
https://doi.org/10.1007/s00224-020-09983-8

Dichotomy for Holant∗ Problems on the Boolean
Domain

Jin-Yi Cai1 ·Pinyan Lu2 ·Mingji Xia3

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Holant problems are a general framework to study counting problems. Both count-
ing constraint satisfaction problems (#CSP) and graph homomorphisms are special
cases. We prove a complexity dichotomy theorem for Holant∗(F), whereF is a set of
constraint functions on Boolean variables and taking complex values. The constraint
functions need not be symmetric functions. We identify four classes of problems
which are polynomial time computable; all other problems are proved to be #P-hard.
The main proof technique and indeed the formulation of the theorem use holographic
algorithms and reductions. By considering these counting problems with the broader
scope that allows complex-valued constraint functions, we discover surprising new
tractable classes, which are associated with isotropic vectors, i.e., a (non-zero) vector
whose dot product with itself is zero.

Keywords #P-hardness · Polynomial time algorithms · Dichotomy theorems ·
Holant problems · Constraint satisfaction problems · Edge coloring models

1 Introduction

Many graph counting problems can be formulated as computing partition functions.
For example INDEPENDENT SET can be formulated as follows: Given a graph G =
(V , E), attach to every edge e ∈ E the NAND function fe. For any vertex assignment

A preliminary version of this paper appeared in ACM-SIAM Symposium on Discrete Algorithms
(SODA) 2011 [12]. Jin-Yi Cai is supported by NSF CCF-1714275. Pinyan Lu is supported by
Science and Technology Innovation 2030 “New Generation of Artificial Intelligence” Major Project
No.(2018AAA0100903), NSFC grant 61922052 and 61932002, Program for Innovative Research
Team of Shanghai University of Finance and Economics (IRTSHUFE) and the Fundamental
Research Funds for the Central Universities. Mingji Xia is supported by NSFC grant 61932002, and
the Youth Innovation Promotion Association, CAS.

� Jin-Yi Cai
jyc@cs.wisc.edu

Extended author information available on the last page of the article.

Published online: 22 June 2020

Theory of Computing Systems (2020) 64:1362–1391

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-020-09983-8&domain=pdf
mailto: jyc@cs.wisc.edu

σ : V → {0, 1}, define the weight function wt(σ) = ∏
e={u,v}∈E fe(σ (u), σ (v)).

Then wt(σ) �= 0 iff σ−1(1) is an independent set. The counting problem is to com-
pute the partition function of spin-system Z(G) = ∑

σ wt(σ). By varying the edge
functions fe, other problems can be stated in a uniform way, e.g., VERTEX COVER

corresponds to the Boolean OR function, and vertex 3-COLORING corresponds to the
DISEQUALITY function on domain size 3. The functions fe need not be 0-1 valued.
Nonnegative values are the most natural combinatorially, but negative or complex

values are also interesting. E.g., let H =
(

1 1
1 −1

)

be the Hadamard matrix, which

defines a function H(0, 0) = H(0, 1) = H(1, 0) = 1 and H(1, 1) = −1. The weight
function wt(σ) = ±1, and is −1 precisely when the induced subgraph on σ−1(1)

has an odd number of edges. Therefore, (2n − Z(G))/2 is the number of induced
subgraphs with an odd number of edges. We will demonstrate in this paper that, at
a deeper level, by considering general complex valued functions1 we gain a more
structural understanding mathematically, even for 0-1 valued constraint functions.

When every edge is attached the same symmetric edge function it is called a graph
homomorphism problem [29, 39]. There is also a long history in statistical physics
community in the study of partition functions. Ever since Wilhelm Lenz asked his
student Ernst Ising [30] to work on what is now known as the Ising model, physi-
cists have studied so-called “Exactly Solved Models” [3, 41]. In computer science
language, physicists’ notion of an “exactly solvable” system corresponds roughly
to systems with polynomial time computable partition functions. Many physicists
(Ising, Onsager, Fisher, Temperley, Kasteleyn, C. N. Yang, T. D. Lee, Baxter, Lieb,
Wilson e.t.c. [3, 30, 33, 34, 36, 37, 42, 46, 50–52]) contributed to this intellectual
edifice. But the physicists lacked a formal notion of what it means to be not “exactly
solvable”, which should correspond to #P-hardness. Great progress has been made on
the complexity of partition functions, giving classification theorems [6, 7, 9, 23, 24,
27] in terms of polynomial time tractability or #P-hardness. A major further research
direction is when a #P-hard partition function can be approximated [20, 22, 28, 31,
32, 40, 43].

Now consider the problem of counting perfect matchings. Given a graph G =
(V , E), attach a local constraint function fv to every vertex v ∈ V . For perfect match-
ings, let fv be the EXACT-ONE function. We now consider edges to be variables. For
any assignment σ : E → {0, 1}, let wt(σ) = ∏

v∈V fv(σ |E(v)), where E(v) are the
incident edges at v. For fv = EXACT-ONE, the weight function wt(σ) �= 0 iff σ−1(1)

is a perfect matching. We define Holant(G) = ∑
σ :E→{0,1} wt(σ). Given a choice of

local constraint functions, a Holant problem on G is to evaluate Holant(G).
Holant problems were defined in [16], and the name was inspired by the intro-

duction of Holographic Algorithms by L. Valiant [48, 49] (who first used the term
Holant) 2. Partition functions Z(G) of the type discussed above are for vertex

1To avoid any difficulties with models of computation, we restrict to functions taking algebraic numbers
in C.
2B. Szegedy [45] studied an edge coloring model, which is identical to Holant problems on a general
domain, with a single symmetric constraint function per each arity.

1363Theory of Computing Systems (2020) 64:1362–1391

models (spin systems) where assignments σ are on vertices. Holant is a partition
function of edge models where assignments σ are on edges. It is easy to simulate a
partition function of a vertex model by Holant. In fact Holant problems can simulate
all #CSP problems. A #CSP problem is specified by a bipartite graph G = (V , W, E)

where each v ∈ V is a variable, each w ∈ W has a constraint function fw, and
N(w) = {v ∈ V | (v, w) ∈ E} is the (ordered) set of variables fw applies to.
The computational problem of a #CSP instance is to evaluate

∑
σ

∏
w fw(σ |N(w)),

a sum, over all assignments σ on V , of the products of all function evaluations
fw on N(w). The partition function of a spin system is a special case of #CSP
where every w ∈ W has degree 2. On the other hand, given any #CSP instance,
if we assign EQUALITY functions at every v ∈ V , and consider E as variables,
then the #CSP problem on G is reduced to a Holant problem. We note that Freed-
man, Lovász, and Schrijver [26] proved that counting perfect matchings cannot be
expressed as a real-valued graph homomorphisms. This impossibility was extended
to the complex-valued graph homomorphisms in [15].

To study which counting problems are computable in polynomial time (tractable)
and which are not (intractable), we try to characterize this by the function sets used
as local constraints. An ideal outcome in this line of research is to be able to clas-
sify, within a broad class of functions, every function set either leads to tractable
problems or is #P-hard. This is called a dichotomy theorem [18, 19, 44] (By an ana-
logue of Ladner’s theorem [35], such a dichotomy is false for the whole #P, unless
P = P#P.) Dichotomy theorems have been obtained for counting graph homomor-
phisms for successively broader class of functions [6, 7, 9, 23, 24, 27]. A sweeping
dichotomy theorem for all #CSP with 0-1 constraint functions over any finite domain
was given by Bulatov [4]. An alternative proof is given by Dyer and Richerby [25].
It can be extended to functions taking non-negative rational values [5]. However in
general when negative values are allowed, cancelations occur, and this could lead
to surprising P-time algorithms. Holographic Algorithms precisely take advantages
of such cancelations. By operating without restriction to non-negative values, some
deeper underlying mathematical structures become visible (cf. [9, 27]).

For any set of functions F , we use Holant (F) to denote the class of Holant
problems using F . Similarly #CSP(F) is the class of #CSP problems using F . Let
EQ = {=k| k ≥ 1} denote the set of EQUALITY functions. (The function =k takes
k inputs and output 1 if all inputs are equal, and output 0 otherwise.) Then #CSP(F)

= Holant(F ∪ EQ) (i.e., #CSP = Holant with EQ for free.)
It turns out that allowing EQUALITY functions for free has a major influence

on tractability. By making the presence of these EQUALITY functions explicit, the
Holant framework makes a finer complexity classification than #CSP. While #CSP
is Holant with EQ for free, we can consider other special cases of Holant problems.
It turns out that the set U of all unary functions are structurally important. Ten-
sor products by unary functions constitute the so-called degenerate functions, which
are particularly weak, and have played a crucial role in many classification theo-
rems. Holant∗ is the class of Holant problems where all unary functions are free, i.e.,
Holant∗(F) = Holant(F ∪ U).

Previously we have studied Holant∗ problems for any set F of symmetric functions
on Boolean variables [17]. This study led to a complexity dichotomy theorem for all

1364 Theory of Computing Systems (2020) 64:1362–1391

#CSP(F), where F is any set of complex-valued constraint functions on Boolean
variables [17]. This improves previously the strongest dichotomy for Boolean
#CSP(F) by Dyer, Goldberg and Jerrum [21], which applies to nonnegative-valued
constraint functions. The extension to complex-valued constraint functions not only
extends the scope formally, it also discovers inherent structural properties not visible
for nonnegative numbers.

The main result in this paper is to prove a dichotomy theorem for all Holant∗(F),
where F is any set of complex-valued functions on Boolean variables, and these
functions need not be symmetric. This research is strongly influenced by the devel-
opment of holographic algorithms and reductions [11, 16, 48, 49]. Indeed, they not
only provide the main proof techniques but also aid in the discovery and formulation
of the theorem.

The theorem identifies four classes of functions F where Holant∗(F) is polyno-
mial time computable. These can be roughly described as follows: The first class F1
is tractable due to its arity, and the computation is done by matrix product and tak-
ing trace. The second tractable class F2 is a generalization of the so-called Fibonacci
gates introduced in [16], and denoted by F . These are symmetric functions and
Holant∗(F) is tractable. F2 generalizes this to functions that are not necessarily sym-
metric. Here holographic transformations become crucial, which allow us to discover
and to express this class in a succinct and elegant way. It is basically Fibonacci gates
under an orthogonal transformation3.

The third and fourth tractable classes F3 and F4 depend even more fundamentally
on holographic transformations. It is also here that the complex field C becomes
essential. Over C there are so-called isotropic vectors v �= 0 which satisfy vTv = 0.
(No nonzero real vector has this property.) F3 (resp. F4) are Fibonacci gates (resp. a
class related to weighted matchings that we call Matching gates), after a holographic
transformation correlated with isotropic vectors.

Our dichotomy here is a generalization of the dichotomy in [17] for symmetric
Holant∗ Problems. The symmetric dichotomy can be viewed as a special case of the
dichotomy in this paper and on the other hand also serves as the starting point for
our reduction. Furthermore, by proving a dichotomy theorem in this more general
setting, we also gain a deeper and clearer understanding of the tractable cases for the
symmetric ones.

In Section 2, we give some formal definitions and state the main theorem. In
Section 3, we prove the tractability results. Section 4 gives an outline of the hardness
proof. In Section 5, we prove some useful algebraic lemmas. In Sections 6 and 7, we
prove that, assuming P �= P#P, we have found all the tractable Holant∗(F).

Subsequent development: The complexity dichotomy theorem in this paper has
been included in the book [8]. It also have been generalized and extended since
its conference publication [12]. Miriam Backens [1] first gave an extension of this
dichotomy to Holant+ problems. These are Holant problems that allow only four

3In this paper, we actually present it slightly differently, in order to give a more succinct proof.

1365Theory of Computing Systems (2020) 64:1362–1391

unary auxiliary functions for free instead of all unary functions as in Holant∗. These
four unary auxiliary functions are inspired by connections to quantum computing.
This dichotomy [1] is a stronger theorem. Jiabao Lin and Hanpin Wang [38] proved
a dichotomy for Holant problems on the Boolean domain where constraint func-
tions are not necessarily symmetric, but take nonnegative values. We [14] proved a
dichotomy for Holantc problems on the Boolean domain where constraint functions
are not necessarily symmetric, but take real values. Holantc problems are Holant
problems that allow only two unary auxiliary functions (the pinning functions). These
last two results [14, 38] are incomparable in scope, and do not strictly strengthen the
dichotomy in the present paper. However, Backens [2] has achieved a generalization
of [14] to complex-valued constraint functions. This strengthens not only [14], but
also the dichotomy in the present paper as well as [1]. However, these subsequent
results are proved using the results here, and thus they are logically dependent on the
present paper.

Going beyond the Boolean domain, there have been relatively few dichotomies
proved for Holant problems. In [13] using the dichotomy proved here we proved
a very restricted dichotomy for Holant∗ problems on domain size 3. This domain
3 dichotomy makes essential use of the dichotomy of this paper. One other Holant
dichotomy for higher domain problems is [10], where counting edge colorings is a
special case.

2 Definition and Statement

A (constraint) function F , or synonymously a signature, of arity n ≥ 0, is a map-
ping from {0, 1}n to C. A function of arity 0 is a constant. A function of arity 1
is called a unary function. We use the same symbol F to denote the column vec-
tor indexed by {0, 1}n as an expression of F , listing all its values in lexicographic
order. When we use it as a row vector we write F T. Sometimes it is also convenient
to partition the variable set into two parts {x1, x2, . . . , xn} = I ∪ J , and write F

as a matrix with rows indexed by {0, 1}|I | and columns indexed by {0, 1}|J |. This is
particularly useful for a binary function F(x, y), whose matrix form F = Fx,y is a
2 × 2 matrix, with row index x and column index y both range over {0, 1}. We also
use this matrix form for functions of larger arities. For example, Fx1x2,x3 is a 4 × 2
matrix.

Suppose c ∈ C is a nonzero number. As constraint functions F and cF are
equivalent in terms of the complexity of Holant problems they define. Hence we
will consider functions F and cF to be interchangeable, denoted by F ∼= cF . The
notation F ∼= 0 means that F is (identically) zero.

We denote by =k the EQUALITY function of arity k. A symmetric function f on
k Boolean variables can be expressed by [f0, f1, . . . , fk], where fi is the value of f

on inputs of Hamming weight i. Thus, (=k) = [1, 0, . . . , 0, 1] (with k − 1 zeros),
and (=2) = [1, 0, 1] (= (1, 0, 0, 1) in row vector form).

Fix a set of signatures F . We allow F to be infinite for the convenience of express-
ing some theorems and proofs; see below. A signature grid � = (G,F, π) consists
of a graph G = (V , E), and a labeling π which maps each vertex v ∈ V to a function

1366 Theory of Computing Systems (2020) 64:1362–1391

fv ∈ F of arity deg(v) with input variables correspond to an ordered list of incident
edges E(v) of v. The Holant problem on instance � is to compute

Holant� =
∑

σ :E→{0,1}

∏

v∈V

fv(σ |E(v)).

A Holant problem is parameterized by a set of signatures F .

Definition 1 Given a set of signatures F , we define a counting problem Holant(F):
Input: A signature grid � = (G,F, π);
Output: Holant�.

When F is infinite, to account for the input size, we require that the labeling π

include the specification of any function fv used.
Bipartite Holant problems Holant(F | G) are similarly defind, where signa-

ture grids have bipartite underlying graphs (U, V, E), and vertices in U and V are
assigned signatures from F and G respectively.

We would like to characterize the complexity of Holant problems in terms of its
signature sets. We say Holant(F) is tractable, if it is computable in P. Note that for
an infinite F the input size includes the description of the signatures in the input
instance �. We say Holant(F) is #P-hard if there exists a finite subset of F for which
the problem is #P-hard.

Definition 2 Let U denote the set of all unary signatures. Then Holant∗(F) =
Holant(F ∪ U).

A degenerate signature is a tensor product of unary signatures. Since all unary
signatures can be used for free in Holant∗(F), we may assume the arity of every
signature in F is greater than one. And since any degenerate signature can be
decomposed to unary signatures, we also assume that every signature in F is
non-degenerate.

In [17], we proved a dichotomy theorem when F is a set of symmetric signatures.

Theorem 1 Let F be a set of non-degenerate symmetric signatures over C. Then
Holant∗(F) is computable in polynomial time in the following three Classes. In all
other cases, Holant∗(F) is #P-hard.

1. Every signature in F is of arity no more than two;
2. There exist two constants a and b (not both zero, depending only on F), such

that for all signatures [x0, x1, . . . , xn] ∈ F one of the two conditions is satisfied:
(1) for every k = 0, 1, . . . , n − 2, we have axk + bxk+1 − axk+2 = 0; (2) n = 2
and the signature [x0, x1, x2] is of the form [2aλ, bλ, −2aλ].

3. For every signature [x0, x1, . . . , xn] ∈ F one of the two conditions is satisfied:
(1) For every k = 0, 1, . . . , n − 2, we have xk + xk+2 = 0; (2) n = 2 and the
signature [x0, x1, x2] is of the form [λ, 0, λ].

The dichotomy is still valid even if the inputs are restricted to planar graphs.

1367Theory of Computing Systems (2020) 64:1362–1391

An F-gate �, or a gadget, is a tuple (H,F, π), where H = (V , E, D) is a graph
with some dangling edges D. (See Fig. 1 for one example.)

Other than these dangling edges, an F-gate is the same as a signature grid. The
role of dangling edges is to provide input/output variables. This is similar to the
notion of external nodes for matchgates in Valiant’s definition [47, 49], however we
allow more than one dangling edges for a node. In H = (V , E, D) each node is
assigned a function in F by the mapping π (we do not consider “dangling” leaf nodes
at the end of a dangling edge among these), E is the set of regular edges, denoted as
1, 2, . . . , m, and D is the set of dangling edges, denoted as m+ 1, m+ 2, . . . , m+n.
Then we can define a function for this F-gate � = (H,F, π),

�(y1, . . . , yn) =
∑

x1,...,xm∈{0,1}
H(x1, . . . , xm, y1, . . . yn),

where (y1, y2, . . . , yn) ∈ {0, 1}n denotes an assignment on the dangling edges and
H(x1, x2, . . . , xm, y1, y2, . . . , yn) denotes the value of the signature grid on an
assignment of all edges. We will also call this function the signature of the F-gate
�. An F-gate can be used in a signature grid as if it is just a single node with the
particular signature.

Let g be the signature of some F-gate �. Then Holant(F ∪ {g}) ≤T Holant(F).
The reduction is quite simple. Given an instance of Holant(F ∪ {g}), by replacing
every appearance of g by an F-gate �, we get an instance of Holant(F). Since the
signature of � is g, the values for these two signature grids are identical. We say g is
realized by the gadget �.

The most direct and general way to express a gadget and its function, is the graph
of the gadget. But in order to reason about this function, we need some simple and
intuitive notations, especially for two basic compositional constructions. The first
operation is identifying two variables. We use Fxi=xj to denote the function of arity
n − 2 realized by a function F of arity n ≥ 2, such that the two dangling edges
corresponding xi and xj are merged to become one (internal) edge. (See Fig. 2 for
one example.)

The second operation is called juxtaposition. Suppose F is a function of arity n

and I = {I1, . . . , Ik} is a partition of [n]. If F(X) = ∏k
j=1 Fj (X|Ij

) for some

Fig. 1 An example of an F -gate
with five dangling edges

H

1368 Theory of Computing Systems (2020) 64:1362–1391

Fig. 2 An example of Fx1=x2

functions F1, . . . , Fk , where X = {x1, . . . , xn} and X|Ij
= {xs |s ∈ Ij } (we also

denote it by Xj), then we say F can be decomposed into type I, or simply F has
type I. We denote such an F by F = ⊗

I(F1, . . . , Fk). If each Fj is the function of
some gadget, then

⊗
I(F1, . . . , Fk) is the function of the gadget which is the disjoint

union of these gadgets for Fj , with variables arranged according to I. When the
indexing is clear, we also use notation F1 ⊗ · · · ⊗ Fk . Note that this tensor product
notation ⊗ is consistent with tensor product of matrices. (See Fig. 3 for one example.)
This definition of F = ⊗

I(F1, . . . , Fk) can be easily generalized to the case where
I = {I1, . . . , Ik} is a partition of an arbitrary finite set of indices.

We use Fxj1=U1,...,xjk
=Uk to denote the function of arity n−k realized by a function

F of arity n such that its input variable xjs is connected with the unary function
Us (for s = 1, . . . , k). Fxj =0, Fxj =1 and FU are respectively abbreviations for
Fxj =[1,0], Fxj =[0,1] and Fxj =U (where xj is clear from the context for FU). Note
that [1, 0] and [0, 1] are two special unary functions.

We also use matrix multiplication, especially when gadgets are sequentially
chained together. For example, suppose A = Ax1,x2 , B = Bx3,x4 and C = Cx5,x6 are
three binary functions. Then ABC expresses the function (A ⊗ B ⊗ C)x2=x3,x4=x5 ,
which has the matrix form exactly the matrix product ABC, indexed by x1 (for row)
and x6 (for column). Note that A∅,x1Bx2,∅ or ATB is the dot product of unary func-
tions A and B. Similarly, Ax1,∅B∅,x2 or ABT is the matrix form of the tensor product
function

⊗
{{1},{2}}(A, B) (or just A ⊗ B) of unary functions A and B.

When we discuss function sets F , whenever a function f (X) ∈ F , where |X| = n,
we may change the names of the variables, i.e., we consider f (X′) also belongs to
F , where X′ is another set of variables, |X′| = |X|. We say a function set F is closed
under tensor product (or more precisely under juxtaposition), if for any functions A

and B on two disjoint sets of variables indexed by I and J respectively, A, B ∈ F
implies that

⊗
I(A, B) ∈ F , where I = {I, J }. Tensor closure 〈F〉 of a set F is the

minimum set containing F , closed under tensor product. This closure exists, being
the set of all functions obtained by taking a finite sequence of tensor products from
F .

Next we define several important sets of functions on Boolean variables. U is the
set of all unary functions. E is the set of all functions F such that F is zero except

1369Theory of Computing Systems (2020) 64:1362–1391

Fig. 3 An example of
juxtaposition

⊗
I(F,G), where

I = {{1, 4}, {2, 3, 5}}

(possibly) on two inputs (a1, . . . , an) and (ā1, . . . , ān) = (1 − a1, . . . , 1 − an). In
other words, F ∈ E iff its support is contained in a pair of complementary points. We
think of E as a generalized form of EQUALITY. M is the set of all functions F such
that F is zero except (possibly) on n + 1 inputs whose Hamming weight is at most
1, where n is the arity of F . The name M is given for matching. T is the set of all
functions of arity at most 2. Note that U is a subset of E , M and T .

The class 〈U〉 is called the degenerate signatures. A binary function belongs to
〈U〉 iff its matrix form is singular. A ternary function F(x1, x2, x3) belongs to 〈T 〉 iff
Fxj =U ∼= 0 for some 1 ≤ j ≤ 3 and some unary U �∼= 0. If furthermore the ternary
function F(x1, x2, x3) is symmetric, then the following statements are all equivalent:
(1) F ∈ 〈T 〉; (2) F ∈ 〈U〉; (3) F = [a, b]⊗3 for some unary [a, b]; and (4) FU ∼= 0
for some unary U �∼= 0 (take U = [b, −a] if [a, b] �∼= 0, or any unary U �∼= 0 if
[a, b] ∼= 0).

Suppose F is a function set and M is a 2 × 2 matrix. We use M ◦ F to denote the
set consisting of all functions in F transformed by a matrix M ,

M ◦ F = {M⊗rF F |F ∈ F, rF = arity(F)}.
M⊗rF F is called a holographic transformation of the function F . In the notation
M⊗rF F we write F as a column vector of dimension 2rF . If f (x1, . . . , xn, y1,

. . . , ym) is a function on n+m variables, and if we use F to denote its representation
as a column vector of dimension 2n+m, and use Fn,m to denote its representation as a

1370 Theory of Computing Systems (2020) 64:1362–1391

2n × 2m matrix, then the holographic transformation M⊗(n+m)F has its representa-
tion in matrix notation M⊗nFn,m(MT)⊗m. In particular if f is a binary function with
a 2 × 2 matrix form Fx,y , then its holographic transformation by M is MFx,yM

T in
matrix form.

Define

Z1 =
(

1 1
i −i

)

and Z2 =
(

1 1
−i i

)

.

If the transformation matrix M is an orthogonal matrix, then we denote it by H ; if
M is one of Z1 or Z2, we denoted it by Z. Note that (1, ± i) is isotropic.

The following sets of functions will play a pivotal role: H ◦E , Z◦E and Z◦M. Our
main theorem is the following complete classification of the complexity of Holant∗
problems for constraint functions over Boolean variables.

Theorem 2 Let F be any set of complex valued functions in Boolean variables. The
problem Holant∗(F) is polynomial time computable, if (1) F ⊆ 〈T 〉, or (2) there
exists an orthogonal matrix H such that F ⊆ 〈H ◦ E〉, or (3) there exists a matrix
Z ∈ {Z1, Z2} such that F ⊆ 〈Z ◦ E〉, or (4) there exists a matrix Z ∈ {Z1, Z2} such
that F ⊆ 〈Z ◦ M〉. In all other cases, Holant∗(F) is #P-hard. The dichotomy is still
valid even if the inputs are restricted to planar graphs.

3 Tractability

The tractability part is given by the following theorem.

Theorem 3 The following classes of Holant∗ problems are polynomial time com-
putable.

– Holant∗(〈T 〉)
– Holant∗(〈H ◦ E〉);
– Holant∗(〈Z ◦ E〉); and
– Holant∗(〈Z ◦ M〉)

Proof By “decoupling” a vertex v into several vertices according to its tensor product
factors of the function at v, one can trivially reduce Holant∗(〈F〉) to Holant∗(F), for
any F .

Firstly, to show the tractability of Holant∗(T), we consider any input graph G. G

has maximum degree 2, so each connected component is either a path or a cycle. So
we only need to compute some m steps of matrix multiplications and trace operations,
where m is the number of edges in G. This is clearly polynomial time computable.

Secondly, we prove the tractability of Holant∗(H ◦ E). We first reformulate it
as a bipartite Holant problem Holant(=2 |H ◦ E) (since U = H ◦ U ⊂ H ◦ E ,
we can drop the ∗ notation in Holant). Here the edges are replaced by the binary
EQUALITY function (=2) = [1, 0, 1]. Now we perform a holographic reduction by
the basis transformation H−1 on the RHS. This (contravariant) transformation on
the RHS is accompanied by the (covariant) transformation [1, 0, 1] �→ [1, 0, 1]H⊗2.

1371Theory of Computing Systems (2020) 64:1362–1391

One can verify that an orthogonal H keeps [1, 0, 1] invariant, namely [1, 0, 1]H⊗2 =
[1, 0, 1]. To wit: let H =

(
a b

c d

)

, then

[1, 0, 1]H⊗2 =
(
(1, 0)⊗2 + (0, 1)⊗2

)
H⊗2

= ((1, 0)H)⊗2 + ((0, 1)H))⊗2

= (a, b)⊗2 + (c, d)⊗2

= (a2 + c2, ab + cd, ab + cd, b2 + d2)

= (1, 0, 0, 1) = [1, 0, 1]
Note that unary functions are transformed to unary functions. Hence, after a holo-
graphic reduction, our problem becomes Holant∗(E). This is clearly polynomial time
computable: If a unary function U is connected to some F ∈ E , we may absorb this
U and use FU . Note that FU ∈ E . If a unary U1 is connected to another unary U2,
then they must form a connected component alone, and its value is trivially com-
puted, which contributes a global factor. After eliminating all unaries, we have an
instance of Holant(E − U), which can be computed on each connected component
by uniquely propagating exactly two assignments on an edge. So, Holant∗(H ◦ E) is
polynomial time computable.

The third class is Holant∗(Z ◦ E). Because U ⊆ Z ◦ E , it is a bipartite Holant
problem Holant(=2 |Z ◦ E). We perform a holographic reduction by the basis
transformation Z−1 on the RHS. This contravariant transformation on the RHS is
accompanied by the covariant transformation [1, 0, 1] �→ [1, 0, 1]Z⊗2 ∼= [0, 1, 0].
To verify the latter, we have

[1, 0, 1]Z⊗2 =
(
(1, 0)⊗2 + (0, 1)⊗2

)
Z⊗2

= ((1, 0)Z)⊗2 + ((0, 1)Z))⊗2

= (1, 1)⊗2 + (i, −i)⊗2 ∼= (0, 1, 1, 0).

As an aside, for us in this paper, these holographic transformations demonstrate
a main proof technology as well as a tool in the discovery and formulation of our
dichotomy theorems. Just as the EQUALITY function =2 can be “factored” by an
orthogonal H , and thus “contributes” an orthogonal H to the RHS in this holographic
transformation:

Holant(=2 |H ◦ F) ←→ Holant(=2 |F),

the binary DISEQUALITY function �=2 can be “factored” by Z = Z1 in matrix form
(same for Z = Z2)

(�=2) =
(

0 1
1 0

)
∼= ZT

1 Z1 =
(

1 i

1 −i

)(
1 1
i −i

)

and thus “contributes” a Z to the RHS in the following holographic transformation:

Holant(=2 |Z ◦ F) ←→ Holant(�=2 |F).

1372 Theory of Computing Systems (2020) 64:1362–1391

Hence, after a holographic reduction, our problem Holant∗(Z ◦ E) becomes
Holant({�=2}|E). (Note U ⊂ E .) However (�=2) ∈ E , and thus we have reached a
restriction of the tractable Holant∗(E).

Finally we prove the tractability of the fourth class Holant∗(Z ◦ M). After a
holographic reduction by Z−1 on the RHS, it becomes Holant({�=2}|M). We first
eliminate all unary functions as follows. A unary function [x, y] connected with �=2
is simply another unary function [y, x], which we will replace the pair [x, y] and
�=2. If F ∈ M and U ∈ U , then FU ∈ M, since the function value of FU on
any input with Hamming weight ≥ 2 is certainly 0. A unary connected to another
unary forms a trivial connected component and contributes a global factor. Recur-
sively apply these replacement steps until there are no more unary functions left.
Hence, we only need to show that Holant({�=2}|M−U) is tractable. The input graph
is a bipartite graph. Because all functions on the LHS vertex set are �=2, in order
to have a non-zero evaluation, any assignment must have exactly half of all edges
assigned 0 and the other half assigned 1. All functions on the RHS vertex set are
from M − U . If there is a vertex of degree more than 2 belonging to the RHS
vertex set, then this side requires that strictly less than half of edges are 1, so the
value of this problem is 0. Thus we only need to calculate on graphs where all ver-
tices have degree 2 (a cycle), which is tractable by matrix multiplication and taking
trace.We remark that 〈H ◦ E〉 is a proper generalization of Fibonacci gates defined in
[16] and denoted by F . Recall that a (symmetric) signature [f0, f1, . . . , fk] is called
a Fibonacci gate of arity k if it satisfies fi+2 = fi+1 + fi , for 0 ≤ i ≤ k − 2.
Remarkably Holant∗(F) is tractable [16]. E.g., the following counting problem is in
P on 3-regular graphs G: Attach at every vertex the signature [1, 0, 1, 1] ∈ F . Then
Holant(G) is the number of edge 2-colorings (Blue or Green) such that every vertex
does not have exactly one Blue incident edge.

Let φ = 1+√
5

2 be the golden ratio, and φ̄ = 1−√
5

2 . Then

⎛

⎜
⎝

1√
1+φ2

1√
1+φ̄2

φ√
1+φ2

φ̄√

1+φ̄2

⎞

⎟
⎠

⊗k [

a

(
1
0

)⊗k

+ b

(
0
1

)⊗k
]

= a′
(

1
φ

)⊗k

+ b′
(

1
φ̄

)⊗k

transforms the symmetric signature a
(

1
0

)⊗k + b
(

0
1

)⊗k = [a, 0, . . . , 0, b] ∈ E
to a Fibonacci gate [f0, f1, . . . , fk] ∈ F . (Note that the matrix is orthogonal
(1, φ)·(1, φ̄) = 0. The signature is fi = a′φi+b′φ̄i , and satisfies fi+2 = fi+1+fi .)
The theorem shows a far reaching generalization of Fibonacci gates F to asym-
metric signatures 〈H ◦ E〉. Our dichotomy theorem will say that this is the correct
generalization.

4 Outline of the Hardness Proof

Starting from this section, we prove the hardness part of Theorem 2, that is, if F �⊆
〈T 〉, F �⊆ 〈H ◦ E〉, F �⊆ 〈Z ◦ E〉, and F �⊆ 〈Z ◦ M〉, then Holant∗(F) is #P-hard.
The proof is quite involved and we give an outline in this section.

1373Theory of Computing Systems (2020) 64:1362–1391

The main idea is to reduce the general Holant∗ problems to the symmetric ones, for
which we already have a dichotomy theorem [17]. However, it is not easy to do that
when functions have large arities. In Section 6, we first establish an arity reduction
theorem. We show that, for any one of the four tractable families F ′, starting from
any funtion F of “hign arity which is not contained in F ′, we can construct a function
Q such that (1) Holant∗(F ∪ {Q}) ≡T Holant∗(F ∪ {F }), (2) Q �∈ F ′, and (3) Q has
a reduced arity. So assuming that the given set of functions is not a subset of any of
the four tractable families (otherwise, we are done since it is tractable by Section 3),
and it contains a signature of “high” arity outside a particular tractable family, we
can keep on doing arity reductions. Specifically, in a finite number of steps this will
produce the following: In the case of 〈T 〉, we will end up with an arity 3 signature
which is not in 〈T 〉. For the other three families 〈H ◦ E〉, 〈Z ◦ E〉, 〈Z ◦ M〉, we can
get a signature of arity 2 which is not in the respective family.

Having these functions with small arities (2 or 3) in hand, we can construct some
simple gadgets to get symmetric functions, which we do in Section 7. The hope is
that these symmetric functions are also out of various tractable families. However, we
come across some difficulties by doing this. For example, using a single function of
arity 3 which is not in 〈T 〉, it seems not easy to construct a symmetric arity 3 function
which is not in 〈T 〉 either. In our proof, we get help from other signatures. Namely, we
not only use a signature of arity 3 that is not in 〈T 〉, but also some binary signatures
that are not in 〈H ◦ E〉, 〈Z ◦ E〉 or 〈Z ◦ M〉, respectively, to construct a symmetric
signature of arity 3 that is not in 〈T 〉. This is proved in Theorem 4. Similarly, in
Theorem 5, we prove that we can also construct binary symmetric signatures that are
not in 〈H ◦E〉, 〈Z◦E〉 or 〈Z◦M〉, respectively. Then by the symmetric dichotomy, we
know that either this ternary signature already defines a #P-hard problem or it belongs
to 〈H ◦ E〉, 〈Z ◦ E〉 or 〈Z ◦ M〉. If it is #P-hard, then we are done. Otherwise, since
we have a binary signature that is not in the same family, we also get the hardness
result by the symmetric dichotomy [17]. We note that, all our starting problems for
hardness are already hard for planar graphs and all the gadgets we use in the reduction
are planar. As a result, our final dichotomy also holds for planar graphs. In the proof
later, we will not explicitly state this every time.

One technical lemma is used extensively in both Sections 6 and 7, which sub-
stantially simplified the proof. We call it the Separation Lemma, which is stated and
proved in Section 5.

5 Separation Lemma

In this section, we introduce a simple lemma which is used frequently in the proofs,
and its main purpose is proof simplification. This lemma is applied in the follow-
ing situation. We have identified a finite set of requirements, the violation of each
requirement can be expressed as a system of polynomial equations. Then to show
all these requirements can be simultaneously satisfied, we only need to prove each
requirement can be individually satisfied, without regard to the consistency of the
satisfying variable assignments.

The following lemma is well-known. For completeness we give a proof.

1374 Theory of Computing Systems (2020) 64:1362–1391

Lemma 1 Suppose {P1, P2, . . . , Pm} is a finite set of nonzero polynomials in
F[x1, x2, . . . , xn], where F is an infinite field. There exist values a1, a2, . . . , an ∈ F

such that Pi(a1, a2, . . . , an) �= 0 for all 1 ≤ i ≤ m.

Proof For n = 1, the conclusion holds obviously.
Suppose the conclusion holds for n − 1. Let Pi = ∑mi

j=0 pi,j (x1, . . . , xn−1)x
j
n .

Because Pi is not the zero polynomial, we may assume pi,mi
is a nonzero polynomial

in F[x1, x2, . . . , xn−1]. By induction, there exist values a1, a2, . . . , an−1 ∈ F such
that pi,mi

(a1, a2, . . . , an−1) �= 0, and Pi(a1, a2, . . . , an−1, xn) ∈ F[xn] is a non-zero
polynomial in xn, for all 1 ≤ i ≤ m. It follows that there exists an ∈ F such that
Pi(a1, a2, . . . , an) �= 0 for all 1 ≤ i ≤ m.

We will give various gadget constructions which use some unary functions Uk =
[xk, yk], k = 1, 2, . . . , m. Technically the gadget is only defined when specific
values for xk, yk have been chosen. A signature is expressed as an ordered set of
values; this is true for the given constraint functions as well as the signature of the
constructed gadget. The entries of the signature of the constructed gadget can be
expressed as polynomials in xk, yk (the coefficients depend on the given constraint
functions). Frequently we have a finite set of conditions, the negation of each condi-
tion is expressible as polynomial equations on xk, yk . A construction succeeds if we
satisfy all these conditions. The following lemma lets us deal with these conditions
separately.

Lemma 2 Let F be the signature of a gadget construction using unary functions
Uk = [xk, yk], k = 1, 2, . . . , m.

Suppose S1, S2, . . . , SN are sets of functions, where a function K ∈ Si iff the sig-
nature entries of K satisfy a finite system of polynomial equations {Pi,1 = 0, Pi,2 =
0, . . . , Pi,mi

= 0}.
If for every 1 ≤ i ≤ N , there exists an assignment σ of xk and yk (k =

1, 2, . . . , m), such that F is shown to be not in Si under σ , then there exists an assign-
ment σ ′ of xk and yk (k = 1, 2, . . . , m), such that F is shown under σ ′ to be not in
all Si (1 ≤ i ≤ N).

Equivalently, by contrapositive, suppose for every assignment σ ′ of xk and yk

(k = 1, 2, . . . , m), there exists 1 ≤ i ≤ N , such that F satisfies the condition for
being in Si under σ ′, then there exists 1 ≤ i ≤ N , such that for all assignments σ of
xk and yk (k = 1, 2, . . . , m), F satisfiyes the condition for being in Si under σ .

Proof Every signature entry of F is expressible as a polynomial in xk and yk , k =
1, 2, . . . , m. Substituting these expressions in {Pi,1 = 0, Pi,2 = 0, . . . , Pi,mi

= 0}
we can express the condition F ∈ Si by a finite set of polynomial equations {P ′

i,1 =
0, P ′

i,2 = 0, . . . , P ′
i,mi

= 0} on xk and yk . If for every 1 ≤ i ≤ N , there exists an
assignment σ of xk and yk (k = 1, 2, . . . , m), such that F �∈ Si under σ , then for
every 1 ≤ i ≤ N , there exists some 1 ≤ ji ≤ mi such that P ′

i,ji
is not identically 0 as

a polynomial on xk and yk (k = 1, 2, . . . , m). Therefore there is an assignment σ ′ on
xk and yk (k = 1, 2, . . . , m), such that for all 1 ≤ i ≤ N , P ′

i,ji
|σ ′ �= 0, hence F �∈ Si

under σ ′.

1375Theory of Computing Systems (2020) 64:1362–1391

The following lemma is another direct corollary of lemma 1.

Lemma 3 Suppose a gadget construction using unary functions Uk = [xk, yk],
k = 1, 2, . . . , m succeeds if it satisfies a finite set of properties Ri , i = 1, 2, . . . , N .
Suppose violation of each property Ri is specified by a finite set of polynomial equa-
tions. If for each i we can find unary functions Uk = [xk, yk] to satisfy property Ri ,
then we can find unary functions Uk = [xk, yk] so that the construction succeeds.

We call it the Separation Lemma in what follows.

6 Arity Reduction

In the next two sections we prove the hardness part of Theorem 2, that is, if F �⊆ 〈T 〉,
F �⊆ 〈H ◦ E〉, F �⊆ 〈Z ◦ E〉, and F �⊆ 〈Z ◦ M〉, then Holant∗(F) is #P-hard.

In this section, we show that for any one of the four tractable families F ′, starting
from any funtion F ∈ F , if F �∈ F ′ then we can construct a function Q such that (1)
Holant∗(F ∪ {Q}) ≡T Holant∗(F), (2) Q �∈ F ′, and (3) Q has a reduced arity.

Lemma 4 Let F ′ be any one of 〈T 〉, or 〈H ◦ E〉, or 〈Z ◦ E〉, or 〈Z ◦ M〉. Let r = 3
if F ′ = 〈T 〉, and r = 2 in the other three cases. Suppose function F ∈ F − F ′. If
r < arity(F), then we can realize a function Q by connecting F with some unary
functions, such that
(1) Holant∗(F∪{Q}) ≡T Holant∗(F); (2)Q �∈ F ′ and (3) r ≤ arity(Q) < arity(F).

The proof of this lemma is divided into the following several lemmas. Recall that
we say a signature F has (respectively, a set of signatures F all have) a type I if F

(respectively, every signature in F) can be expressed as a tensor product of functions
on variable sets from the partition I. Note that the type of a signature is not unique;
e.g., if J is a refinement of I, then a signature having type J also has type I.

A type specification is given by a type I, and is the requirement that a signature
(or a set of signatures all) have the given type. Firstly, we show that any type specifi-
cation in a tensor product decomposition can be described by a system of polynomial
equations.

Lemma 5 For any type specification I, there is a finite set of polynomial equations
EI in the entries of a signature F , such that F has type I iff F satisfies EI .

Proof If I = {[n]}, the trivial partition that consists of a single set [n] = {1, . . . , n},
there is no requirement on F to have type I. We can use a trivial equation such as
0 = 0.

Consider the case I = {I1, I2}. Suppose F has type I. Recall that when a function
F has type {I1, . . . , Ik}, we use Xj to denote the subsequence X|Ij

of the input
variable sequence X of F . Then obviously, for any two values a1, b1 of X1 and any
two values a2, b2 of X2, F(a1, a2)F (b1, b2) = F(a1, b2)F (b1, a2). (In this equation,

1376 Theory of Computing Systems (2020) 64:1362–1391

for the simplicity of expression, we write it in such a way that assumes all indices
in I1 precede those of I2.) Hence the collection of all these equations E{I1,I2} is a
necessary condition that F has type I. It is also a sufficient condition by the following
argument: Arrange the values of F into a matrix FX1,X2 = (F (a1, a2)), where the
row indices (respectively column indices) are all possible values of X1 (respectively
X2). The conditions F(a1, a2)F (b1, b2) = F(a1, b2)F (b1, a2) for all a1, b1 and all
a2, b2 imply that any 2 by 2 submatrix of FX1,X2 is singular, and so rank(FX1,X2) ≤ 1.
Hence, FX1,X2 is the product of a column vector and a row vector. It follows that F

has type I.
Now consider a general partition I = {I1, . . . , Ik}, and again suppose F has type

I. It follows that for any 1 < i ≤ k, any fixed values ai+1, . . . , ak for Xi+1, . . . , Xk ,
FXi+1=ai+1,...,Xk=ak has type {⋃i−1

j=1 Ij , Ii}. We define the following set of equations:
for all 1 < i ≤ k, and for all assignments ai+1, . . . , ak for Xi+1, . . . , Xk , include the
equations in E{⋃i−1

j=1 Ij ,Ii }. This is a finite set of polynomial equations. Obviously, this

is a necessary condition for F to have type I.
We prove that it is also a sufficient condition. If F is the zero function, then F

has type I trivially. Assume F is not the zero function. Let i = k, by what has
been proved when k = 2, F = ⊗

{⋃k−1
j=1 Ij ,Ik}(Qk−1, Fk), where Qk−1 and Fk are

functions on the respective sets of variables
⋃k−1

j=1 Xj and Xk . Because F is not the
zero function, there exists a value ak for Xk such that Fk(ak) �= 0. The remaining
conditions, for 1 < i ≤ k − 1, yield a finite set of homogeneous equations for
FXk=ak = Qk−1Fk(ak). After canceling the non-zero factor Fk(ak), by induction,
we obtain the necessary and sufficient conditions that Qk−1 has type {I1, . . . , Ik−1}.
Hence F has type I.

Next, we prove a property of this decomposition. This property is used throughout
in the proof of Lemma 4.

Lemma 6 Suppose there exists some type I = {I1, . . . , Ik} over [n − 1], such
that for all unary functions U = [x, y], Fxn=U = FU = xFxn=0 + yFxn=1

has the same type I. Furthermore, suppose Fxn=0 = ⊗
I(F1, F2, . . . , Fk) and

Fxn=1 = ⊗
I(K1, K2, . . . , Kk) are linearly independent as two vectors. Then there

exists exactly one index i ∈ [k] such that Fi and Ki are linearly independent.

Proof Obviously Fi and Ki cannot be linearly dependent for all i ∈ [k], for otherwise
Fxn=0 and Fxn=1 would be linearly dependent, contrary to assumption. Now for a
contradiction, suppose there are two distinct indices i ∈ [k], such that Fi and Ki are
linearly independent. Without loss of generality, let i = 1, 2 respectively.

Because Fxn=0, F xn=1 are linearly independent, Fj and Kj are not the zero func-
tion for any j ∈ [k]. For any j ∈ [k] − {1, 2}, by Lemma 1, there exist |Ij | many
unary functions such that both Fj and Kj become nonzero constants when combined
with them. This is because we can write a finite system of polynomial equations �j

in ak, bk for the |Ij | many unary functions Uk = [ak, bk], that expresses the condi-
tion that Fj becomes 0 when connecting variables xk to Uk , for all k ∈ Ij . Since Fj

is not the zero function, some 0-1 assignment violates some equation in �j . Hence at

1377Theory of Computing Systems (2020) 64:1362–1391

least one polynomial P1 in �j is not identically zero. Similarly there is a finite sys-
tem of polynomial equations 	j for Kj and some polynomial P2 is not identically
zero. Then by Lemma 1 there is a common assignment to ak, bk (k ∈ Ij) such that
both Fj and Kj are nonzero. After combining Fxn=0 and Fxn=1 with these unary
functions, for all j ∈ [k]−{1, 2}, we obtain respectively the functions c0F1 ⊗F2 and
c1K1 ⊗ K2 over the variables in I1 ∪ I2, where c0, c1 �= 0.

Suppose U = [x, y] and xy �= 0. If we combine FU = xFxn=0 + yFxn=1 with

the same set of
∣
∣
∣
⋃k

j=3 Ij

∣
∣
∣ many unary functions, the resulting function is c0xF1 ⊗

F2 + c1yK1 ⊗ K2. By the assumption, FU has type I, then this function has type
{I1, I2}. However, we show that, for any xy �= 0, this function does not have type
{I1, I2}. The matrix form (row index is X|I1 , column index is X|I2) of this function
is the 2|I1| × 2|I2| matrix

[
F1 K1

]
[

c0x 0
0 c1y

] [
F T

2
KT

2

]

,

where F1, K1, F2, K2 are column vectors. Since F1 and K1 are linearly independent,
and F2 and K2 are linearly independent, this matrix has rank two. If this function has
type {I1, I2}, its matrix form would have rank at most one. This contradiction proves
the Lemma.

Proof of Lemma 4: Case F ′ = 〈T 〉

Suppose F ∈ F − 〈T 〉, with arity(F) > 3. Being out of 〈T 〉, F is not the zero
function. If for some unary function U = [x, y], FU �∈ 〈T 〉, then we are done by
setting Q = FU . Hence we assume for any unary function U = [x, y], FU =
xFxn=0 + yFxn=1 has some type J , where each set Jj ∈ J has size at most 2. For
the fixed arity(F), there are only finitely many such types, which are specifiable by
a finite set of polynomial equations in x, y. It directly follows from the last statement
of Lemma 2 that, there exists some type I = {I1, . . . , Ik}, where each |Ij | ≤ 2, such
that for all x, y, FU has the same type I. In particular, both Fxn=0 and Fxn=1 have
type I.

If Fxn=0 and Fxn=1 are linearly dependent, then F ∈ 〈T 〉, having type I ∪ {{n}}.
So we assume Fxn=0 = ⊗

I(F1, F2, . . . , Fk) and Fxn=1 = ⊗
I(K1, K2, . . . ,

Kk) are linearly independent. Being linearly independent, none of the tensor factors
of Fxn=0 and Fxn=1 can be the zero function. By Lemma 6, there is exactly one
pair of linearly independent tensor factors, without loss of generality, F1 and K1.
Expressing Ki in terms Fi , for i ≥ 2, there exists a nonzero constant c, such that
Fxn=1 = ⊗

I(cK1, F2, . . . , Fk). If |I1| = 1, that is, F1 and K1 are unary functions,
then F ∈ 〈T 〉, of type {I1 ∪ {n}, I2, . . . , Ik}. Thus, |I1| = 2.

Without loss of generality, assume I1 = {1, 2}. We can fix the variables of F in
I2, . . . , Ik to some values, such that F2, . . . , Fk each contributes a nonzero factor. By
this we get a ternary function Q in variables x1, x2, xn, and F = Q ⊗ F2 ⊗ · · · ⊗ Fk .
If Q ∈ 〈T 〉, then F ∈ 〈T 〉, contrary to assumption. Hence Q �∈ 〈T 〉.

Proof of Lemma 4: Case F ′ = 〈H ◦ E〉 or 〈Z ◦ E〉

1378 Theory of Computing Systems (2020) 64:1362–1391

For any function F of arity n and invertible matrix M , F ∈ 〈M ◦ E〉 iff
(M−1)

⊗n
F ∈ 〈E〉. (Note that 〈M ◦ E〉 = M ◦ 〈E〉.) Since we will realize our func-

tion Q of a lower arity than F by connecting F with some unary functions, and
since unary functions are transformed to other unary functions under any invertible
holographic transformation, we only need to prove for 〈E〉. Suppose F �∈ 〈E〉, and
arity(F) = n > 2. F is not the zero function. If for some unary function U = [x, y],
FU �∈ 〈E〉, we are done with Q = FU . Hence we assume for any unary function
U = [x, y], FU = xFxn=0 + yFxn=1 ∈ 〈E〉.

For any partition I = {I1, . . . , Ik} of [n], and any A = {A1, . . . , Ak}, such that
Aj ∈ {0, 1}|Ij |, we define a set of functions S(I,A). Each Aj is a 0-1 string of length
|Ij |. In the definition for S(I,A) below we use the set {Aj , Āj } where Aj and its
complement Āj play symmetric roles, and so we may normalize the first bit of Aj

to be 0. We say a function R belongs to the set S(I,A) iff R has type I, and R =⊗
I(R1, R2, . . . , Rk) for some functions R1, R2, . . . , Rk such that for any j ∈ [k],

Rj (X|Ij
) is zero if X|Ij

�∈ {Aj , Āj }. Thus, Rj ∈ E for each j ∈ [k], and any function
in S(I,A) belongs to 〈E〉.

The set of functions in 〈E〉 of arity n is the union of these finitely many function
sets S(I,A). Obviously, functions in S(I,A) can be described by a finite system of
polynomial equations (Lemma 5). Since FU ∈ 〈E〉 for all U = [x, y], by Lemma 2,
there must exist one S(I,A), such that for any x, y, FU belongs to the same set S(I,A).
In particular, both Fxn=0 and Fxn=1 belong to S(I,A).

If Fxn=0 and Fxn=1 are linearly dependent, then obviously, F ∈ 〈E〉.
Let Fxn=0 = ⊗

I(F1, F2, . . . , Fk) and Fxn=1 = ⊗
I(K1, K2, . . . , Kk) be lin-

early independent. Being linearly independent, none of the tensor factors of Fxn=0

and Fxn=1 can be the zero function. By Lemma 6, there is exactly one pair of lin-
early independent tensor factors, without loss of generality, F1 and K1. Expressing
Ki in terms Fi , for i ≥ 2, there exists a nonzero constant c, such that Fxn=1 =⊗

I(cK1, F2, . . . , Fk).
We can fix the variables of F in I2, . . . , Ik to some values, such that F2, . . . , Fk

each contributes a nonzero factor. We obtain a function K . Kxn=0 = F1 and
Kxn=1 = cK1, where c �= 0. K evaluates to zero, except on possibly four inputs
{A10, Ā10, A11, Ā11}. Combine the |I1| − 1 variables of K other than xn and the
first variable in I1 with the function [1, 1], we get a binary function in matrix form

Q =
(

K(A10) K(A11)

K(Ā10) K(Ā11)

)

,

where we index the row by the first variable in I1 and the column by xn. Note that
we have used the definition of S(I,A). For example, in the sum defining Q(0, 0),
only one (possibly) nonzero term K(A10) is involved because the first and last bits
are both set to 0. The first column in the 2 × 2 matrix form of Q is F1 at entries
A1, Ā1, and similarly the second column is from cK1. Because F1 and K1 are linearly
independent, and these are the only possible nonzero entries of K , we have det Q �=
0. We claim that Q �∈ 〈E〉. For otherwise, being non-degenerate, Q ∈ E , then the
support of K is contained in either {A10, Ā11} or {A11, Ā10}. This implies that K ∈
E , and hence F = K ⊗ F2 ⊗ · · · ⊗ Fk ∈ 〈E〉.

1379Theory of Computing Systems (2020) 64:1362–1391

Proof of Lemma 4: Case F ′ = 〈ZM〉
Again we only need to prove for 〈M〉. Suppose F �∈ 〈M〉, and arity(F) = n > 2.

Again we may assume for any unary function U = [x, y], FU = xFxn=0+yFxn=1 ∈
〈M〉; otherwise, we are done.

For any U = [x, y], FU ∈ 〈M〉 has some type I, and each tensor factor belongs
to M, that is, each tensor factor is zero except on inputs of Hamming weight at most
one. Each type I can be specified by a finite system of polynomial equations EI by
Lemma 5. Now we put EI together with the requirement that for each tensor factor,
all entries of Hamming weight greater than one are 0. This requirement can also
be stated as a finite system of polynomial equations. We illustrate this point by the
following simple case. Suppose we require that (ai,j) is a tensor product (bi) ⊗ (cj),
where 1 ≤ i ≤ n, 1 ≤ j ≤ m, and for some subsets B ⊆ [n], C ⊆ [m], we
require that ∀i ∈ B, ∀j ∈ C, bi = cj = 0. Then we include the equations for the
type specification from Lemma 5 together with the following equations: ai,j = 0 for
all (i, j) such that i ∈ B or j ∈ C. Note that these equations are on the entries of
ai,j . The equations from Lemma 5 imply that a tensor factorization (ai,j) = (bi) ⊗
(cj) exists. If for all i ∈ [n], bi = 0, or if for all j ∈ [m], cj = 0, then ai,j is
identically 0, and thus ai,j trivially has a tensor factorization (b′

i)⊗ (c′
j) that satisfies

the requirement ∀i ∈ B, ∀j ∈ C, b′
i = c′

j = 0. On the other hand, if for some
i0 ∈ [n], and j0 ∈ [m], bi0 �= 0 and cj0 �= 0, then bi = ai,j0/cj0 = 0 for all i ∈ B.
Similarly cj = 0 for all j ∈ C. Thus the factorization (ai,j) = (bi) ⊗ (cj) satisfies
the requirement. (The salient point is that the polynomial equations are on the entries
of ai,j , through which we express a vanishing property on the desired tensor factors,
on which we cannot directly specify using a polynomial.)

Applying Lemma 2, we conclude that there is one type I such that for any U =
[x, y], FU has a decomposition having the same type specified by I with tensor
factors from M.

If Fxn=0 and Fxn=1 are linearly dependent, obviously, F ∈ 〈M〉, as U ∈ M,
contrary to assumption.

Let Fxn=0 = ⊗
I(F1, F2, . . . , Fk) and Fxn=1 = ⊗

I(K1, K2, . . . , Kk) be lin-
early independent. As before none of the tensor factors of Fxn=0 and Fxn=1 can
be the zero function, and exactly one pair among Fi and Ki are linearly indepen-
dent, say, F1 and K1. We can fix the variables of F in I2, . . . , Ik to some values,
such that F2, . . . , Fk contribute a nonzero factor. We get a function in matrix form

K =
[

F T
1

cKT
1

]

, where the row index is xn = 0, 1, columns are indexed by {0, 1}|I1|,

and c �= 0. Here the first row is Kxn=0 = F T
1 . The second row is Kxn=1 = cKT

1 .
Columns are indexed by A ∈ {0, 1}|I1|. If the weight of A is greater than 1, then
the column indexed by A is zero because F1, K1 ∈ M. Let S0 denote the column
indexed by 0 · · · 0 ∈ {0, 1}m, and Si denote the column indexed by the bit sequence
A ∈ {0, 1}m, where only the ith bit of A is 1.

For simplicity of notation, assume I1 = {1, 2, . . . , m}. There exists a 0-1 string
A ∈ {0, 1}m of Hamming weight 1, such that K1(A) �= 0; otherwise, the only nonzero
entry for K all have Hamming weight at most 1, and so K ∈ M. This would imply
F ∈ 〈M〉, contrary to assumption. Hence there is a column Si , 1 ≤ i ≤ m, whose

1380 Theory of Computing Systems (2020) 64:1362–1391

second entry is not zero. Without loss of generality we assume this Si is Sm. Because
F1 and K1 are linearly independent, There exists a column Sj linearly independent
with the nonzero column Sm. If S0 is such a column, then Q = Kx1=0,...,xm−1=0

is a binary function on {xn, xm}, and has the matrix form Q = [S0, Sm]. Note that
the index for the column Sm is A = 0 · · · 01 ∈ {0, 1}m. If S0 is linearly dependent
with Sm, then for some 1 ≤ j ≤ m − 1, Sj is linearly independent with Sm. Let
Q = Kx1=0,...,xj−1=0,xj =[x,y],xj−1=0,...,xm−1=0 = [

xS0 + ySj , xSm

]
, where x �= 0

and y �= 0. (Here in Q, the row index is by xn and column index is by xm.) We have
obtained our Q such that Q is not degenerate and Q(1, 1) �= 0, i.e., Q �∈ 〈M〉.

7 From Asymmetric to Symmetric

In this Section, we show how to get a symmetric function from some asymmetric
functions, keeping the property of not belonging to any one of the four tractable
classes, 〈T 〉, 〈H ◦ E〉, 〈Z ◦ E〉 or 〈Z ◦ M〉.

Recall that F ∼= cF for c �= 0. In the following lemma, when we count the number
of solutions, we count in terms of equivalence classes under ∼=.

Lemma 7 Suppose F is a ternary function. Then Fx3=U ∼= 0 for some U �∼= 0 iff
F has type {{1, 2}, {3}}. Suppose F �∈ 〈T 〉. Then Fx3=U �∼= 0 for any nonzero unary
function U , and there exist exactly one or two nonzero U = [x, y] such that Fx3=U

is degenerate.

Proof If F has type {{1, 2}, {3}}, then F = T ⊗ [a, b]. If a = b = 0 then F is
identically 0, and Fx3=U ∼= 0 for any unary U . If [a, b] �∼= 0, then Fx3=U ∼= 0 for
U = [b, −a] �∼= 0. Conversely, if Fx3=U ∼= 0 for some U �∼= 0, then Fx3=0 and Fx3=1

are linearly dependent, and hence F has type {{1, 2}, {3}}. It follows that if F �∈ 〈T 〉,
then Fx3=U �∼= 0 for any nonzero unary function U .

Let F ′ = Fx3=U . Then F ′ is degenerate iff det

[
F ′(0, 0) F ′(0, 1)

F ′(1, 0) F ′(1, 1)

]

= 0. Let

U = [x, y], then the entries of F ′ are linear homogeneous polynomials of x and y,
so the determinant equation is a quadratic homogeneous equation. It has either one
or two solutions U �∼= 0, or it is identically zero. We only need to prove the latter case
contradicts F �∈ 〈T 〉.

Suppose F ′ is degenerate for all U , then we have in particular Fx3=0 = F1 ⊗ F2
and Fx3=1 = K1⊗K2. If Fx3=0 and Fx3=1 are linearly dependent, then F ∈ 〈T 〉, and
so Fx3=0 and Fx3=1 are linearly independent. Then by Lemma 6, exactly one of the
two pairs of functions {F1, K1} and {F2, K2} is linearly independent, say, {F1, K1}
is linearly dependent. Then F is the tensor product of F1 and one binary function on
the remaining two variables {x2, x3}, and so F ∈ 〈T 〉.

For any ternary function F(x1, x2, x3) �∈ 〈T 〉, the conclusion of Lemma 7 cer-
tainly applies to all three variables. There is a simple relationship, among 1 ≤ i ≤ 3,
between the nonzero unary functions Ui such that Fxi=Ui is degenerate. Suppose
Fx1=U1 is degenerate, where U1 �∼= 0, then Fx1=U1 = L ⊗ R, where L and R are

1381Theory of Computing Systems (2020) 64:1362–1391

unary functions on x2 and x3 respectively. Since Fx1=U1 �∼= 0, both L �∼= 0 and R �∼= 0.
The matrix form of Fx1=U1 has rank exactly one. It follows that the decomposition
L ⊗ R is unique under ∼=. If we define [x, y]⊥ = [y, −x], and let U2 = L⊥, then
Fx1=U1,x2=U2 is identically 0. Given U1 such that Fx1=U1 is degenerate but not iden-
tically 0, the property that Fx1=U1,x2=U2 ∼= 0 also uniquely determines a nonzero U2
as U2 ∼= L⊥, where L is uniquely determined by U1. Because (F x2=U2)x1=U1 ∼= 0,
we have Fx2=U2 is degenerate. This mapping from U1 �→ U2 = L⊥ is well-defined
under ∼=. It is also 1-1: Suppose Fx1=U1,x2=U2 and Fx1=U ′

1,x2=U2 are both identi-
cally 0 for U1 �∼= 0 and U ′

1 �∼= 0. Then Fx2=U2 is degenerate, and expressible as
A(x1) ⊗ B(x3), where A and B are nonzero unary functions. It follows that both
U1 ∼= A⊥ and U ′

1
∼= A⊥. Thus U1 ∼= U ′

1. By symmetry the inverse map is also
well-defined.

The same statement holds for x3.
We summarize this in the following lemma. Suppose F �∈ 〈T 〉 is a ternary

function. Let

Ui = {U �∼= 0 | Fxi=U is degenerate}, 1 ≤ i ≤ 3.

Lemma 8 There is a one-to-one correspondence between U1, U2, and U3, as fol-
lows. For {i, j, k} = {1, 2, 3}, each Ui ∈ Ui gives a unique factorization Fxi=Ui =
Vj (xj)⊗Vk(xk), where V ⊥

j ∈ Uj and V ⊥
k ∈ Uk . In particular |U1| = |U2| = |U3| = 1

or 2.

Now we will prove a crucial theorem for the hardness part of Theorem 2.

Theorem 4 Suppose in Holant∗(F), we can realize the following functions

1. F �∈ 〈T 〉 of arity 3;
2. For any orthogonal matrix H , some PH �∈ 〈H ◦ E〉 of arity 2;
3. For both Z = Z1 or Z2, some PZ �∈ 〈Z ◦ E〉 of arity 2; and
4. For both Z = Z1 or Z2, some SZ �∈ 〈Z ◦ M〉 of arity 2.
Then we can realize a symmetric ternary function Q �∈ 〈T 〉 in Holant∗(F).

Proof We use the gadget shown in Fig. 4 to realize a symmetric ternary function Q.
(In some cases we will need to modify it to define Q; this will be discussed later.)
This gadget consists of 9 copies of the function F , 3 copies of a unary function U1
and 3 copies of a unary function U2. The unary functions are to be determined later.
Each shaded triangle labeled with F in a central inner triangle represents the function
F(x1, x2, x3) �∈ 〈T 〉. The labels 1,2,3 inside the shaded triangle indicate which edge
corresponds to variables x1, x2, x3. This gadget remains unchanged if we rotate it
2π
3 . Hence, Q(x1, x2, x3) = Q(x2, x3, x1) = Q(x3, x1, x2). It follows that Q is

symmetric (notice that this conclusion uses the fact that each variable xi is a Boolean
variable).

Our goal is to prove that there exist nonzero unary functions U1 and U2, such that
Q �∈ 〈T 〉. Since Q is symmetric, this is equivalent to: there exists no nonzero unary
function U satisfying Qx1=U ∼= 0, by Lemma 7.

1382 Theory of Computing Systems (2020) 64:1362–1391

Fig. 4 Gadget to realize a symmetric ternary function

To prove this, we divide the gadget into two parts, as shown by the dashed
line in Fig. 4. We establish two properties, one property for each part respec-
tively. The upper part is a ternary function, denoted by S. The first property is that
if U �∼= 0, then Sx1=U �∼= 0. The matrix form of Sx1=U is the matrix product

F
x1=U2
x2,x3 F

x1=U1
x2,x3 F

x1=U
x3,x2 F

x1=U2
x2,x3 F

x1=U1
x2,x3 , where F

x1=U ′
x2,x3 denotes the 2 × 2 matrix form

of Fx1=U ′
with row index x2 and column index x3. Because F �∈ 〈T 〉, if U �∼= 0, then

Fx1=U �∼= 0, by Lemma 7. To satisfy this property on S, we only need some U1 and
U2 such that Fx1=U1 and Fx1=U2 are non-degenerate. By Lemma 7, there exist such
U1 and U2.

The lower part is a function of arity 4, denoted by P . Two inputs of P are the
original inputs x2, x3 of Q, corresponding to the lower left and lower right corners
of the gadget respectively. The other two inputs correspond to edges connecting P

with S, denoted by y2, y3 respectively. The second property is that the 4 × 4 matrix
Px2x3,y2y3 is non-singular.

If there exist U1 and U2 such that both properties hold, then for any nonzero unary
function U , the vector form of Qx1=U is the matrix-vector product Px2x3,y2y3S

x1=U ,
where Sx1=U takes its vector form as a vector of dimension 4. Hence Qx1=U is not

1383Theory of Computing Systems (2020) 64:1362–1391

the zero function, because Sx1=U is a nonzero column vector (the first property) and
Px2x3,y2y3 is a non-singular matrix (the second property). This proves Q �∈ 〈T 〉.

To establish the two properties, we can apply the Separation Lemma 3, and prove
the two properties individually. We have proved the first one. Now we prove the
second one. (The Separation Lemma allows us to choose unary functions U1 and U2
separately for the two parts in order to satisfy the two properties, even though in the
actual gadget construction the 3 occurrences of U1 must be the same, and similarly
for U2, in order to produce a symmetric Q.)

The idea for the proof of the second property on P will be counter intuitive. Our
goal is to choose unary functions U1 and U2 such that the function P has a full-
rank matrix. We will do this by a nonzero unary function U1 such that Fx1=U1 has a
singular matrix. (This should be surprising as we seem to go the opposite direction.)
However once Fx1=U1 is degenerate, this effectively severs the bottom path in this
gadget P . (This entanglement on the path connecting the two copies of F on the
lower two corners makes it difficult to analyze P .) Consequently the matrix Px2x3,y2y3

become a tensor product of two matrices Ax2,y2 ⊗ Bx3,y3 . We then aim to guarantee
that both Ax2,y2 and Bx3,y3 are non-singular 2 × 2 matrices.

Since F �∈ 〈T 〉, by Lemma 7 there exists U1 �∼= 0 such that Fx1=U1 is degenerate,
and Fx1=U1 = LL ⊗RL, or in more detail, Fx1=U1(z3, z2) = LL(z3)RL(z2). LL and
RL are not the zero function. We also want the matrix form Ax2,y2 of Fx3=LL to be
non-singular. In the notation of Lemma 8, by the 1-to-1 correspondence from U1 to
U3, U1 ∈ U1 gives LL and then gives a corresponding L⊥

L ∈ U3. Each one of (at most
two) U1 ∈ U1 gives a unique L⊥

L ∈ U3. We want to choose a U1 ∈ U1 such that its
corresponding LL �∈ U3. By the 1-1 correspondence, this is equivalent to choosing
some unary U ∈ U3, such that U⊥ �∈ U3. Such a U ∈ U3, by the inverse map of the
1-1 correspondence, gives us the desired U1 ∈ U1.

We have a similar requirement for U2 and B = Fx2=RR , on the right half of the
gadget P : U2 ∈ U1, Fx1=U2 = LR ⊗RR , and RR �∈ U2. Suppose Fx1=U1 = LL ⊗RL

and Fx1=U2 = LR ⊗ RR , then we can replace them by unary functions, and combine
RT

LLR to get a scalar factor c. Then Px2x3,y2y3 is cAx2,y2 ⊗ Bx3,y3 , where Ax2,y2 and
Bx3,y3 are the matrix forms for Fx3=LL and Fx2=RR respectively (Fig. 5). So we also
want c = RT

LLR �= 0, in addition to Ax2,y2 and Bx3,y3 being non-singular.
Note that if we write in matrix form for P from left to right (see

Figs. 4 and 5), we have another 4 × 4 matrix form for P as Py2x2,y3x3 =
Fx2x1,x3(LLRT

L)(LRRT
R)Fx2,x3x1 . Taking out the dot product value c = RT

LLR (a
scalar), the remainder of the function is (Fx2x1,x3LL)(RT

RFx2,x3x1), a product of a
4 × 1 matrix with a 1 × 4 matrix. This matrix has rank 1. However this matrix form

Fig. 5 Replace Fx1=U1 by LL ⊗ RL, and Fx1=U2 by LR ⊗ RR

1384 Theory of Computing Systems (2020) 64:1362–1391

for P is not the same as Px2x3,y2y3 , which is a rotated version. It is Px2x3,y2y3 that we
want to ensure that it has rank 4.

To summarize for P , for the second property, we identify three conditions whose
conjunction is sufficient.

Condition (1): Fx1=U1 = LL ⊗ RL is degenerate and Fx3=LL is non-degenerate.
Condition (2): Fx1=U2 = LR ⊗ RR is degenerate and Fx2=RR is non-degenerate.
Condition (3): RT

LLR �= 0.

There are three cases, depending on U3, where one cannot pick U1 to satisfy
Condition (1). (We will deal with Conditions (2) and (3) separately.)

a. |U3| = 1 and for the unique U ∈ U3, it also holds that U⊥ ∈ U3.
b. |U3| = 2 and for both U ∈ U3, it also holds that U⊥ ∼= U ∈ U3.
c. |U3| = 2 and U3 = {U, U⊥}.

Now we will use the given binary signatures PH �∈ 〈H ◦ E〉, PZ �∈ 〈Z ◦ E〉, and
SZ �∈ 〈Z ◦ M〉.

In case (a.): U⊥ ∼= U , and thus U ∼= [1, i] or [1, −i].
If U ∼= [1, i] (resp. [1, −i]), we show that SZ1U (resp. SZ2U) does not belong to

U3. Because the binary SZ1 �∈ 〈Z1 ◦ M〉, in matrix form SZ1 = Z1T ZT
1 for some

T �∈ 〈M〉. Note that U ⊂ M, so that if the binary signature T is degenerate, then
T ∈ 〈M〉, a contradiction. Hence not only T �∈ 〈M〉, but also T �∈ M, that is

T (1, 1) �= 0. Note that the matrix-vector product ZT
1 U =

[
1 i

1 −i

][
1
i

]
∼=

[
0
1

]

.

Then we calculate UTSZ1U = UTZ1T ZT
1 U ∼= [

0 1
]
T

[
0
1

]

= T (1, 1) �= 0.

Hence, SZ1U �∼= [1, i], and SZ1U �∼= [0, 0]. In this case, Fx3=SZ1U is non-degenerate,
and we will modify the construction in Fig. 4 by adding the binary gadget with signa-
ture SZ1 to replace the three edges whose endpoints are small triangles both marked
by 3 in the gadget. (This modification does change two edges in the construction of
S; but it does not affect what has been proved for S, since SZ1 is non-degenerate. The
same is true for case (b.) and (c.) below.) The proof for SZ2U is similar.

In case (b.), U3 = {[1, i], [1, −i]}.
We show in this case, one of PZ1 [1, i] or PZ1 [1, −i] �∈ U3. Because PZ1 �∈ 〈Z1◦E〉,

in matrix form PZ1 = Z1T ZT
1 for some T �∈ 〈E〉. We claim that at least one of the

two columns

[
e

f

]

of T have both entries nonzero. Otherwise, either T is degenerate

or T ∈ E , in either case T ∈ 〈E〉, a contradictoion. If the first (resp. second) column
has this property, PZ1 [1, −i] (resp. PZ1 [1, i]) does not belong to U3. Indeed, if it is

the first case, PZ1

[
1
−i

]

= Z1T ZT
1

[
1
−i

]
∼= Z1T

[
1
0

]

=
[

1 1
i −i

] [
e

f

]

�∼= [1, ±i].
In this case, Fx3=PZ1 [1,−i] (resp. Fx3=PZ1 [1,i]) is non-degenerate, and we will modify
the construction in Fig. 4 by adding the binary gadget with signature PZ1 to replace
the three edges whose endpoints are small triangles both marked by 3 in the gadget.

In case (c.), we have |U3| = 2 and U3 = {U, U⊥}. Hence U �∼= U⊥, and U and
U⊥ are linearly independent. Then U �⊥ U , otherwise U ∼= 0. Hence the dot product

1385Theory of Computing Systems (2020) 64:1362–1391

UTU �= 0, and we may assume U = [a, b] and U⊥ = [b, −a] are unit vectors:

a2 +b2 = 1. Let H =
[

a b

b −a

]

, then H is an orthogonal matrix. Then it follows that

one of PH [a, b] or PH [b, −a] does not belong to U3. The proof is similar with case
(b.). In case (c.) we will modify the construction in Fig. 4 by adding the binary gadget
with signature PH to replace the three edges whose endpoints are small triangles both
marked by 3 in the gadget.

The proof for Condition (2) is similar to Condition (1). The replacement in the
construction of Fig. 4 happens at the three edges connecting the copy of F with U2
and the corner F (the three edges whose endpoints are small triangles both marked
by 2 in the gadget).

Now consider Condition (3). Suppose RT
LLR = 0. We separate out the case RL ∈

{[1, i], [1, −i]}, or not. If RL ∈ {[1, i], [1, −i]}, and RT
LLR = 0, then RL = LR =

[1, i] or [1, −i]. In this case RT
LSZ1LR �= 0 or RT

LSZ2LR �= 0 by a simple calculation
as before. If RL �∈ {[1, i], [1, −i]}, and RT

LLR = 0, then LR �∈ {[1, i], [1, −i]} as
well. We can assume RL = [a, b] and LR = [b, −a] and a2 + b2 = 1. Then one
of RT

LPH LR and RT
LP T

H LR is not zero, also by a simple calculation as before, where

H =
[

a b

b −a

]

. For Condition (3), the replacement in the construction of Fig. 4

happens at the three edges connecting the copy of F with U1 with the copy of F

with U2 (the three edges whose endpoints are small triangles marked by 2 and 3
respectively in the gadget).

If Conditions (1) (2) (3) all hold, then the gadget satisfies the second property,
and the theorem is proved. For each condition, if it does not hold, we have modified
the gadget construction by adding some binary functions to rectify the construction,
and these binary functions are available by the conditions of the theorem. With these
modifications to the construction in Fig. 4, the proof of the theorem is complete.

Remark In the proof of Theorem 4 we used the Separation Lemma to satisfy various
conditions in isolation. In particular for the second property (for the arity 4 signature
P in the lower part of the gadget), we argued that we could satisfy the property by
choosing unary functions U1 and U2 to make Fx1=U1 and Fx1=U2 degenerate. When
the final gadget is produced by simultaneously satisfying both the first condition (for
S) and the second condition (for P), there is no expectation that this degeneracy will
persist. In fact, the we proved that the first condition (for S) could be satisfied by
choosing U1 and U2 to make Fx1=U1 and Fx1=U2 non-degenerate. There is some
non-constructiveness by using the Separation Lemma to argue for the success of such
constructions. If necessary, one can make it constructive (in the sense of Turing com-
putability), by looking more closely at the sets of polynomial equations (which could
be large, but specifiable by at most polynomially many bits). The reduction proved
to exist is a polynomial time reduction, but the proof does not give it explicitly.

We will prove the #P-hardness part of Theorem 2 by appealing to Theorem 1
for symmetric Holant∗ problems. For that purpose we need to construct appropriate
symmetric binary signatures as well.

1386 Theory of Computing Systems (2020) 64:1362–1391

Theorem 5 Let F denote any one of the function sets 〈H ◦ E〉 (for an orthogonal
matrix H), 〈Z◦E〉 or 〈Z◦M〉 (for the matrix Z = Z1 or Z2). Suppose we can realize
a symmetric ternary function F ∈ F − 〈T 〉 and a binary function P �∈ F . Then we
can realize a symmetric binary function Q �∈ F .

Proof We define the symmetric binary function Q = PFx1=UP T in matrix form, for
some unary function U . This Q is realizable by a gadget consisting of a path of three
signatures P , Fx1=U and P T. At both ends we have a copy of P and we connect the
second variable of each copy of P to the two remaining variables of the symmetric
Fx1=U .

The essence of the proof is an appropriate holographic transformation. We are
given F ∈ 〈HE〉 (for an orthogonal matrix H), or 〈Z ◦ E〉 or 〈Z ◦ M〉. Let M = H

or Z depending on the cases. Let F = M⊗3F1 and P = MP1M
T in matrix form.

F �∈ 〈T 〉 implies that F1 �∈ 〈T 〉. We also have Fx1=U = MF
x1=MU
1 MT in matrix

form for the binary Fx1=U . Let Q1 = P1M
TMF

x1=MU
1 MTMP T

1 , then

Q = MQ1M
T = MP1M

TMF
x1=MU
1 MTMP T

1 MT.

Case (1) F is 〈H ◦ E〉.
We take M = H . Since H is orthogonal, Q = HP1F

x1=HU
1 P T

1 HT. We have
F1 �∈ 〈T 〉. We also have P1 �∈ 〈E〉, since P �∈ 〈HE〉. But by F ∈ 〈HE〉, we have
F1 ∈ 〈E〉. By the condition F1 �∈ 〈T 〉, we must actually have F1 ∈ E , because F1 only
has arity 3 and therefore any tensor factorization will put F1 in 〈T 〉. Being symmetric
and non-degenerate, F1 = [u, 0, 0, v], where u �= 0 and v �= 0. We only need to
prove Q1 = P1F

x1=HU
1 P T

1 �∈ 〈E〉, which is the same as Q �∈ 〈H ◦ E〉. Because we

can pick any U ′ = HU , for any x, y, we can realize F
x1=HU
1 = [x, 0, y]. Suppose

P1 =
[

a b

c d

]

. Then Q1 =
[

a2x + b2y acx + bdy

acx + bdy c2x + d2y

]

.

We need Q1 �∈ 〈E〉. This is translated into 3 conditions: (1) Q1 is non-degenerate,
(2) Q1 is not of the form [∗, 0, ∗], and (3) Q1 is not of the form [0, ∗, 0]. By the
Separation Lemma, we only need to prove that there is some [x, y] to satisfy each
condition individually. If x �= 0 and y �= 0, then F

x1=HU
1 = [x, 0, y] in non-

degenerate. Also P1 is non-degenerate because P1 �∈ 〈E〉. Thus Q1 is non-degenerate.
Again because P1 �∈ 〈E〉, either ac �= 0 or bd �= 0. There exists some [x, y] such that
acx + bdy �= 0, thus Q1 is not of the form [∗, 0, ∗]. Similarly, it is easy find [x, y]
such that Q1 is not of the form [0, ∗, 0].

Case (2) F is 〈Z ◦ E〉.
Take M = Z. Note that ZTZ ∼= (�=2). We have Q ∼= ZP1(�=2)F

x1=ZU
1 (�=2

)P T
1 ZT = ZQ1Z

T. We have F1 �∈ 〈T 〉, F1 ∈ E , and P1 �∈ 〈E〉. We only need to prove

Q1 �∈ 〈E〉. For any x, y, we can pick U to realize (�=2)F
x1=ZU
1 (�=2) = [x, 0, y]. This

is seen by the fact that (�=2)[x, 0, y](�=2) = [y, 0, x]. The remaining proof is the
same as Case (1) for 〈H ◦ E〉.

Case (3) F is 〈Z ◦ M〉.
Take M = Z. Since ZTZ ∼= (�=2), we have Q1 ∼= P1(�=2)F

x1=ZU
1 (�=2)P

T
1 .

We have F1 �∈ 〈T 〉, and F1 ∈ 〈M〉. Again because F1 has arity 3, from these two
conditions we conclude F1 ∈ M, since any tensor factorization for F1 would place

1387Theory of Computing Systems (2020) 64:1362–1391

it in 〈T 〉. Being symmetric and non-degenerate, F1 has the form F1 ∼= [f, 1, 0, 0].
Let P1 =

[
a b

c d

]

, and we have P1 �∈ 〈M〉, since P �∈ 〈Z ◦ M〉. For any x, there

is some U , such that F
x1=ZU
1 = [x, 1, 0]. We only need to prove that Q1 = P1(�=2

)F
x1=ZU
1 (�=2)P

T
1 �∈ 〈M〉.

Because P1 �∈ 〈M〉, certainly P1 is non-degenerate. Therefore det Q1 �= 0, and
Q1 is non-degenerate. Also the entry P1(1, 1) = d �= 0, because P1 �∈ M. It follows
that there exists x such that Q1(1, 1) = 2cd + d2x �= 0. Hence, Q1 �∈ 〈M〉.

Now we are ready to finish the proof Theorem 2.

Proof of Theorem 2 (#P-hardness part) Suppose F �⊆ 〈T 〉, F �⊆ 〈H ◦ E〉 for all
orthogonal H , F �⊆ 〈Z ◦ E〉 and F �⊆ 〈Z ◦ M〉 for Z = Z1 and Z2. By Lemma 4,
we can realize functions of arity of 2 or 3 not belonging to these function sets
respectively.

The conditions in Theorem 4 are satisfied, so we can realize a symmetric ternary
function Q3 �∈ 〈T 〉 (with the help of those binary functions). Certainly Q3 is non-
degenerate. If Holant∗({Q3}) is #P-hard, then the theorem is proved. Otherwise, by
Theorem 1 for symmetric Holant∗ problems, Q3 belongs to one of the special func-
tion families listed in the theorem. It can be shown that these are precisely restrictions
of 〈H ◦ E〉, 〈Z ◦ E〉 or 〈Z ◦ M〉 to symmetric signatures. By Theorem 5, we can
realize a symmetric binary function Q2 not in this family. By Theorem 1 again,
Holant∗({Q3, Q2}) is #P-hard, and therefore Holant∗(F) is also #P-hard.

Acknowledgements We sincerely thank Miriam Backens, Xi Chen, Martin Dyer, Leslie Ann Goldberg,
Zhiguo Fu, Heng Guo, Michael Kowalczyk, Les Valiant and Tyson Williams for discussions and com-
ments. We also thank the anonymous referees of SODA 2011 who read our submission and made very
constructive comments. Last but not least we sincerely thank the anonymous referees for the journal
submission version. Many comments have been incorporated in this revised version with hopefully an
improved presentation.

References

1. Backens, M.: A New Holant Dichotomy Inspired by Quantum Computation. In: 44Th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, Warsaw, pp. 16:1–16:14
(2017)

2. Backens, M.: A Complete Dichotomy for Complex-Valued Holantc . In: 45Th International Collo-
quium on Automata, Languages, and Programming, ICALP 2018, pp. 12:1–12:14 (2018)

3. Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press, London (1982)
4. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. J. ACM 60(5), 34:1–

34:41 (2013)
5. Bulatov, A.A., Dyer, M.E., Goldberg, L.A., Jalsenius, M., Jerrum, M., Richerby, D.: The complexity

of weighted and unweighted #CSP. J. Comput. Syst. Sci. 78(2), 681–688 (2012)
6. Bulatov, A.A., Grohe, M.: The complexity of partition functions. Theor. Comput. Sci. 348(2-3), 148–

186 (2005)
7. Cai, J., Chen, X.: A Decidable Dichotomy Theorem on Directed Graph Homomorphisms with Non-

Negative Weights. In: 51Th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, pp. 437–446. IEEE Computer Society, Las Vegas (2010)

1388 Theory of Computing Systems (2020) 64:1362–1391

8. Cai, J., Chen, X.: Complexity dichotomies for counting problems. Cambridge University Press,
Cambridge (2017)

9. Cai, J., Chen, X., Lu, P.: Graph homomorphisms with complex values: a dichotomy theorem. SIAM
J. Comput. 42(3), 924–1029 (2013)

10. Cai, J., Guo, H., Williams, T.: The Complexity of Counting Edge Colorings and a Dichotomy for Some
Higher Domain Holant Problems. In: 55Th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, pp. 601–610, Philadelphia (2014)

11. Cai, J., Lu, P.: Holographic algorithms: From art to science. J. Comput. Syst. Sci. 77(1), 41–61 (2011)
12. Cai, J., Lu, P., Xia, M.: Dichotomy for Holant* problems of Boolean domain. In: Proceedings of the

Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 1714–
1728, San Francisco (2011)

13. Cai, J., Lu, P., Xia, M.: Dichotomy for Holant* problems with domain size 3. In: Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, pp. 1278–
1295, New Orleans (2013)

14. Cai, J., Lu, P., Xia, M.: Dichotomy for real Holantc problems. In: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pp. 1802–1821, New Orleans
(2018)

15. Cai, J.Y., Govorov, A.: Perfect matchings, rank of connection tensors and graph homomorphisms. In:
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19,
pp. 476–495. Society for Industrial and Applied Mathematics, Philadelphia (2019)

16. Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms by Fibonacci gates and holographic reductions
for hardness. In: FOCS ’08: Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society, Washington (2008)

17. Cai, J.Y., Lu, P., Xia, M.: Holant Problems and Counting CSP. In: Mitzenmacher, M. (ed.) STOC,
pp. 715–724. ACM (2009)

18. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Inf. Comput.
125(1), 1–12 (1996)

19. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction
Problems. Siam Monographs On Discrete Mathematics And Applications (2001)

20. Dyer, M.E., Goldberg, L.A., Jalsenius, M., Richerby, D.: The Complexity of Approximating
Bounded-Degree Boolean #CSP. In: Marion, J., Schwentick, T. (eds.) STACS, LIPIcs, vol. 5,
pp. 323–334. Schloss Dagstuhl - Leibniz-Zentrum fu̇r Informatik (2010)

21. Dyer, M.E., Goldberg, L.A., Jerrum, M.: The complexity of weighted Boolean #CSP. SIAM J.
Comput. 38(5), 1970–1986 (2009)

22. Dyer, M.E., Goldberg, L.A., Jerrum, M.: An approximation trichotomy for Boolean #CSP. J. Comput.
Syst. Sci. 76(3-4), 267–277 (2010)

23. Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to directed acyclic graphs.
J. ACM 54(6), 27:1–27:23 (2007)

24. Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms. Random Struct.
Algorithms 17(3-4), 260–289 (2000)

25. Dyer, M.E., Richerby, D.: On the complexity of #CSP. In: Schulman, L.J. (ed.) Proceedings of the
42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 725–734. ACM, Cambridge (2010)

26. Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphism
of graphs. J. AMS 20, 37–51 (2007)

27. Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions
with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010)

28. Goldberg, L.A., Jerrum, M.: Approximating the partition function of the ferromagnetic potts model.
J. ACM 59(5), 25:1–25:31 (2012)

29. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combin. Theory Ser. B 48(1), 92–110 (1990)
30. Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. Phys. Hadrons Nucl. 31(1), 253–258 (1925)
31. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the ising model. SIAM J.

Comput. 22(5), 1087–1116 (1993)
32. Jerrum, M., Sinclair, A.: The Markov Chain Monte Carlo Method: an Approach to Approximate

Counting and Integration. In: Approximation Algorithms for NP-Hard Problems, pp. 482–520. PWS
Publishing (1996)

33. Kasteleyn, P.W.: The statistics of dimers on a lattice. Physica 27, 1209–1225 (1961)

1389Theory of Computing Systems (2020) 64:1362–1391

34. Kasteleyn, P.W.: Graph Theory and Crystal Physics. In: Harary, F. (ed.) Graph Theory and Theoretical
Physics, pp. 43–110. Academic Press, London (1967)

35. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1), 155–171 (1975)
36. Lee, T., Yang, C.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising

model. Phys. Rev. 87(3), 410–419 (1952)
37. Lieb, E., Sokal, A.: A general Lee-Yang theorem for one-component and multicomponent ferromag-

nets. Commun. Math. Phys. 80(2), 153–179 (1981)
38. Lin, J., Wang, H.: The Complexity of Holant Problems over Boolean Domain with Non-Negative

Weights. In: 44Th International Colloquium on Automata, Languages, and Programming, ICALP
2017, pp. 29:1–29:14, Warsaw (2017)

39. Lovász, L.: Operations with structures. Acta Math. Hung. 18, 321–328 (1967)
40. Madras, N., Randall, D.: Markov chain decomposition for convergence rate analysis. Ann. Appl.

Probab. 12(2), 581–606 (2002)
41. McCoy, B., Wu, T.: The two-dimensional Ising model. Harvard University Press, Cambridge (1973)
42. Onsager, L.: Crystal statistics. i. a two-dimensional model with an order-disorder transition. Phys.

Rev. 65(3-4), 117–149 (1944)
43. Randall, D.: Mixing. In: 44Th Symposium on Foundations of Computer Science (FOCS 2003), 11-14

October 2003, Cambridge, MA, USA, Proceedings, pp. 4–15 (2003)
44. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual ACM

Symposium on Theory of Computing, pp. 216–226, San Diego (1978)
45. Szegedy, B.: Edge coloring models and reflection positivity. J. Amer. Math. Soc. 20, 969–988 (2007)
46. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics c an exact result. Philos.

Mag. 6, 1061 C 1063 (1961)
47. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput.

31(4), 1229–1254 (2002)
48. Valiant, L.G.: Accidental algorthims. In: FOCS ’06: Proceedings of the 47th Annual IEEE Symposium

on Foundations of Computer Science, pp. 509–517. IEEE Computer Society, Washington (2006).
https://doi.org/10.1109/FOCS.2006.7

49. Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008).
https://doi.org/10.1137/070682575

50. Welsh, D.: Complexity: knots, colourings and counting. Cambridge University Press, Cambridge
(1993)

51. Yang, C.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85(5), 808–
816 (1952)

52. Yang, C., Lee, T.: Statistical theory of equations of state and phase transitions. I. Theory of
condensation. Phys. Rev. 87(3), 404–409 (1952)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

1390 Theory of Computing Systems (2020) 64:1362–1391

https://doi.org/10.1109/FOCS.2006.7
https://doi.org/10.1137/070682575

Affiliations

Jin-Yi Cai1 ·Pinyan Lu2 ·Mingji Xia3

Pinyan Lu
lu.pinyan@mail.shufe.edu.cn

Mingji Xia
mingji@ios.ac.cn

1 Computer Sciences Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
2 School of Information Management and Engineering, Shanghai University of Finance and Economics,

Yangpu District, Shanghai, China
3 Stake Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

University of Chinese Academy of Sciences, Beijing, China

1391Theory of Computing Systems (2020) 64:1362–1391

mailto: lu.pinyan@mail.shufe.edu.cn
mailto: mingji@ios.ac.cn

	Dichotomy for Holant* Problems on the Boolean Domain
	Abstract
	Introduction
	Subsequent development:

	Definition and Statement
	Tractability
	Outline of the Hardness Proof
	Separation Lemma
	Arity Reduction
	From Asymmetric to Symmetric
	References
	Affiliations

