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Abstract. Generalized sorting problem, also
known as sorting with forbidden comparisons, was
first introduced by Huang et al. [HKK11] together
with a randomized algorithm which requires Õ(n3/2)
probes. We study this problem with additional
predictions for all pairs of allowed comparisons as
input. We propose a randomized algorithm which
uses O(n log n + w) probes with high probability
and a deterministic algorithm which uses O(nw)
probes, where w is the number of mistakes made by
prediction.

1 Introduction

1.1 Generalized sorting
Sorting is arguably the most basic computational

task, which is also widely used as an important
component of many other algorithms. Pair-wise
comparison is the core of most sorting algorithms.
In the standard model, it is assumed that we can
make comparison between all pairs of elements as we
want and they are all of the same cost. However,
this may not be the case in many applications.
There might be some constrains which forbid us
to compare some pairs of elements, or the costs
for comparing different pairs of elements may be
different. The non-uniform cost sorting model is
studied in [CFG+02, GK01, KK03]. A special case
called matching nuts and bolts problem is studied in
[ABF+94, KMS98].

In this paper, we study the model introduced
by Huang, Kannan and Khanna [HKK11], which
is known as generalized sorting problem or sorting
with forbidden pairs. In this model, only a subset
of the comparisons are allowed, and each allowed
comparison is of the same cost. We can view the
elements as the vertices of a graph, each undirected
edge in the graph represents a pair of elements which
is allowed to be compared. A comparison of two
elements a, b leads to the exposure of the direction of
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edge (a, b). It is guaranteed that the hidden directed
graph is acyclic, and it contains a Hamiltonian path
which represents the total order of all elements. Our
goal is to adaptively probe edges in E to find out the
Hamiltonian path.

For generalized sorting problem, the performance
of an algorithm is measured by the number of edges
it probes. In standard sorting problem where G is a
complete graph, the minimum number of probes re-
quired is Θ(n log n). For general graphs, one may
need more probes. Huang et al. [HKK11] have

proved an upper bound of Õ(n1.5) on the number
of probes by giving a randomized algorithm. When
the graph is dense and the number of edges is as
large as

(
n
2

)
− q, [BR16] proposes a deterministic

algorithm which makes O((n + q) log n) probes to-
gether with a randomized algorithm which makes
Õ
(
n2/
√
q + n+ n

√
q
)

probes with high probability.
Most part of the generalized sorting problem is still
open.

1.2 Algorithms with predictions
Recently, there is an interesting line of research

called algorithm design with predictions [MV20],
which is motivated by the observation that by mak-
ing use of predictions provided by machine learn-
ing, one may be able to design a more effective al-
gorithm. Normally, the better the prediction, the
better the performance. In this framework, we aim
for algorithms which have near optimal performance
when the predictions are good, and no worse than the
prediction-less case when the predictions have large
errors. The above two targets in algorithm design
with predictions are called consistency and robust-
ness respectively.

Take the classic binary search algorithm as an
example, which can find the position of an existing
element in a sorted list in O(log n) comparisons. It
starts by querying the median of the list. However, if
a machine learning algorithm can roughly estimate
the position of the given element, it may not be
always a good idea to start from the middle. Based
on this idea, one designed an algorithm with query
complexity of O(logw), where w is the distance
between the true position of the element and the
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estimated one, which measures the accuracy of the
prediction. This algorithm can be much better than
O(log n) when w is much smaller than n, and no
worse than the prediction-less binary search even if
the estimation is terribly wrong because w is at most
n.

Algorithms with predictions are studied for
caching [LV18, Roh20], ski-rental, online schedul-
ing [PSK18] and other problems. See the nice survey
by Mitzenmacher and Vassilvitskii [MV20].

1.3 Our results
In this paper, we initiate the study of generalized

sorting with predictions. The model is very natural,
besides the undirected graph G = (V,E), we are
also given an orientation of G as input, which are
predictions of the hidden direction of the edges. The
number of mis-predicted edges is denoted by w. With
the help of predictions, we hope to improve the bound
of Õ(n1.5) when w is small.

In section 3, we propose a randomized algorithm
for the generalized sorting problem and prove that
it probes at most O(n log n + w) edges with high
probability. The description of the algorithm is
simple while the analysis is quite subtle and involved.

Theorem 1.1 (An O(n log n + w) randomized
algorithm) There is a polynomial time randomized
algorithm which solves generalized sorting problem in
O(n log n+ w) probes with high probability.

In section 4, we also propose a deterministic
algorithm using O(nw) probes, in order to show that
when w is as small as a constant, the generalized
sorting with prediction problem can be solved using
only linear probes.

Theorem 1.2 (An O(nw) deterministic algo-
rithm) There is a polynomial time deterministic al-
gorithm which solves generalized sorting problem in
O(nw) probes.

Note that in the query complexity model, if we
have two algorithms A and B which use O(f(n))
and O(g(n)) queries respectively, we can simply
merge them into an algorithm C, which simulates
A and B, and make A’s queries and B’s queries
alternately. Then C uses only O(min(f(n), g(n)))
queries. Therefore by combining our algorithms with
the one in [HKK11], both consistency and robustness
can be achieved.

2 Preliminaries

The input of the generalized sorting with predic-
tion problem is an undirected graph G = (V,E) to-

gether with an orientation ~P of E. There is another

orientation ~E of E which represents the underlying
total order and is unknown to us. The problem is
formally stated as follows:

Definition 2.1 (generalized sorting with
prediction) An instance of generalized sort-
ing with prediction problem can be represented as
(V,E, ~E, ~P ), where

• G = (V,E) is an undirected graph.

• ~P , ~E are two orientations of E, i.e. ∀(u, v) ∈ E,

exactly one of (u, v) ∈ ~P and (v, u) ∈ ~P holds,

and exactly one of (u, v) ∈ ~E and (v, u) ∈ ~E
holds.

• ~G = (V, ~E) is the directed graph which repre-
sents the underlying total order, it is guaranteed
that ~G is acyclic and there is a directed Hamil-
tonian path in it.

• ~GP = (V, ~P ) is the predicted directed graph,

there are no more guarantees about ~GP .

An edge (u, v) whose direction is different in ~P

and ~E is called a mis-predicted edge. An in-neighbor
of u in ~GP which is not an in-neighbor of u in ~G is
called a wrong in-neighbor.

We use n = |V | to denote the number of vertices

and w = |~P\ ~E| to denote the number of mis-
predicted edges. The input and the required output
of the problem are stated as follows:

• Input: (V,E, ~P )

• Output: (v1, v2, ..., vn) s.t. ∀1 ≤ i <

n, (vi, vi+1) ∈ ~E, which represents the directed

Hamiltonian path in ~G.

Note that ~E is not given as input, but is fixed
at the very beginning and does not change when the
algorithm is executing.

An algorithm can adaptively probe an edge and
know its direction in ~E. The performance of an
algorithm is measured by the number of edges it
probes, which may be in terms of n and w.

Recall that ~G = (V, ~E) is acyclic, so any subset
~E′ ⊆ ~E naturally defines a partial order of V .
Sometimes we focus on a vertex set V ′, and only
consider the partial order in the induced subgraph
~G[V ′]:

Definition 2.2 (partial order <~E′ and <V ′)

• ~E′ ⊆ ~E defines a partial order of V on graph
(V, ~E′), which is referred to as <~E′ . For a, b ∈ V ,
(a <~E′ b) iff there is a directed path from a to b

which only consists of edges in ~E′.
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• V ′ ⊆ V defines a partial order of V ′ on the
induced subgraph ~G[V ′], which is referred to as
<V ′ . For a, b ∈ V ′, (a <V ′ b) iff there is a
directed path from a to b which only consists
of edges in ~E and only passes vertices in V ′.

Definition 2.3 (vertex sets Nin(G~P , u), Su, Tu)
Denote by Nin(G~P , u) the set of all in-neighbors

of u in the prediction graph, i.e. Nin(G~P , u) =

{v|(v, u) ∈ ~P}.
Denote by Su the set of real in-neighbors of u

among Nin(G~P , u), i.e. Su = {v|(v, u) ∈ ~P ∩ ~E}.
Denote by Tu (with respect to a specific moment)

the set of in-neighbors of u, which are not known to be
wrong at that moment, i.e. the corresponding edges
are either correct or unprobed. Tu = {v|(v, u) ∈
~P ∧ (u, v) /∈ ~Q} where ~Q (also with respect to a
specific moment) is the set of probed directed edges
up to that moment.

Note by definition it always holds Su ⊆ Tu ⊆
Nin(G~P , u). Su and Nin(G~P , u) are fixed while
Tu may change over time. Initially there are no
probed edges, so Tu = Nin(G~P , u). As the algo-
rithm proceeds, some mis-predicted edges between
Nin(G~P , u) and u are found, the corresponding wrong
in-neighbors no longer belong to Tu and Tu will finally
shrink to Su.

3 An algorithm using O(n log n+ w) probes

3.1 Description
The algorithm maintains a set of vertices A satis-

fying ∀u ∈ A, direction of edges between Nin(~GP , u)
and u are all known to us (either probed or can be
deduced from other probed edges). Notice that the
direction of edges in the induced subgraph G[A] must
be all known. When A = V , the direction of all edges
are known and we can easily find the desired Hamil-
tonian path.

We initialize A as ∅, then iteratively add ‘ideal
vertices’ to A, which are defined as follows:

Definition 3.1 (ideal vertex) A vertex u ∈ V
is called an ideal vertex if both of the following
conditions are satisfied:

1. Tu ⊆ A.

2. The partial order <A restricted to Tu is a total
order.

Before adding a vertex u to A, we need to
determine the direction of edges between Tu and
u (those between Nin(~GP , u)\Tu and u have been
already known to be mis-predicted). For an ideal

vertex u, this can be done by using a straightforward
strategy: repeatedly probe the edge (t, u), where t is
the largest vertex in Tu with respect to <A. If the
direction of this edge is correct, i.e. t <~E u, we can
conclude that the direction of all edges between Tu
and u are correct by transitivity. We can end this
phase and add u to A. Otherwise (t, u) is a mis-
predicted edge, t is removed from Tu and we move on
to probe the edge between the new largest vertex in
Tu and u, and so on.

If there is an ideal vertex, we are in an ideal
case: by probing only one edge, we either learn the
direction of all edges between Tu and u and add u
into A, or find a mis-predicted edge. Notice that
each vertex is added to A once, and the wrong probes
are charged to the w term of complexity. Therefore
we can add all vertices to A in only O(n+w) probes,
assuming there is always an ideal vertex in each step.

However, the assumption does not always hold
due to the existence of mis-predicted edges, i.e. there
may be a time when there is no ideal vertex. We have
to relax the conditions to define a new type of vertex
to help, which always exists:

Definition 3.2 (active vertex) A vertex u ∈ V
is called an active vertex if both of the following
conditions are satisfied:

1. Su ⊆ A.

2. The partial order <A restricted to Su is a total
order.

Lemma 3.1. There is at least one active vertex in
V \A if A 6= V .

Proof. Suppose the Hamiltonian path in ~G is
(v1, ..., vn). Let k be the smallest index s.t. vk /∈ A,
then vk satisfies

1. Svk ⊆ {v1, ..., vk−1} ⊆ A.

2. <A restricted to Svk is a total order.

Therefore vk is active at the moment.

An ideal vertex is always active since Su ⊆ Tu
holds, but there may be some wrong in-neighbors not
identified yet (the vertices in Tu\Su) to prevent an
active vertex from being ideal. By cleverly identify
the wrong in-neighbors and remove them from Tu,
an active vertex u would become an ideal one and we
can use the above strategy again.

As Su is invisible to us, we know neither which
vertices are active, nor which in-neighbors of a vertex
are wrong, so we turn to focus on the in-neighbors of
u which prevent it from being ideal:
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1. v ∈ Tu s.t. v /∈ A.

2. v1, v2 ∈ Tu s.t. (v1, v2 ∈ A)∧(v1 6<A v2)∧(v2 6<A
v1).

Now consider an active vertex u. If such v in case
1 exists, then (v, u) must be a mis-predicted edge. If
such v1, v2 in case 2 exists, there is at least one mis-
predicted edge in (v1, u), (v2, u). By probing (v, u) or
both (v1, u), (v2, u) repeatedly, we can keep removing
its wrong in-neighbors from Tu and finally make u
ideal.

For an inactive vertex u, the direction of (v, u) or
both of (v1, u), (v2, u) may be correct, but that tells us
u is not active hence is not the vertex we are looking
for. In this case the vertex v or the pair of vertices
(v1, v2) is called a certificate for u, which proves that
u is currently not active.

Definition 3.3 (certificate) For a vertex u ∈ V ,

1. A type-1 certificate is a vertex v ∈ Su s.t. v /∈ A.

2. A type-2 certificate is a pair of different vertices
v1, v2 ∈ Su s.t. (v1, v2 ∈ A)∧(v1 6<A v2)∧(v2 6<A
v1).

Once a certificate for u is found, we turn to
check the activeness of other vertices and do not need
to probe any other incoming edges for u until the
next vertex is added to A. For a fixed set A, both
activeness of vertices and validity of certificates are
determined and do not change when new probes are
made. Only when A is extended and the current
certificate of u is no longer valid do we need to
look for a new certificate for u. A type-1 certificate
v becomes invalid when v is added into A, while
a type-2 certificate (v1, v2) becomes invalid when
(v1 <A v2) ∨ (v2 <A v1) happens as A expands.

In the worst case, one may need to update the
certificates again and again and thus probe too many
edges. By checking the validity of certificates in a
random order, the worst case is avoided with high
probability. We prove that our algorithm uses only
O(n log n + w) probes with high probability in the
next subsection, where the term n log n comes from
the probes used in re-searching for valid certificates.

Our algorithm works by repeatedly choose a
vertex u which does not have a valid certificate.

1. If it is an ideal vertex, we use the strategy
mentioned above to determine the direction of
edges between Tu and u, then add u to A.

2. Otherwise there must be a vertex v ∈ Tu s.t.
v /∈ A, or a pair of vertices v1, v2 ∈ Tu s.t.
(v1, v2 ∈ A) ∧ (v1 6<A v2) ∧ (v2 6<A v1). We

randomly choose such a vertex v or such a pair of
vertices (v1, v2) and probe the edge(s) between u
and them. Then either at least one mis-predicted
edge is found, or a valid certificate for u is found.

Since there is always an active vertex u, after
finding some mis-predicted edges and removing the
corresponding wrong in-neighbors from Tu, u must
become an ideal vertex, that is how the algorithm
makes progress.

Here is the pseudo code of the algorithm:

Algorithm 1 A randomized algorithm using
O(n log n+ w) probes

1: set A := ∅
2: while A 6= V do
3: pick u ∈ V \A s.t. u does not have a valid

certificate (if there are multiple ones, pick one
with the smallest index)

4: if Tu 6⊆ A then
5: randomly pick v ∈ Tu\A
6: probe (v, u)
7: else if ∃ different v1, v2 ∈ Tu s.t. (v1 6<A
v2) ∧ (v2 6<A v1) then

8: randomly select such a pair v1, v2
9: probe (v1, u), (v2, u)

10: else
11: let t be the largest vertex in Tu w.r.t. <A
12: probe (t, u)
13: if the direction of (t, u) is correct, i.e.

t <~E u then
14: add u to A

3.2 Analysis
We first prove that the algorithm can always

proceed, and always terminates.

Lemma 3.2. The algorithm can always proceed, and
will terminate in finitely many steps.

Proof. We know from Lemma 3.1 that there is always
at least one active vertex outside A if A 6= V .
Since active vertices have no valid certificates, in each
execution of line 3, there is always at least one vertex
which meets our requirements.

In each execution of the ‘while’ loop, exactly one
of the following happens:

1. We find a certificate for u which doesn’t have a
valid one previously.

2. We find a mis-predicted edge.

3. We add a vertex u into A.
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When case 1 happens, we find a new certificate
for u. Only when this certificate becomes invalid do
we need to look for a new one for u. An invalid
certificate will never become valid again since A is
always enlarging. Therefore this case happens for
finitely many times.

Case 2 happens for finitely many times because
once we find a mis-predicted edge, we remove a vertex
from Tu, the size of which is initially finite and non-
negative all the time.

Case 3 also happens for finitely many times
because each vertex is added into A only once.

Now we proceed to analyze the total number of
probes made by the algorithm. First we introduce
some important lemmas:

Lemma 3.3. All vertices are added into A in a fixed
order regardless of the randomness.

Proof. Recall that an ideal vertex is always active,
so we only add active vertices to A. Whether a
vertex u is active or not only depends on the current
A. Therefore ∀1 ≤ i ≤ n, when |A| = i − 1,
the i-th vertex added into A is always the one with
the smallest index among all active vertices in V \A
regardless of randomness.

Corollary 3.4. Let C(a,b)(a, b ∈ V ) denotes the
event that the vertex pair (a, b) becomes comparable
in <A, i.e. (a, b ∈ A) ∧ ((a <A b) ∨ (b <A a)).
As A expands, all

(
n
2

)
such events happen in a fixed

order regardless of the randomness (breaking ties in
an arbitrarily fixed manner).

Remark. Lemma 3.3 and Corollary 3.4 use the
fact that we determine the order among vertices in
Tu not according to all edges probed till now, but
only according to the edges in the induced subgraph
G[A]. It seems more efficient if we use all the
information instead of the restricted portion, but it
will create subtle correlations and we do not know
how to analyze. The above fixed-order properties are
crucial in the proof of our main theorem.

Lemma 3.5. For a random permutation {Y1, ..., Yn}
of {1, ..., n}, the number of elements Yi s.t. Yi =
maxj≤i Yj does not exceed 6 lnn + 6 w.p. at least
1− 1

2n2 .

Proof. A random permutation can be built in such a
way:

• ∀1 ≤ i ≤ n, randomly and independently pick
Zi from {1, ..., i}.

• take the unique permutation {Y1, ..., Yn} s.t.
∀i, Yi is the Zi-th largest element in {Y1, ..., Yi}.

It’s easy to see a random permutation built in
this way is uniformly distributed.

Let {X1, ..., Xn} be a sequence of 0-1 random
variables indicating whether Zi = i. The number
mentioned in the lemma is just X =

∑n
i=1Xi since

Zi = i⇔ Yi = maxj≤i Yj . We have

Pr[Xi = 1] = 1− Pr[Xi = 0] =
1

i

Note that µ = E[X] = Hn =
∑n
i=1

1
i ≈ lnn + γ

as n→∞ where γ is the euler constant, and

lnn+ γ < Hn ≤ lnn+ 1,∀n ≥ 1

Plugging ε = 5 into a Chernoff bound: Pr[X >

(1 + ε)µ] ≤ exp
(
− µε2

2+ε

)
, we have

Pr[X > 6(lnn+ 1)] ≤ exp

(
−25

7
(lnn+ γ)

)
≤ 1

2n2

Theorem 1.1 (An O(n log n + w) randomized
algorithm) There is a polynomial time randomized
algorithm which solves generalized sorting problem in
O(n log n+ w) probes with high probability.

Proof. The correctness of the algorithm directly fol-
lows from Lemma 3.2. We only need to bound the
number of probes it uses.

Follow the proof of Lemma 3.2 we know in each
execution of the ‘while’ loop, exactly one of the three
cases happens:

• We find a certificate for u which doesn’t have a
valid one previously.

• We find a mis-predicted edge.

• We add a vertex u into A.

The algorithm makes no more than two probes
in each loop, so it’s sufficient to bound the number of
occurrences of each cases.

Case 2 and case 3 happen for at most n+w times
in all, because the number of mis-predicted edges is
at most w and each vertex is added into A exactly
once.

We now focus on case 1. Once a valid certificate
for u is found, we won’t make any further probes
for u until its current certificate becomes invalid.
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According to Lemma 3.3, all vertices are added into
A in a fixed order, which means all possible type-
1 certificates for u (the set of which is Su initially)
become invalid in a fixed order.

Each time we find a uniformly random type-1
certificate for u among its currently valid ones. In
the analysis it can be equivalently viewed as that for

each u, a random permutation {P (u)
1 , ..., P

(u)
|Su|} of Su

is chosen and fixed at first, and all type-1 certificates
used in the process are identified according to this
permutation: when a new valid type-1 certificate is

found, let it be P
(u)
i , where i is the smallest index s.t.

P
(u)
i is currently valid as a type-1 certificate for u.

Let {Y (u)
1 , ..., Y

(u)
|Su|} represents the fixed order of

{P (u)
1 , ..., P

(u)
|Su|} to become invalid, i.e. P

(u)
i is the

Y
(u)
i -th earliest to become invalid. {Y (u)

1 , ..., Y
(u)
|Su|}

is a uniformly random permutation as well as

{P (u)
1 , ..., P

(u)
|Su|}, and the total number of valid type-1

certificates found for u equals to the number of Y
(u)
i

s.t. Y
(u)
i = maxj≤i Y

(u)
j .

From Lemma 3.5 we know w.p. at least 1− 1
2n2 ,

this number does not exceed 6 lnn + 6. Take union
bound over all u, w.p. at least 1− 1

2n , no vertex uses
more than (6 lnn+ 6) type-1 certificates, hence total
number of valid type-1 certificates the algorithm finds
does not exceed 6n lnn+ 6n.

The above analysis is exactly the same for type-
2 certificates, since according to Corollary 3.4, the
possible type-2 certificates for u also become invalid
in a fixed order. The only difference is that the
number of valid type-2 certificates for each u may be
up to n2, while it is at most n for type-1 certificates.
Again use Lemma 3.5 and take union bound, w.p.
at least 1 − 1

2n , the total number of valid type-
2 certificates the algorithm finds does not exceed
12n lnn+ 6n.

Combining all cases we can conclude that w.p.
at least 1 − 1

n , the algorithm uses no more than
O(n log n+ w) probes in total.

4 An algorithm using O(nw) probes

Here we briefly introduce a deterministic algo-
rithm using O(nw) probes, to show that the general-
ized sorting with prediction problem can be solved in
only linear probes when w is as small as a constant.

The basic idea is to find a mis-predicted edge in
O(n) probes and correct it in the predicted graph.

We use ~GC = (V, ~PC) to denote the predicted graph

after correction: ~PC = {(v, u) ∈ ~P |(u, v) /∈ ~Q} ∪ ~Q

where ~Q ⊆ ~E is the set of directed edges probed till
now.

If there is a directed cycle in ~GC , there must be
at least one mis-predicted edge on the cycle since the
actual ~G is acyclic. We just probe all edges on a
simple directed cycle, update ~GC and loop again.

If ~GC is acyclic, consider running topological sort
on it. If the direction of all edges in GC are correct,
each time there should be exactly one vertex whose
in-degree is 0. If not, i.e. there are two vertices
v1, v2 with in-degree 0 at the same time, this can
only happen when there are some mis-predicted edges
either adjacent to v1, v2 or on the path produced by
the topological sort before. We probe all such edges
and loop again.

The pseudo code of the algorithm is stated as
follows:

Algorithm 2 A deterministic algorithm usingO(nw)
probes

1: while there is no Hamiltonian path consisting of
only probed edges do

2: if there is a simple directed cycle in ~GC =
(V, ~PC) then

3: probe all the edges on the cycle
4: else
5: run topological sort on ~GC and stop when
∃v1, v2 both with in-degree 0

6: let (a1, ..., ak) be the (partial) topological
order

7: if k = n (i.e. no such v1, v2 found) then
8: ∀1 ≤ i < k, probe the edge (ai, ai+1)
9: else

10: ∀1 ≤ i < k, probe the edge (ai, ai+1)
11: probe all edges adjacent to v1, v2

Theorem 1.2 (An O(nw) deterministic algo-
rithm) There is a polynomial time deterministic al-
gorithm which solves generalized sorting problem in
O(nw) probes.

Proof. In each execution of the ‘while’ loop, exactly
one of the following three cases happens, and we
analyze them separately:

1. There is a simple directed cycle in ~GC . Since the
actual ~G is acyclic, at least one edge on the cycle
in ~GC is mis-predicted. By probing all edges on
it we will find at least one mis-predicted edge.

2. ~GC is acyclic and k = n in line 7, i.e. the
topological sort terminates normally. By probing
all edges between the adjacent vertices in the
topological order, we either find a mis-predicted
edge, or can know that the resulting path is just
the desired Hamiltonian path.

Copyright © 2021 by SIAM
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3. ~GC is acyclic and there are two different vertices
v1, v2 with in-degree 0 during the topological sort.

In this case, a mis-predicted edge must be found
in line 10 or line 11. Prove it by contradiction,
assume all edges probed in line 10 and line 11
are correct, if k > 0, (ak, v1) and (ak, v2) must

both lie in ~GC since the topological sort stops
just after handling ak, so ∀1 ≤ i ≤ k, (ai <~E
v1)∧(ai <~E v2) holds due to transitivity. W.l.o.g
assume v1 <~E v2. Consider the directed path

from v1 to v2 in the actual graph ~G, let it be
(b1, ..., bl) where b1 = v1 and bl = v2. Note that
a1 <~E ... <~E ak <~E b1 = v1 <~E ... <~E bl = v2.

Therefore the edge (bl−1, bl) ∈ ~GC and bl−1 /∈
{a1, ..., ak}, which contradicts the fact that the
in-degree of v2 is 0 at that moment.

Therefore in each loop, we either find at least
one mis-predicted edge in ~GC or find the correct
Hamiltonian path. It’s obvious that the number of
probes we make is O(n) in each loop, so the total
number of probes does not exceed O(nw).
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