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Abstract
We consider a fundamental problem in microeconomics:
Selling a single item among a number of buyers whose
values are drawn from known independent and reg-
ular distributions. There are four widely-used and
widely-studied mechanisms in this literature: Anonymous
Posted-Pricing (AP), Second-Price Auction with Anony-
mous Reserve (AR), Sequential Posted-Pricing (SPM),
and Myerson Auction (OPT). Myerson Auction is optimal
but complicated, which also suffers a few issues in prac-
tice such as fairness; AP is the simplest mechanism, but its
revenue is also the lowest among these four; AR and SPM
are of intermediate complexity and revenue. We study
the revenue gaps among these four mechanisms, which
is defined as the largest ratio between revenues from two
mechanisms. We establish two tight ratios and one tighter
bound:

1. SPM/AP. This ratio studies the power of discrimi-
nation in pricing schemes. We obtain the tight ratio
of roughly 2.62, closing the previous known bounds
[e/(e− 1), e].

2. AR/AP. This ratio studies the relative power of
auction vs. pricing schemes, when no discrimination
is allowed. We get the tight ratio of π2/6 ≈ 1.64,
closing the previous known bounds [e/(e− 1), e].

3. OPT/AR. This ratio studies the power of discrim-
ination in auctions. Previously, the revenue gap is
known to be in interval [2, e], and the lower-bound of
2 is conjectured to be tight [38, 37, 4]. We disprove
this conjecture by obtaining a better lower-bound of
2.15.

1 Introduction

How to maximize the expected revenue of a seller,
who aims to sell a single item among a number
of buyers, is a central problem in microeconomics.
The simplest mechanism is the Anonymous Posted-
Pricing (AP) mechanism. An anonymous posted-
pricing mechanism simply posts a price p for all
buyers. The item is sold iff at least one buyer values
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the item higher than or equal to p. If the seller
knows value distributions of the buyers, he can choose
a proper price p to maximize his expected revenue
among all AP mechanisms. Although quite widely-
used, this is not the optimal method to sell a single
item. The optimal mechanism is the remarkable
Myerson Auction [46] (which will be denoted by
OPT in the following discussions). Compared to AP
mechanism, Myerson Auction is considerably more
complicated, mainly due to two reasons:

1. It discriminates different buyers with different
value priors. This may incur some fairness issues,
and is not feasible in some markets.

2. It is an auction rather than a pricing scheme,
thus involves more communications between the
seller and the buyers. This may also raise some
privacy concerns for the buyers, since they need
to report their private values, rather than make
take-it-or-leave-it decisions.

These complications and some other undesirable
issues hinder the prevalence of Myerson Auction. To
address these issues, two simple mechanisms with
intermediate complexity (w.r.t. OPT and AP) are
well-studied in the literature, and are widely-used in
practice: (1) To avoid discrimination, one may use
the Second-Price Auction with Anonymous Reserve
(AR) [38]; and (2) To reduce communications between
the seller and the buyers, one may use the Sequential
Posted-Pricing (SPM) mechanism [18, 19]. We defer
formal definitions of these mechanisms to Section 2.

These four mechanisms form the lattice structure
in Figure 1, both in terms of simplicity, and in terms
of revenue but in reversed order. It is well-known in
microeconomics that there are revenue gaps between
any two of them. But how large can these gaps
possibly be?

Quantitative analysis of these gaps is also a strik-
ing theme in the theory of algorithmic mechanism de-
sign. To measure the gaps among mechanisms, the
approximation ratio, which is originated from theo-
retical computer science, turns out to be a very pow-
erful language. There is rich literature that studies
revenue gaps/approximation ratios among different
mechanisms [13, 33, 9, 34, 41, 21, 22, 32, 26, 4, 25].
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1.1 Our Results In the environment with asym-
metric regular distributions, no tight revenue gaps
were previously known, for any pair of these four ba-
sic mechanisms. In this paper, we establish two tight
ratios and one tighter bound, where the last one be-
tween OPT and AR disproves a conjecture of near a
decade [38, 37, 4].

SPM vs. AP. This comparison studies the
power of discrimination in pricing schemes. We ob-
tain the tight ratio of 2.62 in asymmetric regular
setting. In the other three settings, namely asym-
metric general, i.i.d. general and i.i.d. regular set-
tings, tight ratios were known to be n [4], 2 and
e/(e − 1) ≈ 1.58 [37, 26], respectively. The last two
ratios can be got by combining results in [46, 43, 39],
which was first observed in [35].

AR vs. AP. This comparison studies the rela-
tive power of auction vs. pricing schemes, when no
discrimination is allowed. We get the tight ratio of
π2/6 ≈ 1.64 in the most general setting. This ratio
is also tight, in both of asymmetric regular and i.i.d.
general1 settings. In the most special i.i.d. regular
setting, where AR is exactly OPT, an upper-bound of
e/(e− 1) ≈ 1.58 was obtained in [19], and was shown
to be tight afterwards [37].

OPT vs. AR. This comparison studies the
power of discrimination in auctions. Up till now,
tight ratios are got in all settings [46, 37, 4], except
for the one with asymmetric regular distributions.
The problem in this setting was initiated by Hartline
and Roughgarden [38], who proposed the so-called
simple versus optimal paradigm. In that paper, they
proved an upper-bound of 4 (which was improved to
e subsequently [4]), and provided a 2-approximate
lower-bound example. The ratio of 2 was conjectured
to be tight in that paper, and had been remaining
to be the known worst-case instance in the last
decade. Nevertheless, in Section 5 we disprove this
conjecture by proposing a sharper 2.15-approximate
lower-bound example.

These three bounds also improve some other
bounds by implication. For example, by Alaei et
al. [4], the tight ratio between OPT and AP was
known to be in interval [2.23, e]. Given our tight ratio
of 2.62 for SPM vs. AP, this interval is narrowed to
be [2.62, e].

For the two tight ratios, worst cases are reached
when there are infinitely many buyers. Either upper-
bound is proved by writing the revenue gap as the
objective of a mathematical program. This approach
was initiated in [21, 4]. Recently, a similar approach

1Notably, in i.i.d. settings (regular or general), this result

completes the last piece of the puzzle (see Table 2).

was also used to give a tight Price of Anarchy for
multi-unit auction [11]. Our work further illustrates
that this is a powerful approach to get tight ratios.
En route, we develop a number of tools to handle
these mathematical programs, which may find their
applications in future work.

Previously, most known tight revenue gaps are
achieved with “small” worst-case instances [13, 38,
19, 40], say two buyers for example. For the gap
between OPT and AR, it was conjectured in [38] that
a two-buyer example was tight. Our tighter three-
buyer and four-buyer lower-bound examples suggest
the worst case may be achieved by an infinite-buyer
instance, and mathematical program might serve as
the right approach towards the ultimate solution.

1.2 Open Problems and Conjectures Al-
though we get two tight ratios, there are three
ones left open, among these four basic mechanisms,
namely OPT vs. AP, AR and SPM respectively (in the
lattice structure, AR and SPM are incomparable, thus
the ratio between them is not that interesting). The
main obstacle to getting these tight ratios by current
approaches is that we do not have a good method to
express OPT in a mathematical program. It is easy
to write AP, and in this paper we develop tools to
deal with AR and SPM, which enable the proof of
our results.

By our work, the ratio of OPT to AP is now in a
very narrow interval [2.62, e]. We conjecture that the
lower-bound of 2.62 is tight, due to the following two
reasons. First, in our tight example for SPM vs. AP
(see Example 2 in Appendix A.4), OPT does achieve
the same revenue as SPM (suggested by Lemma 3.2
in Section 3, and Remark 3 in Appendix A.1). Sec-
ond, in all other three settings, namely asymmetric
general, i.i.d. general and i.i.d. regular settings, AP
has the same revenue gaps w.r.t. OPT and SPM (see
Table 2 and Table 3 in Section 6).

By our improved lower-bound, the tight ratio
for OPT vs. AR is now in interval [2.15, e]. We
believe that neither the lower-bound nor the upper-
bound is tight. On the other hand, by Correa et
al. [25, 24], the ratio of OPT to SPM is in interval
[1.34, 1.50]. We slightly believe the lower-bound is
tight. For both problems, tools developed here for
AR and SPM may be helpful, and the tight ratios
may be achieved by infinite-buyer instances, similar
to our tight examples.

1.3 Further Related Works This line of work
was initiated by Hartline and Roughgarden [38], who
showed that the revenue gap between OPT and AR is
in interval [2, 4]. The most related work of Alaei et
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OPT: discriminate auction

SPM: discriminate pricing AR: anonymous auction

AP: anonymous pricing

[1.34, e/(e− 1)]
[2, e]

[2.15, e]

[2.23, e] [2.62, e]

2.62
[e/(e− 1), e]

π2/6
[e/(e− 1), e]

Figure 1: Revenue gaps among basic mechanisms in asymmetric regular setting; our results are marked in
bold. A thorough summary of results in all settings can be referred in Section 6.

al. [4] initiated the mathematical program approach
in this context, and gave an improved upper-bound
of e for OPT vs. AP. They exploited a technique
called Ex-Ante Relaxation, in that it is difficult to
directly quantify the revenue from OPT. Ex-ante
relaxation is a “fake” mechanism. Nevertheless, it
gives an upper-bound for OPT, and is easy to deal
with in mathematical programs. The upper-bound of
e is the tight ratio between that and AP. Chawla et
al. [19] introduced the notion of ex-ante relaxation,
which is originated from SPM, and was refined by
Alaei [2] later.

Chawla et al. [18, 19] initiated the study for
OPT vs. SPM, by acquiring an upper-bound of
e/(e − 1) ≈ 1.58 in asymmetric settings (regular or
general). Later, Yan [51] showed that the same ratio
holds in more general settings. Very recently, this
e/(e− 1) barrier was beaten in [6, 10, 24]. Moreover,
Correa et al. [25] obtained the tight ratio of 1.34
in i.i.d. settings (regular or general). Hajiaghayi
et al. [35] first found the connection between this
problem and the notion of prophet inequalities in
optimal stopping theory [42, 43]. The last decade has
seen extensive progress on (single and combinatorial)
prophet inequalities [7, 40, 48, 49, 1, 30, 29] (see the
survey by Lucier [45] and the references therein for
more literature), due to their appealing applications
in algorithm and mechanism designs.

In multi-item environments, optimal mechanisms
could be even more complicated. There is a long
line of works on proving that simple mechanisms con-
stantly approximate the optimal [18, 12, 19, 36, 3, 44,
8, 14, 31, 50, 52, 15, 20, 5, 16, 28, 27]. All these works
assume that the distributions of different buyers are
independent. To sell a single item among correlated
buyers, Myerson Auction may not be optimal. For
this, some simple and approximately optimal mecha-
nisms were proposed, such as look-ahead auction and

k-look-ahead auction [47, 23]. For a full survey on
simple auctions, one can refer to the book entitled
“Mechanism Design and Approximation” by Hart-
line [37].

2 Preliminaries

Throughout the paper, we consider the single-
item environment, where there are n buyers with
bids2 {bi}ni=1 drawn independently from distributions
{Fi}ni=1. Most of our results are established under the
standard assumption that all distributions are regu-
lar. Moreover, the family of triangular distributions
is widely used in our analysis. We introduce these
two concepts below.

Regular Distributions and Revenue-
Quantile Curves. Given a cumulative density
function (CDF) F (p) and its probability density
function f(p) (which is assumed to be exist-
ing), the virtual value function is defined as

ϕ(p)
def
= p− 1−F (p)

f(p) , and the revenue-quantile curve is

defined as r(q)
def
= q ·F−1(1−q). By standard notion,

distribution F (p) is regular (i.e. F ∈ Reg) iff its
virtual value ϕ(p) is non-decreasing, or equivalently,
iff its revenue-quantile curve r(q) is concave. We
interchange the definitions whenever one is more
convenient for our use.

Triangular Distributions. This family of dis-
tributions is first introduced in [4], named according
to the shapes of their revenue-quantile curves (as Fig-
ure 2 suggests). Parameterized by vi ∈ (0,∞) and
qi ∈ (0, 1], a triangular distribution Tri(vi, qi)’s CDF
is defined as:

Fi(p) =

{
p(1−qi)

p(1−qi)+viqi p ∈ [0, vi)

1 p ∈ [vi,∞)
.

2All mechanisms studied in this paper are truthful, so

buyers’ bids always equal to their true values.
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For the triangular distribution Tri(N, 1
N ), its CDF

converges to F (p) = p
p+1 when N goes to infinity. We

denote this special triangular distribution by Tri(∞).

ri(q)

q
1qi

viqi

0

(a) Revenue-quantile curve

Fi(p)

p
vi

1

0

1− qi

(b) CDF

Figure 2: Demonstration of triangular distributions

In this paper, we study the revenue gaps among
the following four families of mechanisms.

Anonymous Posted-Pricing (AP). An
anonymous posted-pricing mechanism simply posts
a price p to all buyers. The item is sold iff at least
one buyer values the item no less than p. We use

AP(p, {Fi}ni=1)
def
= p ·

(
1−

n∏
i=1

Fi(p)

)
to denote the

revenue by posting an anonymous price at p, and

abuse AP({Fi}ni=1)
def
= max

p∈[0,∞)
{AP(p, {Fi}ni=1)} to

denote the optimal revenue among this family of
mechanisms. We often drop the term {Fi}ni=1 for
notational simplicity (the same below for SPM, AR
and OPT), when there is no ambiguity from the
context.

Sequential Posted-Pricing (SPM). Given an
order σ : [n] → [n] over buyers, the seller
sequentially posts price pσ-1(i) to the i-th com-
ing buyer. The item is sold to the i-th buyer
who first values it bσ-1(i) ≥ pσ-1(i). Given
an instance {Fi}ni=1, let SPM(σ, {pi}ni=1, {Fi}ni=1)
denote the revenue achieved by a specific pair

of σ and {pi}ni=1, and let SPM(σ, {Fi}ni=1)
def
=

max
{pi}ni=1

{SPM(σ, {pi}ni=1, {Fi}ni=1)} be the revenue

from the optimal pricing strategy under order σ.
Unless otherwise stated, we assume the seller can

choose the order σ, and abuse SPM({Fi}ni=1)
def
=

max
σ∈Π
{SPM(σ, {Fi}ni=1)}.
Second-Price Auction with Anonymous

Reserve (AR). An anonymous reserve mechanism
with reserve price p runs in the following way: If
there is no buyer who bids above p, the item remains
unsold; if there is exactly one buyer biding above p,
then sell this item to this buyer with price p; other-
wise, the buyer with highest bid gets the item, and
pays the second highest bid (which is the remarkable
Second-Price Auction). Given distributions {Fi}ni=1,
let AR(p, {Fi}ni=1) be the revenue by running anony-
mous reserve mechanism with reserve price p, and

let AR({Fi}ni=1)
def
= max

p∈[0,∞)
{AR(p, {Fi}ni=1)}. It is

easy to see AR(p, {Fi}ni=1) ≥ AP(p, {Fi}ni=1), for all
p ∈ [0,∞), and further AR({Fi}ni=1) ≥ AP({Fi}ni=1).
We defer the explicit formula for AR(p, {Fi}ni=1) to
Section 4.

Myerson Auction (OPT). Given distributions
{Fi}ni=1, Myerson Auction runs in the following way:
Each buyer i is associated with a virtual value

function ϕi(bi)
def
= bi − 1−Fi(bi)

fi(bi)
. Upon receiving bids,

the seller sells the item to the buyer with the highest
virtual value (required to be above 0), and charges
him a critical price p that is the minimum bid for
him to win.

3 Sequential Posted-Pricing vs. Anonymous
Posted-Pricing

In this section, we study the revenue gap between
SPM and AP, assuming that buyers’ values are drawn
from regular and independent (not necessarily iden-
tical) distributions. This problem is formed in the
following program (we safely drop the constraint on
p ∈ [0, 1] as it always holds):

max
{Fi}ni=1⊂Reg

SPM = max
σ∈Π,{pi}ni=1

{SPM(σ, {pi}ni=1)}

(P1)

s.t. AP(p) = p ·

(
1−

n∏
i=1

Fi(p)

)
(3.1)

≤ 1,∀p ∈ (1,∞)

By solving this program optimally, we prove the
following theorem.

Theorem 3.1. For asymmetric regular distribu-
tions, the supremum of the ratio of SPM to AP is

1 +

∫ ∞
1

x · (−Q′(x)) · e−Q(x)dx ≈ 2.6202,
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where Q(p)
def
= ln

(
p2

p2−1

)
− 1

2Li2

(
1
p2

)
and Li2(z)

def
=

∞∑
k=1

zk

k2 is the polylogarithm function of order 2.

Proof Overview. Our first step is to show that
in the worst case, an instance {Fi}ni=1 falls into the
family of triangular distributions. Afterwards, we
clarify it is safe to assume that there is a buyer with
distribution Tri(∞), who contributes a revenue of 1
to SPM. These are formulated in Section 3.1, af-
ter which the annoying objective of Program (P1),
SPM = max

σ∈Π,{pi}ni=1

{SPM(σ, {pi}ni=1)}, can be ex-

pressed explicitly.
We further prove in Section 3.2 that the revenue

from the remaining buyers is upper-bounded by that
from infinitely many “small buyers” (in terms of the
possibility of buying the item), which is captured by
the integration term in the theorem.

We provide a matching lower-bound example in
Appendix A.4. The idea is simple: Use finitely many
“small buyers” with triangular distributions to ap-
proach the instance in the upper-bound proof. With
sufficiently many buyers, SPM can be arbitrarily close
to the upper-bound.

3.1 Upper-Bound Analysis I: Reductions Ex-
ploiting the idea in [4], we exhibit a method to tailor a
regular instance {Fi}ni=1 into a triangular one so that
SPM remains the same, while AP tends to decrease.

Lemma 3.1. For any regular instance {Fi}ni=1, there
exists a triangular instance {Tri(vi, qi)}ni=1 such that
(1) SPM ({Tri(vi, qi)}ni=1) ≥ SPM ({Fi}ni=1); and
(2) AP ({Tri(vi, qi)}ni=1) ≤ AP ({Fi}ni=1).

We defer the proof of Lemma 3.1 to Ap-
pendix A.1. Transparently, to study the worst case
of Program (P1), it suffices to focus on triangular
instances. For notational simplicity, we re-index all
Tri(vi, qi)’s such that v1 ≥ v2 ≥ · · · ≥ vn, and keep
using Fi to denote the CDF of Tri(vi, qi). Recall the
formula for each Fi defined in Section 2, we rewrite
constraint (3.1) as

AP(p) = p ·

(
1−

n∏
i=1

Fi(p)

)

= p ·

1−
∏
i:vi≥p

[
p(1− qi)

p(1− qi) + viqi

]
≤ 1 ∀p ∈ (1,∞).

(3.2)

In Appendix A.1, we prove the following structural
lemma of SPM and OPT.

Lemma 3.2. Given a triangular instance
{Tri(vi, qi)}ni=1 with v1 ≥ v2 ≥ · · · ≥ vn, (1) the
optimal sequential posted-price mechanism posts
price pi = vi to the i-th buyer, for i from 1 to n; and

(2) SPM = OPT =
n∑
i=1

viqi ·
i−1∏
j=1

(1− qj).

Rearranging constraint (3.2), we rewrite Pro-
gram (P1) as follows:

max
{Tri(vi,qi)}ni=1

SPM =
n∑
i=1

viqi ·
i−1∏
j=1

(1− qj)

(P2)

s.t.
∑
i:vi≥p

ln

(
1 +

viqi
1− qi

· 1

p

)
(3.3)

≤ ln

(
p

p− 1

)
∀p ∈ (1,∞)

v1 ≥ v2 ≥ · · · ≥ vn ≥ 1

We can safely assume that vn ≥ 1. Since con-
straint (3.3) is irrelevant to all vi’s that are smaller
than or equal to 1, increasing all these vi’s to 1 di-
rectly leads to an improved objective value.

The next two facts further narrow the space of
the worst-case instances:

1. Whenever there are two buyers/distributions
with the same vi, we can substitute the buyers
with a single (feasible) buyer so that the objec-
tive value remains the same.

2. The worst-case instance contains a buyer with
distribution Tri(∞), i.e. F0(p) = p

p+1 for all

p ∈ [0,∞). For notational simplicity, we will
not explicitly mention this special buyer later.

These two statements are formalized as Lemma
A.1 and Lemma A.2, and then proved in Ap-
pendix A.1. In sum, the optimal objective values of
Program (P3) and Program (P1) are equal.

max
{Tri(vi,qi)}ni=1

SPM = 1 +
n∑
i=1

vi · qi ·
i−1∏
j=1

(1− qj)

(P3)

s.t.
∑
i:vi≥p

ln

(
1 +

viqi
1− qi

· 1

p

)
(3.4)

≤ ln

(
p2

p2 − 1

)
∀p ∈ (1,∞)

v1 > v2 > · · · > vn ≥ 1
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3.2 Upper-Bound Analysis II: Optimal So-
lution We adapt techniques developed by Alaei et
al. [4] to deal with Program (P3). It is easy to check

that 1
p ln(1 +x) ≤ ln

(
1 + x

p

)
for all p ≥ 1 and x ≥ 0.

We apply this inequality to constraint (3.4), and drop
all constraints other than p ∈ {v1, v2, · · · , vn}, result-
ing in

(3.5)
k∑
i=1

ln

(
1 +

viqi
1− qi

)
≤ R(vk) ∀k ∈ [n],

where R(p)
def
= p ln

(
p2

p2−1

)
. Recall that Q(p) =

ln
(

p2

p2−1

)
− 1

2Li2

(
1
p2

)
, the following lemma (which

is proved in Appendix A.2) suggests that these two
functions are inherently correlated.

Lemma 3.3. R′(p) = p·Q′(p) and R′(p) < Q′(p) < 0
when p ∈ (1,∞), and

lim
p→∞

R(p) = lim
p→∞

Q(p) = 0

lim
p→1+

R(p) = lim
p→1+

Q(p) =∞.
(3.6)

After the aforementioned relaxation, optimum
of the new program turns out to be reached when
constraint (3.5) is tight for each k ∈ [n]. This is
formalized as the following technical lemma.

Lemma 3.4. Given a triangular instance
{Tri(vi, qi)}ni=1 that constraint (3.5) is not
tight for some k ∈ [n], there exists a tri-
angular instance {Tri(vi, qi)}ni=1 such that

(1)
k∑
i=1

ln
(

1 + viqi
1−qi

)
= R(vk), for all k ∈ [n];

and (2)
n∑
i=1

viqi ·
i−1∏
j=1

(1− qj) ≥
n∑
i=1

viqi ·
i−1∏
j=1

(1− qj).

Denote v0
def
= ∞ for notational simplicity. Given

the tightness of constraint (3.5), we acquire the

recursive formula for each qk that ln
(

1 + vkqk
1−qk

)
=

R(vk) − R(vk−1), where we apply Lemma 3.3 that
R(v0) = 0. After being rearranged, it is equivalent
to

(3.7) qk =
eR(vk)−R(vk−1) − 1

vk + eR(vk)−R(vk−1) − 1
∀k ∈ [n].

Equipped with these formulas, we prove the following
mathematical facts in Appendix A.2.

Lemma 3.5. For each i ∈ [n],

viqi ·
i−1∏
j=1

(1− qj)−
∫ vi−1

vi

x · (−Q′(x)) · e−Q(x)dx

≤

i−1∏
j=1

(1− qj)−
i∏

j=1

(1− qj)

− (e−Q(vi−1) − e−Q(vi)
)
.

(3.8)

Lemma 3.6. 1 ≤ p∗ ≤ vn, where p∗
def
=

Q−1

(
−

n∑
i=1

ln(1− qi)
)

.

With the p∗ defined in Lemma 3.6, we are ready
to complete the upper-bound part of Theorem 3.1.
By Lemma 3.3, e−Q(v0) = 1, and Q′(p) ≤ 0 for all
p ∈ (1,∞). Applying Lemma 3.5 over all i ∈ [n],

n∑
i=1

viqi ·
i−1∏
j=1

(1− qj)−
∫ ∞
vn

x · (−Q′(x)) · e−Q(x)dx

≤1−
n∏
j=1

(1− qj)−
(
e−Q(v0) − e−Q(vn)

)
=e−Q(vn) − e−Q(p∗) ≤

∫ vn

p∗
(−Q′(x)) · e−Q(x)dx

≤
∫ vn

p∗
x · (−Q′(x)) · e−Q(x)dx.

Together with Lemma 3.6 that p∗ ≥ 1, we can
conclude that

1 +

n∑
i=1

viqi ·
i−1∏
j=1

(1− qj)

≤1 +

∫ ∞
p∗
x · (−Q′(x)) · e−Q(x)dx

≤1 +

∫ ∞
1

x · (−Q′(x)) · e−Q(x)dx.

Remark 1. In the above context, {Tri(vi, qi)}ni=1 is
replaced by {Tri(vi, qi)}∞i=1, that is, a spectrum of
“small” (all qi’s tend to 0+) triangular distributions
lying in interval [p∗,∞). For all p ≥ p∗,

1. The total quantity of qi’s cumulating in interval
[p,∞) is given by Q(p);

2.
∏

i:vi≥p
(1 − qi) approaches to e−Q(p), in that all

qj’s go to 0+.

As per these, it is easy to see SPM({Tri(vi, qi)}∞i=1) =

1 +

∫ ∞
p∗
x · (−Q′(x)) · e−Q(x)dx, which is ensured (by

Lemma 3.5 essentially) to be greater than or equal to
SPM({Tri(vi, qi)}ni=1).
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4 Anonymous Reserve vs. Anonymous
Posted-Pricing

In this section, we study the revenue gap between AR
and AP. We first obtain the CDF’s of the highest
and the second highest bids from {Fi}ni=1, which are
respectively denoted by D1(p) and D2(p). For D1(p),
we have

D1(p) = Pr

{
n⋂
i=1

[bi ≤ p]

}

=
n∏
i=1

Pr{bi ≤ p} =
n∏
i=1

Fi(p).

For D2(p), the event that the second highest bid is
no more than p can be partitioned into the following
(n+1) disjoint sub-events: (A0) the highest bid is no
more than p; (Ai for each i ∈ [n]) bid bi is larger than
p, while all other bids are no more than p. Therefore,
we have

D2(p) = Pr{A0}+
n∑
i=1

Pr{Ai}

=
n∏
i=1

Fi(p) +
n∑
i=1

(1− Fi(p)) ·
∏
j 6=i

Fj(p)

= D1(p) ·

[
1 +

n∑
i=1

(
1

Fi(p)
− 1

)]
.

With these notations, it is easy to see that
AP(p) = p · (1−D1(p)). Additionally, the following
lemma establishes an explicit formula for AR(p), by
using D1(p) and D2(p).

Lemma 4.1. ([17]) For any reserve price p ∈ [0,∞),

AR(p) = p · (1−D1(p)) +

∫ ∞
p

(1−D2(x)) dx.

This formula was first introduced in [17], and
plays an important role in the proof of our tight ratio
of AR to AP. It is also used in the next section
to get a better lower-bound between OPT and AR.
For the sake of completeness, we provide a proof in
Appendix B.1.

Given these formulas for AR and AP, the revenue
gap between AR and AP can be characterized by the
following program.

max
{Fi}ni=1

max
p∈[0,∞)

{
p · (1−D1(p)) +

∫ ∞
p

(1−D2(x)) dx

}
(P4)

s.t.AP(x) = x · [1−D1(x)] ≤ 1, ∀x ∈ [0,∞)
(4.9)

We prove the upper-bound in (the most gen-
eral) asymmetric general setting, which automati-
cally gives an upper-bound to the rest two settings.
In Appendix B.2 and Appendix B.3, we respectively
construct a matching lower-bound example with i.i.d.
general and asymmetric regular distributions, which
implies the tightness in all three settings.

Theorem 4.1. The supremum of the ratio of AR to

AP is π2

6 ≈ 1.6449. The same tight ratio holds in all
the three settings: asymmetric general, asymmetric
regular and i.i.d. general settings.

Remark 2. Intuitively, we obtain Theorem 4.1 as
follows. Recall Program P1 in Section 3, the worst
case is achieved when constraint (3.1) is tight, for all
p ∈ (1,∞). We simply “guess” the worst case of Pro-
gram (P4) can be captured in the same circumstance,
which turns out to be the right way.

Proof. [Proof of Theorem4.1 (Upper-Bound Part)]
Define

Φ1(p)
def
=

{
0 p ∈ [0, 1]

1− 1
p p ∈ (1,∞)

.

One can easily see from constraint (4.9) that Φ1(p)
stochastically dominates D1(p), the distribution of
the highest bid. That is, D1(p) ≥ Φ1(p) for all
p ∈ [0,∞). Furthermore,

D2(p) = D1(p) ·

[
1 +

n∑
i=1

(
1

Fi(p)
− 1

)]

≥ D1(p) ·

[
1 +

n∑
i=1

ln

(
1

Fi(p)

)]
= D1(p) · [1− lnD1(p)] ,

where the inequality follows from the fact that x ≥
ln(1 + x) for all x ≥ 0.

Define function d(x)
def
= x(1 − lnx), it is easy

to check that d(x) is increasing when x ∈ (0, 1],
and that lim

x→0+
d(x) = 0. As per these, we know

D2(p) ≥ d(Φ1(p)) = Φ2(p) for all p ∈ [0,∞), where

Φ2(p)
def
=

{
0 p ∈ [0, 1](

1− 1
p

)
·
[
1− ln

(
1− 1

p

)]
p ∈ (1,∞)

.

Accordingly, the optimal objective value of Pro-
gram (P4) is bounded from above by

max
p∈[0,∞)

{
p · (1− Φ1(p)) +

∫ ∞
p

(1− Φ2(x)) dx

}
.

1. For all p ∈ [0, 1], p · (1− Φ1(p)) +∫ ∞
p

(1− Φ2(x)) dx = 1 +

∫ ∞
1

(1− Φ2(x)) dx;
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2. For all p ∈ (1,∞), p · (1− Φ1(p)) +∫ ∞
p

(1− Φ2(x)) dx < 1 +

∫ ∞
1

(1− Φ2(x)) dx.

Putting everything together, the optimal objective
value of Program (P4) is no more than

(4.10)

1 +

∫ ∞
1

(1− Φ2(x)) dx

(‡)
=1 +

∫ ∞
1

[
1

x
−
(

1− 1

x

)
·
∞∑
k=1

1

k
· 1

xk

]
dx

=1 +

∞∑
k=1

1

k(k + 1)
·
∫ ∞

1

1

xk+1
dx

=1 +
∞∑
k=1

1

k2(k + 1)
=
∞∑
k=1

1

k2
=
π2

6
,

where (‡) follows from Taylor series.

5 Myerson Auction vs. Anonymous Reserve

In asymmetric regular setting, the tight ratio of OPT
to AR was conjectured to be 2 in [38]. In that paper,
a two-buyer instance (Example 1) was proposed, and
was conjectured to be the worst case. Nevertheless,
here we disprove this conjecture by constructing
sharper instances.

Example 1. ([38]) Suppose there are two buyers:
The first buyer’s bid is drawn from the so-called
“equal-revenue” distribution F (p) = 1 − 1

p , and the
second buyer has a deterministic bid of 1. While
AR(p) = AP(p) = 1 for all p ∈ [1,∞), OPT = SPM =
2 (e.g. by sequentially posting price ∞ to the first
buyer, and posting price 1 to the second buyer).

The following lemma is confirmed in Appendix C,
and would be useful for proving Theorem 5.1.

Lemma 5.1. Given a triangular instance

{Tri(vi, qi)}ni=1 with v1 ≥ v2 · · · ≥ vn > vn+1
def
= 0,

the maximum of AR(p) is achieved by p = vi for
some i ∈ [n].

Theorem 5.1. For the ratio of OPT to AR, there
exist a three-buyer triangular instance {Tri(vi, qi)}2i=0

with ratio of 2.1361, and a four-buyer triangular
instance {Tri(vi, qi)}3i=0 with ratio of 2.1596.

Proof. Our four-buyer triangular instance
{Tri(vi, qi)}ni=1 is given in the following Ta-
ble 5. Based on Lemma 5.1 in the above, numerical
calculation shows that (1) AR(vi) ≈ 1.0000 for all
i ∈ {0, 1, 2, 3}, therefore AP ≈ 1.0000; and that

(2) OPT = 1 +
3∑
i=1

viqi ·
i−1∏
j=1

(1− qj) ≈ 2.1596.

To convey the underlying idea, we would con-
struct the three-buyer instance explicitly.

1. Let Tri(v0, q0) be Tri(∞), i.e. F0(p) = p
p+1

in terms of CDF. It is easy to see that for all
p ∈ (v1,∞), AR(p) = p · (1 − F0(p)) = p

p+1 ≤ 1.

Specifically, AR(v0) = 1.

2. Let v1 ≥ 1 and q1 = 1
v21

. We have AR(v1) =

AP(v1) = v1 ·
[
1− v1

v1+1 ·
(1−q1)·v1

(1−q1)·v1+v1q1

]
= 1,

since the integration term involved in the for-
mula for AR(p) equals to 0 whenever p ≥ v1.

3. Let v2 be the root of v2 + v1
1+v1−v21

·

ln
[

1+v1
1+v2

· v2(v21−1)+v1
v31

]
= 1 and q2 = 1. Basi-

cally, this is a buyer with a deterministic bid
of v2 (which means that AP(v2) = v2). Reuse
D2(p) to denote the CDF of second highest bid.
For all x ∈ (v2, v1],

1−D2(x) =
(
1− F0(x)

)
·
(
1− F1(x)

)
=

v1q1

(x+ 1) · [(1− q1) · x+ v1q1]
,

thus AR(v2) = AP(v2) +

∫ v1

v2

(1−D2(x)) dx =

v2 +
v1

1 + v1 − v2
1

· ln

[
x+ 1

(v2
1 − 1) · x+ v1

]∣∣∣∣v1
v2

= 1,

where the last equality follows from the defini-
tion of v2.

Based on Lemma 5.1 in the above, AR =
max{AR(v0),AR(v1),AR(v2)} = 1. Moreover, we
know from Lemma 3.2 that OPT = 1+v1q1+v2q2·(1−
q1) = 1+ 1

v1
+v2 ·

(
1− 1

v21

)
. By choosing v1 ≈ 1.5699,

numerical calculation suggests that OPT ≈ 2.1361
and v2 ≈ 0.8399, as Figure 3 illustrates.

6 Summary of Known Ratios

In this paper, we focus on revenue gaps among OPT,
SPM, AR and AP. There is another simple mecha-
nism in the family of sequential posted-pricing that
receives lots of attentions, referred as the Order-
Oblivious Posted-Pricing (OPM) mechanism in [19].
OPM basically characterizes the best pricing strategy
and revenue, when buyers come in worst-case (ad-
versarial) order. It is worth studying, since in some
practical cases the seller cannot control the order of
buyers. The formal definition of OPM is the follow-
ing:

OPM({Fi}ni=1)

def
= min

σ∈Π

{
max
{pi}ni=1

{SPM(σ, {pi}ni=1, {Fi}ni=1)}
}
.
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Tri(v0, q0) = Tri(∞) Tri(v1, q1) = Tri(1.8512, 0.2918)
Tri(v2, q2) = Tri(0.9700, 0.6138) Tri(v3, q3) = Tri(0.7231, 1.0000)

Table 1: Four-buyer instance

v2

v10.80

0.90

1.00

1.0 2.0 3.0

0.8399

1.5699

(a) v2-v1 curve

OPT

v12.0

2.05

2.10

2.15

1.0 2.0 3.0

2.1361

1.5699

(b) OPT-v1 curve

Figure 3: Demonstration of three-buyer instances with ratios of OPT to AR greater than 2

In Table 2 and Table 3, we conclude current
state-of-art results of gaps among these mechanisms,
for both i.i.d. and asymmetric distributions, and
for both regular and general distributions. In these
results, an interval basically gives lower-bound and
upper-bound, while a number means this bound is
tight. Recall the lattice structure in Figure 1, both
of SPM and OPM are incomparable with AR, and
SPM and OPM are same for i.i.d. distributions.

It is always an interesting subject to study gaps
among mechanisms. Since some bounds in Table 3
are still not tight, an obvious open question here
is to close these gaps, which would give us better
understandings of distinctions and relative powers of
these mechanisms.
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A Missing Proofs in Section 3

A.1 Missing Proofs in Section 3: Reductions
[Lemma 3.1]. For any regular instance {Fi}ni=1,

there exists a triangular instance {Tri(vi, qi)}ni=1 such
that (1) SPM ({Tri(vi, qi)}ni=1) ≥ SPM ({Fi}ni=1); and
(2) AP ({Tri(vi, qi)}ni=1) ≤ AP ({Fi}ni=1).

Proof. Let σ∗ and {p∗i }ni=1 respectively be the buy-
ers’ coming order and posted prices of the optimal
SPM ({Fi}ni=1). We define {Tri(vi, qi)}ni=1 to be the
instance that vi = p∗i and qi = 1 − Fi(p

∗
i ) for all

i ∈ [n], which is illustrated in Figure 4(a). We claim
that {Tri(vi, qi)}ni=1 satisfies properties above.

r(q)

q
0

ri(q)

1qi = 1− Fi(p∗i )

viqi = ri(qi)

(a) Revenue-quantile curves

Fi(p)

Fi(p)

p
vi = p∗i

1

0

1− qi = Fi(p
∗
i )

(b) CDF curves

Figure 4: Transformation from {Fi}ni=1 to
{Tri(vi, qi)}ni=1

Firstly, by using the same order σ∗, and posting
the same prices {p∗i }ni=1 to the new buyers, the
probability of selling to each buyer remains the same
and thus, this sequential posted-pricing mechanism
extracts the same revenue as SPM ({Fi}ni=1).

For the second property, let p∗ be the optimal
anonymous price for the triangular instance, then

AP ({Tri(vi, qi)}ni=1) = AP (p∗, {Tri(vi, qi)}ni=1)

≤ AP (p∗, {Fi}ni=1)

≤ AP ({Fi}ni=1) ,

where the first inequality follows from the fact that
Fi stochastically dominates Tri(vi, qi) for all i ∈ [n]
(illustrated in Figure 4(b)).

[Lemma 3.2]. Given a triangular instance
{Tri(vi, qi)}ni=1 with v1 ≥ v2 ≥ · · · ≥ vn, (1) the op-
timal sequential posted-price mechanism posts price
pi = vi to the i-th buyer, for i from 1 to n; and

(2) SPM = OPT =
n∑
i=1

viqi ·
i−1∏
j=1

(1− qj).

The remark below was proposed by an anony-
mous reviewer (of an early version of this paper),
which would be helpful for understanding Lemma 3.2.
The notion of virtual value can be referred in the sem-
inal work of Myerson [46].

Remark 3. For a buyer with triangular distribution
Tri(vi, qi), the only positive virtual value is vi. Hence,
for a triangular instance {Tri(vi, qi)}ni=1, the SPM
in Lemma 3.2 states (1) sorting buyers in decreasing
order (according to vi’s); then (2) letting each buyer
i make take-it-or-leave-it decision, at his (unique)
positive virtual value vi. This is exactly running
Myerson Auction.

Proof. For convenience, we only deal with the case
that vi < ∞ for all i ∈ [n]. The case that some vi’s
equal to∞ follows by letting those vi’s go from finite
numbers to infinity.

Suppose the seller compels the buyers to come
for i from 1 to n, and posts price pi = vi to the i-th
buyer. In this case, when the i-th buyer comes,

1. The item remains unsold with probability
i−1∏
j=1

(1− qj);

2. If so, the expected revenue from the i-th buyer
is viqi.

Hence, the seller gains exactly
n∑
i=1

viqi ·
i−1∏
j=1

(1 −

qj) from such sequential posted-pricing mechanism.
To conquer the lemma, it remains to show that
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OPT ≤
n∑
i=1

viqi ·
i−1∏
j=1

(1 − qj). By Myerson’s seminal

work [46], the expected revenue from OPT equals to
the expectation of the highest virtual value, that is,

OPT =

∫ ∞
0

(
1−

n∏
i=1

Fϕi (x)

)
dx,

where Fϕi (p) be the CDF of the i-th buyer’s virtual
value. For a triangular distribution Tri(vi, qi),

p− 1− Fi(p)
fi(p)

= p−
1− (1−qi)·p

(1−qi)·p+viqi
(1−qi)·viqi

[(1−qi)·p+viqi]2
= − viqi

1− qi
,

for all p ∈ (0, vi). Accordingly,

Fϕi (p) =


0 p ∈

(
∞,− viqi

1−qi

)
1− qi p ∈

[
− viqi

1−qi , vi

)
1 p ∈ [vi,∞)

.

Define v0
def
= ∞ and vn+1

def
= 0 for notational

simplicity. It is easy to see
n∏
i=1

Fϕi (p) =
k∏
i=1

(1 − qi)

for all p ∈ [vk+1, vk) and k ∈ {0}
⋃

[n] and thus,

OPT =
n∑
i=1

viqi ·
i−1∏
j=1

(1−qj). This completes the proof

of the lemma.

Lemma A.1. In a worst-case instance, w.l.o.g. v1 >
v2 > · · · > vn ≥ 1.

Proof. Suppose vk = vk+1 for some 1 ≤ k < n, we
construct a new instance {Tri(vi, qi)}n−1

i=1 as follow:

vi =

{
vi, i ≤ k
vi+1, k < i ≤ n− 1

qi =


qi, i ≤ k − 1

qk + qk+1 − qkqk+1, i = k

qi+1, k < i ≤ n− 1

.

It suffices to prove that:
1. SPM

(
{Tri(vi, qi)}n−1

i=1

)
= SPM ({Tri(vi, qi)}ni=1);

2. AP
(
{Tri(vi, qi)}n−1

i=1

)
≤ AP ({Tri(vi, qi)}ni=1).

For the first claim, according to Lemma 3.2,

SPM
(
{Tri(vi, qi)}n−1

i=1

)
equals to

n−1∑
i=1

viqi ·
i−1∏
j=1

(1− qj)

=
k−1∑
i=1

viqi ·
i−1∏
j=1

(1− qj) +

[
vkqk

+
n−1∑
i=k+1

viqi(1− qk) ·
i−1∏

j=k+1

(1− qj)
]
·
k−1∏
j=1

(1− qj)

(�)
=

k−1∑
i=1

viqi ·
i−1∏
j=1

(1− qj) +

[
vkqk + vk+1qk+1(1− qk)

+
n∑

i=k+2

viqi(1− qk)(1− qk+1) ·
i∏

j=k+2

(1− qj)
]

·
k−1∏
j=1

(1− qj)

=
n∑
i=1

viqi ·
i−1∏
j=1

(1− qj) = SPM ({Tri(vi, qi)}ni=1) ,

where (�) follows from the fact that 1 − qk = (1 −
qk)(1− qk+1).

To prove the second claim, we only need to prove
that F k(p) ≥ Fk(p) · Fk+1(p) for all p. This is trivial
when p > vk, since F k(p) = Fk(p) = Fk+1(p) = 1.
For p ≤ vk, we have(

F k(p)
)−1 − (Fk(p) · Fk+1(p))

−1

=1 +
vkqk

1− qk
· 1

p
−
(

1 +
vkqk

1− qk
· 1

p

)
·
(

1 +
vk+1qk+1

1− qk+1
· 1

p

)
=− qkqk+1

(1− qk) · (1− qk+1)
·
(
vk
p
− 1

)
· vk
p
≤ 0,

which concludes the proof.

Lemma A.2. In a worst-case instance, there is a
buyer with CDF F0(p) = p

p+1 .

Proof. Observe that viqi ≤ 1 for each 1 ≤ i ≤ n,
since

1 ≥ AP(vi) = vi ·

1−
n∏
j=1

Fj(vi)


≥ vi · (1− Fi(vi)) = viqi.

Besides, we assume w.l.o.g. SPM =
n∑
i=1

viqi ·
i−1∏
j=1

(1 −

qj) > 1 and define k
def
= arg min

1≤i≤n

{
i∑

j=1

vjqj > 1

}
. Now
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consider the new instance Tri(vi, qi)
n−k+1
i=1 below with

(n− k + 1) buyers,

v1 = vk q1 =
1

v1
·

(
k∑
i=1

viqi − 1

)
,

(A.1)

vi = vi+k−1 qi = qi+k−1 ∀ 2 ≤ i ≤ n− k + 1.
(A.2)

We claim that

1. {Tri(vi, qi)}n−k+1
i=1 , together with Tri(∞), is fea-

sible to constraint (3.3);

2. 1 + SPM
(
{Tri(vi, qi)}n−k+1

i=1

)
≥ SPM ({Tri(vi, qi)}ni=1)

According to the definition of k, we know 2 ≤ k ≤ n,
k−1∑
i=1

viqi ≤ 1 and q1 ≤ qk.

We first deal with the feasibility of instance
{Tri(vi, qi)}n−k+1

i=1 . The case that p ∈ (v1,∞) is
trivial, since no one has value above p.

When p ∈ (1, v1], since for those i ≥ 2, the new
instances are just equal to previous instance with
index (k − 1) greater, we only need to verify

k∏
i=1

(Fi(p))
−1

=

k∏
i=1

(
1 +

viqi
1− qi

· 1

p

)
≥
(

1 +
1

p

)
·
(

1 +
v1q1

1− q1

· 1

p

)
=
(
F 0(p)

)−1 ·
(
F 1(p)

)−1
.

Dropping
(

1
1−qi

)
factors (for each 1 ≤ i ≤ k − 1) on

the left hand side of this inequality, we have

LHS −RHS

>
k−1∏
i=1

(
1 +

viqi
p

)
·
(

1 +
viqk

1− qk
· 1

p

)
−RHS

>

(
1 +

1

p
·
k−1∑
i=1

viqi

)
·
(

1 +
viqk

1− qk
· 1

p

)
−RHS

(A.1)
=

vk(qk − q1)

p
·
[

1

(1− qk)(1− q1)
− 1

]
+

1

(1− qk)p2
·

(
vkqk ·

k−1∑
i=1

viqi −
1− qk
1− q1

· v1q1

)

>
1

(1− qk)p2
·

(
vkqk ·

k−1∑
i=1

viqi − v1q1

)
(A.1)
=

1

(1− qk)p2
·

(
1−

k−1∑
i=1

viqi

)
· (1− vkqk) ≥ 0,

where the second inequality follows from expanding
the multiplication, the third inequality follows since
(1 − qk)(1 − q1) < 1 and q1 ≤ qk, the last inequality

follows from the aforementioned facts that
k−1∑
i=1

viqi ≤

1 and vkqk ≤ 1. Now constraint (3.3) turns to be

ln

(
1 +

1

p

)
+
∑
i:vi≥p

ln

(
1 +

viqi
1− qi

· 1

p

)
≤ ln

(
p

p− 1

)
∀p ∈ (1,∞),

which follows constraint (3.4) by rearranging.
We continue to prove that

1+SPM
(
{Tri(vi, qi)}n−k+1

i=1

)
≥ SPM ({Tri(vi, qi)}ni=1) .

By Lemma 3.2, the difference between the left and
the right hand side is

1 +
n−k+1∑
i=1

viqi ·
i−1∏
j=1

(1− qj)−
n∑
i=1

viqi ·
i−1∏
j=1

(1− qj)

=

1 + v1q1 −
k∑
i=1

viqi ·
i−1∏
j=1

(1− qj)


+

n−k+1∑
i=2

viqi ·
i−1∏
j=1

(1− qj)−
n∑

i=k+1

viqi ·
i−1∏
j=1

(1− qj)


(A.1,A.2)

=
k∑
i=1

viqi ·

1−
i−1∏
j=1

(1− qj)


+

n∑
i=k+1

viqi ·
i−1∏

j=k+1

(1− qj) ·

(1− q1)−
k∏
j=1

(1− qj)


≥ 0,

where the inequality follows from the facts that 1 ≥
i−1∏
j=1

(1−qj), and that (1−q1) ≥ (1−qk) ≥
k∏
j=1

(1−qj).

This completes the proof of Lemma A.2.

A.2 Missing Proofs in Section 3: Optimal
Solution

[Lemma 3.3]. R′(p) = p · Q′(p) and R′(p) <
Q′(p) < 0 when p ∈ (1,∞), and

lim
p→∞

R(p) = lim
p→∞

Q(p) = 0

lim
p→1+

R(p) = lim
p→1+

Q(p) =∞.

Proof. Since R = p ln
(

p2

p2−1

)
,

R′(p) = − 2

p2 − 1
+ ln

(
1 +

1

p2 − 1

)
(†)
≤ − 1

p2 − 1
< 0,
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where (†) follows that ln(1+x) ≤ x when x ≥ 0. And

since Q(p)
def
= ln

(
p2

p2−1

)
−
∞∑
k=1

1
2k2 ·

1
p2k

,

Q′(p) = − 2

p(p2 − 1)
+

∞∑
k=1

1

k
· 1

p2k+1

= − 2

p(p2 − 1)
− 1

p
· ln
(

1− 1

p2

)
=
R′(p)
p

,

As per these, clearly R′(p) < Q′(p) < 0 when p > 1.
For the first limitation,

lim
p→∞

R(p) = lim
p→∞

p ln

(
1 +

1

p2 − 1

)
≤ lim
p→∞

p

p2 − 1
= 0,

lim
p→∞

Q(p) = lim
p→∞

∫ ∞
p

(−Q′(x)) dx

≤ lim
p→∞

∫ ∞
p

(−R′(x)) dx = lim
p→∞

R(p) = 0.

For the second limitation,

lim
p→1+

R(p) ≥ ln

(
lim
p→1+

p2

p2 − 1

)
= ln(∞) =∞,

lim
p→1+

Q(p) = lim
p→1+

∫ ∞
p

−R′(x)

x
dx

≥ lim
p→1+

∫ 2

p

−R′(x)

2
dx

= lim
p→1+

R(p)−R(2)

2
=∞.

This completes the proof of Lemma 3.3.

[Lemma 3.4]. Given a triangular instance
{Tri(vi, qi)}ni=1 that constraint (3.5) is not tight for
some k ∈ [n], there exists a triangular instance

{Tri(vi, qi)}ni=1 such that (1)
k∑
i=1

ln
(

1 + viqi
1−qi

)
=

R(vk), for all k ∈ [n]; and (2)
n∑
i=1

viqi ·
i−1∏
j=1

(1− qj) >

n∑
i=1

viqi ·
i−1∏
j=1

(1− qj).

Proof. We construct such {Tri(vi, qi)}ni=1 by induc-
tion. Assume w.l.o.g. k is the smallest index for
constraint (3.5) that is not tight, presented in the

following:

i∑
j=1

ln

(
1 +

vjqj
1− qj

)
= R(vi) ∀i ∈ [k − 1],

(A.3)

ln

(
1 +

vkqk
1− qk

)
< R(vk)−R(vk−1).

(A.4)

We construct a new instance {Tri(vi, qi)}ni=1 in the
following way: For each i 6= k, let

(A.5) vi = vi qi = qi.

For i = k, define vk and qk that satisfy
(A.6)

ln

(
1 +

vkqk
1− qk

)
= R(vk)−R(vk−1) vkqk = vkqk.

After such assignment, we claim that

1. Such vk and qk certainly exist, and vk < vk <
vk−1 and 0 < qk < qk.

2. W.r.t. {Tri(vi, qi)}ni=1, constraint (3.5) strictly
holds for each k + 1 ≤ i ≤ n.

For the first claim, define K(x)
def
=

ln
(

1 + vkqk
1− vkqk

x

)
− R(x) + R(vk−1). Observe

that

K(vk) = ln

(
1 +

vkqk
1− qk

)
−R(vk) +R(vk−1)

(A.4)
< 0

K(vk−1) = ln

(
1 +

vkqk
1− vkqk

vk−1

)
> 0,

and that K(x) is continuous when x ∈ [vk, vk−1].
According to the intermediate value theorem, there
exists at least one vk ∈ (vk, vk−1) such that K(vk) =
0 and qk = vkqk

vk
< qk.

For the second claim,

i∑
j=1

ln

(
1 +

vjqj
1− qj

)
(A.5)
=

i∑
j=1

ln

(
1 +

vjqj
1− qj

)
+ ln

(
1 +

vkqk
1− qk

)

− ln

(
1 +

vkqk
1− qk

)
(3.5,A.6)

≤ R(vi) + ln

(
1 +

vkqk
1− qk

)
− ln

(
1 +

vkqk
1− qk

)
<R(vi),
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for each k + 1 ≤ i ≤ n, where the last inequality is
strict since 0 < qk < qk.

Combining the above two claims together, for
each k + 1 ≤ i ≤ n, we can construct desired vi
and qi inductively. In summary,

(A.7) viqi = viqi vi ≥ vi qi ≤ qi,

for each i ∈ [n], where both inequalities are strict for
each k ≤ i ≤ n. Eventually, the difference between
SPM ({Tri(vi, qi)}ni=1) and SPM ({Tri(vi, qi)}ni=1) is

n∑
i=1

viqi ·
i−1∏
j=1

(1− qj)−
n∑
i=1

viqi ·
i−1∏
j=1

(1− qj)

(A.7)
=

n∑
i=1

viqi ·

i−1∏
j=1

(1− qj)−
i−1∏
j=1

(1− qj)

 > 0,

where the last inequality is strict since qi < qi for each
k ≤ i ≤ n. This completes the proof of Lemma 3.4.

[Lemma 3.5]. For each i ∈ [n],

viqi ·
i−1∏
j=1

(1− qj)−
∫ vi−1

vi

x · (−Q′(x)) · e−Q(x)dx

≤

i−1∏
j=1

(1− qj)−
i∏

j=1

(1− qj)


−
(
e−Q(vi−1) − e−Q(vi)

)
.

Proof. Since e−Q(vi−1) − e−Q(vi) =

∫ vi−1

vi

(−Q′(x)) ·

e−Q(x)dx, we would rearrange this inequality, and
turn to prove

(vi − 1)qi
1− qi

·
i∏

j=1

(1− qj)

≤
∫ vi−1

vi

(x− 1) · (−Q′(x)) · e−Q(x)dx.

We would separate both of the left and the right
hand sides into two parts, and deal with inequali-
ties (A.8,A.9) instead:

(vi − 1)qi
1− qi

≤
∫ vi−1

vi

(x− 1) · (−Q′(x)) dx,(A.8)

i∏
j=1

(1− qj) ≤ e−Q(x) ∀x ∈ [vi, vi−1].(A.9)

Applying constraint (3.7) and the fact that Q′(p) =
R′(p)
p to inequality (A.8),

LHS of (A.8) =(vi − 1) · e
R(vi)−R(vi−1) − 1

vi
,

RHS of (A.8) = (R(vi)−R(vi−1))

− (Q(vi)−Q(vi−1)) .

In this form, we can verify inequality (A.8) by
Lemma A.3 below. Similarly, applying con-
straint (3.7), and the facts that Q′(p) < 0 and
Q(v0) = Q(∞) = 0 to inequality (A.9),

LHS of (A.9) =
i∏

j=1

(
1 +

eR(vj)−R(vj−1) − 1

vj

)−1

,

RHS of (A.9) ≥e−Q(vi) =
i∏

j=1

(
eQ(vj)−Q(vj−1)

)−1

.

By Lemma A.4,
(

1 + eR(vj)−R(vj−1)−1
vj

)−1

≤(
eQ(vj)−Q(vj−1)

)−1
for each j ∈ [i]. Taking product

over all j ∈ [i] immediately implies inequality (A.9).
This finishes the proof of the lemma.

Lemma A.3. (x−1)· e
R(x)−R(y)−1

x ≤ (R(x)−R(y))−
(Q(x)−Q(y)) when y > x > 1.

Proof. Define G(x, y)
def
= (x−1)· e

R(x)−R(y)−1
x +R(y)−

R(x)−Q(y) +Q(x), we shall prove that

∂G

∂y
=−

(
1− 1

x

)
· eR(x)−R(y) · R′(y) +R′(y)−Q′(y)

= (−R′(y)) · e−R(y)·[(
1− 1

x

)
· eR(x) −

(
1− 1

y

)
· eR(y)

]
≤ 0,

(Since Q′(y) =
R′(y)

y
)

when y > x > 1. According to Lemma 3.3 that
R′(y) < 0, we turn to show that

ln

(
1− 1

x

)
+R(x) ≤ ln

(
1− 1

y

)
+R(y).

Define g(x)
def
= ln

(
1− 1

x

)
+ R(x) = ln

(
1− 1

x

)
+

x ln
(

x2

x2−1

)
,

g′(x) = − ln

(
1− 1

x2

)
− 1

x(x+ 1)
≥ 1

x2
− 1

x(x+ 1)

=
1

x2(x+ 1)
> 0.

The monotonicity of g(x) completes the proof of
Lemma A.3.
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Lemma A.4. eQ(x)−Q(y) ≤ 1 + eR(x)−R(y)−1
x when

y > x > 1.

Proof. Define H(x, y)
def
= eQ(x)−Q(y) − 1 −

eR(x)−R(y)−1
x . It suffices to show that ∂H

∂y

=eQ(x)−Q(y) · (−Q′(y))− 1

x
· eR(x)−R(y) · (−R′(y))

= (−R′(y)) · e
R(x)−Q(y)

xy

·
(
x · eQ(x)−R(x) − y · eQ(y)−R(y)

)
≤ 0,

(Since Q′(y) =
R′(y)

y
)

when y > x > 1. Observe that R′(y) < 0, we only
need to check that

x · eQ(x)−R(x) ≤ y · eQ(y)−R(y).

Define h(x)
def
= x · eQ(x)−R(x),

h′(x) =eQ(x)−R(x) · (1 + x · Q′(x)− x · R′(x))

=eQ(x)−R(x) · [1 + (x− 1) · (−R′(x))] ≥ 0,

(Since Q′(x) =
R′(x)

x
)

where the inequality follows from the facts that x > 1,
and that R′(x) < 0. This completes the proof of
Lemma A.4.

[Lemma 3.6]. 1 ≤ p∗ ≤ vn, where p∗
def
=

Q−1

(
−

n∑
i=1

ln(1− qi)
)

.

Proof. Due to Lemma 3.3 that Q′(p) < 0, we turn to
verify

Q(1) ≥ −
n∑
i=1

ln(1− qi) ≥ Q(vn).

The first inequality follows immediately from the fact
that lim

p→1+
Q(p) = ∞. The second one follows from

inequality (A.9), after assigning i = n and taking
ln(·) on both hand sides of the inequality.

A.3 Missing Proofs in Section 3: Numeric
Calculations For the formula in Theorem 3.1, the
function involved in the improper integral is inte-
grable. To see this, we need to transform the formula
as following:

1 +

∫ ∞
1

x · (−Q′(x)) · e−Q(x)dx

(∗)
=2 +

∫ ∞
1

(
1− e−Q(x)

)
dx

(‡)
=2 +

∫ 1

0

1− (1− t2) · e 1
2Li2(t2)

t2
dt,

where (∗) follows from integration by parts, and (‡)
follows from integration by substitution (let t = 1

x ∈
[0, 1]). Now, the integrability can be easily inferred
from Figure 5(b). Numerical calculation shows that
this number is roughly 2.6202.

y

p

1

0
1 2 3 4 5

(a) y = e−Q(p) =
(
1− 1

x2

)
e

1
2
Li2

(
1
x2

)

y

t

1

1
2

0
1

(b) y =
1−(1−t2)·e

1
2
Li2(t2)

t2

Figure 5: Demonstration for numeric calculation

A.4 Missing Proofs in Section 3: Lower-
Bound Analysis In this part we propose an ε-
approximate lower-bound instance, Example 2, based
on triangular distributions. The feasibility w.r.t
constraint (3.4) is relatively easy to deal with, and the
ε-approximation follows by combining Lemma A.5
and Lemma A.6, and the fact that

2+

∫ ∞
1

(
1− e−Q(x)

)
dx = 1+

∫ ∞
1

x·(−Q′(x))·e−Q(x)dx.

Example 2. Given an arbitrarily small ε < 1.
Choose a sufficiently large n ∈ N+, and define the
following triangular instance {Tri(vi, qi)}n+1

i=1 :

vi = b− (i− 1) · δ qi =
R(vi)−R(vi−1)

vi +R(vi)−R(vi−1)
,

for each i ∈ [n+ 1], where a = Q−1
(
ln 8

ε

)
> 1, b = 8

ε

and δ = b−a
n .

The feasibility of this instance w.r.t con-
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straint (3.4) is straightforward:∑
i:vi≥p

ln

(
1 +

viqi
1− qi

· 1

p

)
≤
∑
i:vi≥p

viqi
1− qi

· 1

p

=
1

p
·
∑
i:vi≥p

(R(vi)−R(vi−1))

≤ 1

p
· R(p) = ln

(
p2

p2 − 1

)
.

Where the first inequality holds since ln(1 + x) ≤ x
when x ≥ 0), the first equality holds by plug in
the formulas for qi’s, and the second inequality holds
since R(v0) = 0, R(p) is decreasing.

Lemma A.5. For the triangular instance
{Tri(vi, qi)}n+1

i=1 in Example 2, with a sufficiently
large n ∈ N+,

1 +

n+1∑
i=1

viqi ·
i−1∏
j=1

(1− qj)

≥− 1

2
ε+ 1 +

∫ b

a

x · (−Q′(x)) · e−Q(x)dx.

Proof. Plugging the formula for each qi into the left
hand side, we have

1 +

n+1∑
i=1

viqi ·
i−1∏
j=1

(1− qj)

=1 + v1q1 +
eQ(v1)

1 + R(v1)
v1

·
n+1∑
i=2

R(vi)−R(vi−1)

eQ(v1) ·
i∏

j=2

(
1 +

R(vj)−R(vj−1)
vj

)
≥1 + eQ(b)−R(b)

b ·
n+1∑
i=2

(R(vi)−R(vi−1))

· e
−
(
Q(b)+

i∑
j=2

R(vj)−R(vj−1)

vj

)
.

Where the first inequality holds by dropping v1q1,
applying facts v1 = b and 1 + x ≤ ex when x ≥ 0.
Here we apply a standard argument from Riemann
integral. Observe that a = vn+1 < vn < · · · < v1 = b
is a uniform partition of interval [a, b], with norm
δ = b−a

n . When n approaches to infinity,

lim
n→∞

e
−
(
Q(b)+

i∑
j=2

R(vj)−R(vj−1)

vj

)
= e−Q(vi)

∀2 ≤ i ≤ n+ 1,

1 + lim
n→∞

n+1∑
i=1

viqi ·
i−1∏
j=1

(1− qj)

≥1 + eQ(b)−R(b)
b ·

∫ b

a

x · (−Q′(x)) · e−Q(x)dx.

Since ε > 0 is fixed prior to n ∈ N+, we can always
choose a sufficiently large n ∈ N+ such that

1 +

n+1∑
i=1

viqi ·
i−1∏
j=1

(1− qj)

≥− 1

4
ε+ 1 + eQ(b)−R(b)

b ·
∫ b

a

x · (−Q′(x)) · e−Q(x)dx.

In addition,

eQ(b)−R(b)
b ≥ e−

R(b)
b = 1− 1

64
ε2 > 1− 1

8
ε,∫ b

a

x · (−Q′(x)) · e−Q(x)dx

≤
∫ ∞

1

x · (−Q′(x)) · e−Q(x)dx ≈ 1.6202 < 2.

Applying these inequalities, with the sufficiently large
n ∈ N+ chosen above,

1+

n+1∑
i=1

viqi·
i−1∏
j=1

(1−qj) ≥ −
1

2
ε+1+

∫ b

a

x·(−Q′(x))·e−Q(x)dx.

This concludes our proof of Lemma A.5.

Lemma A.6.

(∫ a

1

+

∫ ∞
b

)
x ·(−Q′(x)) ·e−Q(x)dx ≤

1
2ε.

Proof. Applying integration by part to the left hand
side of this inequality,

LHS =e−Q(a) +

∫ a

1

(
e−Q(a) − e−Q(x)

)
dx

+ b ·
(

1− e−Q(b)
)

+

∫ ∞
b

(
1− e−Q(x)

)
dx.

Observe that Q′(p) < 0, and that a < Q−1 (ln 8) ≈
1.0325 < 2 (since ε < 1),

e−Q(a) +

∫ a

1

(
e−Q(a) − e−Q(x)

)
dx

≤ e−Q(a) + (a− 1) · e−Q(a) ≤ 2e−Q(a) =
1

4
ε.

Besides, Q(p) = ln
(

p2

p2−1

)
− 1

2Li2

(
1
p2

)
≤ ln

(
p2

p2−1

)
,

from which we can infer that 1−e−Q(p) ≤ 1
p2 . Hence,

b ·
(

1− e−Q(b)
)

+

∫ ∞
b

(
1− e−Q(x)

)
dx

≤ b · 1

b2
+

∫ ∞
b

1

x2
dx =

2

b
=

1

4
ε.
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Combining everything together completes the proof
of Lemma A.6, accordingly the ε-approximation of
{Tri(vi, qi)}ni=1 is achieved.

B Missing Proofs in Section 4

B.1 Proof of Lemma 4.1
[Lemma 4.1 ([17])]. For any reserve price p ∈

[0,∞), AR(p) = p · (1−D1(p))+

∫ ∞
p

(1−D2(x)) dx.

Proof. For all p ∈ [0,∞), AR(p) can be decomposed
into two parts: 1. A revenue of p when there is
at least one agent whose bid is above p; 2. Some
extra revenue when there are at least two agents
whose bids are above p. The first part is obviously
p · (1 − D1(p)). To calculate the second part, we
shall notice that, the probability that the seller gain
a revenue of p′ > p, is exactly the probability that
there are two or more buyers whose bids are above p′,
which equals to (1−D2(p′)). Thus, the second part

can be formulated as

∫ ∞
p

(1−D2(x)) dx. Combining

these two parts together concludes the proof.

B.2 AR vs. AP: Lower-Bound Analysis in
I.I.D. General Setting We provide a lower-bound
example in i.i.d. general setting here, while deferring
a more complicated one (with asymmetric regular
distributions) to Appendix B.3. Given an arbitrarily
small ε > 0, we find an instance

{
F
}n

feasible to
Program (P4), and producing a solution no less than(
π2

6 − ε
)

. For convenience, we reuse functions Φ1(p)

and Φ2(p) defined in Section 4.

Example 3. (I.I.D. General Setting) Suppose
there are n ∈ N+ i.i.d. buyers that all follow
distribution

F (p) =

0 p ∈ [0, 1](
1− 1

p

) 1
n

p ∈ (1,∞)
.

For each n ∈ N+, we have
(
F (p)

)n
= Φ1(p),

which implies the feasibility as p · (1− Φ1(p)) = 1.
And for the ε-approximation, when p ∈ (1,∞) and n
approaches to infinity,

lim
n→∞

(
F (p)

)n · [1 + n ·
(

1

F (p)
− 1

)]
=

(
1− 1

p

)
·

[
1 + lim

n→∞

e−
1
n ·ln(1− 1

p ) − 1
1
n

]
= Φ2(p).

As per this, fix an arbitrarily small ε > 0, we can
choose a sufficiently large n ∈ N+ such that

AR(1) = 1 +

∫ ∞
1

[1− Φ2(x)] dx− ε =
π2

6
− ε.

Remark 4. For each n ≥ 2, this distribution F
is irregular, since its revenue-quantile curve r(q) =

1
1−(1−q)n is strictly convex. Noticeably, F stochas-

tically dominates any other distributions feasible to
Program (P4), due to the fact that

(
F (p)

)n
= Φ1(p).

As per these, one can easily see that for a specific
n ≥ 2, this F is still the worst-case distribution. For
some typical n, we list the tight ratios of AR to AP in
Table 4.

B.3 AR vs. AP: Lower-Bound Analysis in
Asymmetric Regular Setting In this part we use
triangular distributions to construct a lower-bound
example in asymmetric regular setting, such that
for any given ε > 0, the ratio of AR to AP is at

least
(
π2

6 − ε
)

. The key idea here is similar to it

involved in Example 2. And for convenience, we

define V(p)
def
= p ln

(
p
p−1

)
.

Example 4. Given an arbitrarily small ε < 1.
Choose a sufficiently large n ∈ N+, and define the
following triangular instance {Tri(vi, qi)}2ni=1:

vi = b qi =
1
n · V(vi)

vi + 1
n · V(vi)

∀1 ≤ i ≤ n,

vi = b− (i− n) · δ qi =
V(vi)− V(vi−1)

vi + V(vi)− V(vi−1)

∀n+ 1 ≤ i ≤ 2n,

where a = 4
4−ε > 1, b = 4

ε and δ = b−a
n .

The feasibility that D1(p) =
∏

i:vi≥p

(
p

p+
viqi
1−qi

)
≥

Φ1(p) for all p ∈ [0,∞) is equivalent to

lnD1(p)

=−
∑
i:vi≥p

ln

(
1 +

viqi
1− qi

· 1

p

)
≥ −

∑
i:vi≥p

viqi
1− qi

· 1

p

(Since ln(1 + x) ≤ x when x ≥ 0)

=− 1

p
·

[
V(b) · 1≤b(p) +

vi≥p∑
i=n+1

(V(vi)− V(vi−1))

]
(Plug in the formulas for qi’s)

≥− 1

p
· V(p) = ln Φ1(p).

(Since V(p) is decreasing)

Furthermore, the ε-approximation is settled in the
following lemma.
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n 2 3 4 · · · ∞
(AR/AP)n 2 ln 2 ≈ 1.3863 3 ln 3− π√

3
≈ 1.4820 9 ln 2− 3π

2 ≈ 1.5259 · · · π2

6 ≈ 1.6449

Table 4: tight ratio for different n with i.i.d. distributions

Lemma B.1. For the triangular instance
{Tri(vi, qi)}2ni=1 in Example 4, with a sufficiently
large n ∈ N+,

AR ≥ AR(a) = a · (1−D1(p)) +

∫ b

a

(1−D2(x)) dx

≥ π2

6
− ε.

Proof. Here we apply a standard argument from
Riemann integral. Observe that a = v2n < v2n−1 <
· · · < vn+1 < vn = b is a uniform partition of interval
[a, b], with norm δ = b−a

n . When n approaches to
infinity, each qi tends to 0+, and for all p ∈ [a, b],

lim
n→∞

D1(p) = exp

− lim
n→∞

∑
i:vi≥p

ln

(
1 +

viqi
1− qi

· 1

p

)
= e−

V(b)+(V(p)−V(b))
p = Φ1(p),

lim
n→∞

D2(p) = Φ1(p) ·

1 +
1

p
· lim
n→∞

∑
vi≥p

viqi
1− qi


= Φ1(p) · (1− ln Φ1(p)) = Φ2(p).

As per these, and since ε is fixed prior to n ∈ N+, we
can always choose a sufficiently large n ∈ N+ such
that

AR(a) ≥− 1

2
ε+ a · (1− Φ1(a)) +

∫ b

a

(1− Φ2(x)) dx

(4.10)
= − 1

2
ε+

π2

6
−
(∫ a

1

+

∫ ∞
b

)
(1− Φ2(x)) dx.

Since 1 − Φ2(p) = 1
p +

(
1− 1

p

)
· ln
(

1− 1
p

)
≤ 1

p −(
1− 1

p

)
· 1
p = 1

p2 ,(∫ a

1

+

∫ ∞
b

)
(1− Φ2(x)) dx ≤

(∫ a

1

+

∫ ∞
b

)
1

x2
dx

= 1− 1

a
+

1

b
=

1

2
ε.

Combining the above two inequalities together, we
complete the proof of Lemma B.1.

C Missing Proofs in Section 5

[Lemma 5.1]. Given a triangular instance

{Tri(vi, qi)}ni=1 with v1 ≥ v2 · · · ≥ vn > vn+1
def
= 0,

the maximum of AR(p) is achieved by p = vi for some
i ∈ [n].

The following remark is due to an anonymous
reviewer (of an early version of this paper), and would
be of benefit to understanding Lemma 5.1. For this,
the notion of virtual value can be referred in the
seminal work of Myerson [46].

Remark 5. A triangular distribution Tri(vi, qi) is
only supported on [0, vi]. While a value of vi cor-
responds to a virtual value of vi, any value less than
vi incurs a negative virtual value.

Given an instance desired by Lemma 5.1. Via
increasing the reserve from some p ∈ (vi+1, vi) to
p = vi, for some i ∈ [n], the seller no longer allocates
the item, when the highest bid is in (vi+1, vi) (which
corresponds to a negative virtual value).

Therefore, AP(p) raises after such reserve-
increase, due to the above virtual-value arguments,
and Myerson’s specification [46] of the revenue from
a truthful mechanism (such as AR).

Proof. We prove the lemma by showing that AR(p)
is non-decreasing in (vi+1, vi], for all i ∈ [n] that
vi > vi+1. When p ∈ (vi+1, vi] for some 1 ≤ i ≤
n, plugging the CDF’s of {Tri(vi, qi)}ni=1 into the
formula for AR(p) from Lemma 4.1,

AR(p) = p ·

1−
i∏

j=1

(
p

p+
vjqj
1−qj

)+

∫ ∞
p1−

∏
j:vj≥x

(
x

x+
vjqj
1−qj

)
·

1 +
1

x
·
∑
j:vj≥x

vjqj
1− qj

 dx.
We calculate the derivative of AR(p),

AR′(p) =
i∏

j=1

(
p

p+
vjqj
1−qj

)
·

i∑
j=1

vjqj
1− qj

·

(
1

p
− 1

p+
vjqj
1−qj

)
> 0,

which concludes the lemma.
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