr

[
Pi−1 ∧Qi−1 | vi = v

]
− 1

≥ Pr [Ri−1 | vi = v]− pi−1qi−1. (5)

The first inequality uses the property Pr[A∧B] = Pr[A]+Pr[B]−Pr[A∨B] ≥
Pr[A] + Pr[B] − 1. The second inequality follows since the events Pi−1 and
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Qi−1 and {vi = v} are independent. Summing the inequalities (5) for i = 2, ..., n
together with the obvious fact Pr[R1|vi = v] = 1, we get

Pr [Ri|vi = v] ≥ 1−
∑
j<i

pjqj . (6)

The expected award APX of the gambler is

APX =

n∑
i=1

∫ ∞
τi

vPr [Ri|vi = v] qi dFi(vi)

≥
n∑
i=1

qi(1−
∑
j<i

pjqj)

∫ ∞
τi

v dFi(vi)

≥ min
i

qi
1−

∑
j<i

pjqj

 ·∑
i

E [vi 1 {vi ≥ τi} ]

≥ min
i

qi
1−

∑
j<i

pjqj

 ·E [max
i
vi

]
. (7)

The first inequality follows by (6). The second one is obvious and the third one
follows by (4).

We will now define the qi’s appropriately so that

mini

{
qi

(
1−

∑
j<i pjqj

)}
≥
√

2 − 1. The theorem will then follow by

(7). Let α =
√
2−1
2 and β = (1 +

√
2)2 and define the function g : [0, 1] → R≥0

with g(x) =
√

α
β−x . It can be verified by tedious calculations that

g(x)

(
1−

∫ x

0

g(t)dt

)
= 2α =

√
2− 1

for every x ∈ [0, 1]. Now, let qi = g
(∑

j<i pj

)
and observe that

∑
j<i pjqj ≤∫∑

j<i pj
0 g(t)dt (as g(t) is a decreasing function and the integral in the right hand

side is larger than its Riemann sum for the partition into the intervals of lengths
(pj)j<i). Hence, for every i ∈ [n], we have

qi

1−
∑
j<i

pjqj

 ≥ g
∑
j<i

pj

(1−
∫ ∑

j<i pj

0

g(t)dt

)
=
√

2− 1

as desired. ut

5 Matchings in Random Bipartite Graphs

In this section, we consider a stochastic graph model for bipartite graphs, ex-
tending the classical Erdős-Renyi model. In particular, the stochastic model
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G(L,R, {pe}e∈L×R) is a distribution over bipartite graphs G = (L,R,E) with
E ⊆ R × L, such that the marginal probability of each edge e ∈ R × L to ap-
pear in G is equal to PrG∼G[e ∈ E(G)] = pe. We are interested in the case of
stochastically ∆-regular n-vertex models, which generate bipartite graphs with
|L| = |R| = n and average degree ∆, i.e.,

E
G∼G

[
deg(u)

]
=

∑
e:{u}×R

pe = ∆ and E
G∼G

[
deg(v)

]
=

∑
e:L×{v}

pe = ∆

for every vertex u ∈ L and v ∈ R, respectively.
Note that there might be many ∆-regular n-vertex models with fixed

marginal probabilities. The most well studied case is the adaptation of the
Erdős-Renyi model Gind, where the events e ∈ E(G) are mutually indepen-
dent for e ∈ L×R with pe = p for all e ∈ L×R. Here, we focus on models Gπ

where these events are pair-wise independent. Our aim is to prove bounds on
the expected size µ(G) of the maximum matching of graph G ∼ Gπ. It is well-
known that for the model Gind, the expected size of the maximum matching is
n−O(exp(−∆)) and, hence, perfect matchings exist with high probability when
∆ becomes (super)logarithmic. Such results are not possible in the more general
pair-wise independent case; still, the expected size of the maximum matching is
quite large.

Theorem 5. Let Gπ be a stochastic ∆-regular n-vertex model with marginals
{pe}e∈L×R such that the events {e ∈ E(G)}e∈L×R for G ∼ Gπ are pair-wise
independent. Then, the expected size of the maximum matching of a randomly
generated graph G ∼ Gπ is at least EG∼Gπ [µ(G)] ≥ n− n/

√
∆.

Proof. The main idea of the proof is to look at the aggregate distribution of the
vertex degrees of the whole graph G. On the one hand, the pairwise independence
condition allows us to calculate precisely the expectation and variance of the
degree of any particular vertex. On the other hand, the non-existence of a large
matching µ(G) in a realized graph G ∼ Gπ implies a large deviation of degrees
of many vertices from their mean ∆. This allows us to get the desired bound on
the following random variable f(G), where G ∼ Gπ.

f(G)
def
=

∑
v∈L∪R

(dv −∆) 2, where dv is the degree of each vertex v in G.

In any graph G ∼ Gπ, let Ev
def
= {e ∈ E(G)

∣∣e is incident to v} for each v ∈ L∪R.
The variance of a vertex degree dv is equal to

E
G∼Gπ

[
(dv −∆)2

]
= Var
G∼Gπ

[
dv

]
= Var
G∼Gπ

[∑
e∈Ev

1 {e ∈ E(G)}

]

=
∑
e∈Ev

Var
G∼Gπ

[
1 {e ∈ E(G)}

]
=
∑
e∈Ev

pe · (1− pe)

=
∑
e∈Ev

pe −
∑
e∈Ev

p2e ≤ ∆,
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where the first equality is due to the definition of variance and the fact that
E[dv] = ∆, the third equality is due to the property of variance and the fact
that random variables 1{e ∈ E(G)} are pairwise independent for all e ∈ Ev,
and the fourth equality follows since e ∈ E(G) is a Bernoulli random variable.
Therefore,

E
G∼Gπ

[
f(G)

]
= E
G∼Gπ

[ ∑
v∈L∪R

(dv −∆) 2

]

=
∑

v∈L∪R
E

G∼Gπ

[
(dv −∆) 2

]
≤ 2 · n ·∆. (8)

We also observe that if a realized graph G ∼ Gπ has a small maximum matching
µ(G) < n, then many vertex degrees in G must significantly deviate from ∆. To
this end, we first establish the following lemma (its proof is omitted).

Lemma 2. Let dv be the degree in G of each vertex v ∈ L ∪R. Then, ∀δ ≥ 0∑
v∈L∪R

(dv − δ)2 ≥
2δ2(n− µ(G))2

n
.

We can now combine Lemma 2 for δ = ∆ with (8) to get

2n∆ ≥ E
G∼Gπ

[
f(G)

]
= E
G∼Gπ

[ ∑
v∈L∪R

(dv −∆) 2

]

≥ E
G∼Gπ

[
2∆2(n− µ(G))2

n

]
≥ 2∆2

n
E

G∼Gπ

[
n− µ(G)

]
2

Thus, E
G∼Gπ

[n− µ(G)] ≤ n√
∆

and the theorem follows. ut

5.1 A tight upper bound

We now show that our bound in Theorem 5 is tight for a wide range of values
of parameter ∆ (compared to n). We do so using the following stochastic model
Gπ. In our construction we assume that n−∆ = Ω(n) and ∆ ≥ 2 is an integer8.

1. With probability 1−α (where α is a parameter which we will specify later),
we select uniformly at random a∆-regular bipartite graph with |L| = |R| = n
vertices. Denote by Dreg the uniform probability distribution over these
graphs.

2. With the remaining probability α, we select uniformly at random a subset

A ⊂ L of size |A| = n
2

(
1− 1

c
√
∆

)
, where c is the closest to 1 number such

that |A| is an integer. Note that c would get arbitrary close to 1 as n goes

8 Our construction can be extended to cover the case of non-integer ∆ with some
minor adjustments.
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to infinity. Similarly, we select uniformly at random a subset B ⊂ R of size

|B| = n
2

(
1 + 1

c
√
∆

)
= n − |A|. Next, we describe two distributions D(x1)

and D(x2), each parametrized by a selection probability. In each distribution,
we draw edges between the sets A and B and between the sets L \ A and
R \ B i.i.d. with probability x1 in D(x1) and with probability x2 in D(x2).
In particular:
(a) with probability 0.5, we generate a bipartite graph G ∼ D(x1);
(b) with probability 0.5, we generate a bipartite graph G ∼ D(x2).
We choose x1 and x2 so that the expected degree of the graph G drawn
from the mixture of D(x1) and D(x2) is exactly ∆. In particular, we set

x1
def
= x(1− δ) and x2

def
= x(1+ δ), where x

def
= ∆·n

2·|A|·|B| and δ2
def
= 1

(n−1)c2∆−n .

We choose probability

α
def
=

(n−∆)
(
(n− 1)c2∆− n

)
n(n− 1)c2∆− n2 +∆n2 − 2(n− 1)c2∆2

. (9)

Theorem 6. The model Gπ is pairwise independent over the set of edges, has
probability p = ∆

n for every edge to be realised, and generates bipartite graphs

with a maximum matching of expected size EG∼Gπ [µ(G)] ≤ n
(

1−Ω
(

1√
∆

))
as

long as n−∆ = Ω(n) and ∆ ≥ 2.

The formal proof of Theorem 6 is omitted due to lack of space.
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