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In this article, we show a tight approximation guarantee for budget-feasible mechanisms with an additive
buyer. We propose a new simple randomized mechanism with approximation ratio of 2, improving the pre-
vious best known result of 3. Our bound is tight with respect to either the optimal offline benchmark or its
fractional relaxation. We also present a simple deterministic mechanism with the tight approximation guar-
antee of 3 against the fractional optimum, improving the best known result of (2 +
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1 INTRODUCTION

In a typical procurement setting, a buyer wants to purchase items from a set A of agents. Each
agent i ∈ A can supply an item (or provide a service) at an incurred cost of ci to himself, and the
buyer wants to optimize his valuation for the set of acquired items taking into account the costs
of items. Because the agents may strategically report their costs, this setting is usually considered
as a truthful mechanism design problem.
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These problems have been extensively studied by the AGT community. The earlier work an-
alyzed the case where the buyer’s valuation takes 0–1 values (see, e.g., Ref. [5]) in the frugality
framework, with the objective of payment minimization. A more recent line of work on the budget-
feasible mechanism design (see, e.g., Ref. [24]) studies more general valuation functions with a
budget constraint of B on the buyer’s total payment. Our work belongs to the latter category.

Research in the budget-feasible framework focuses on different classes of complement-free val-
uations (ranging from the class of additive valuations to the most general class of subadditive
valuations), and has many applications such as procurement in crowdsourcing markets [26], ex-
perimental design [18], and advertising in social networks [25]. The central problem for these on-
line labor markets is to properly price each task. The budget feasibility mechanism design model
is a very reasonable model that naturally captures the budget limitation on the buyer and also
uncertainty about workers costs.

This setting corresponds to the most basic additive valuation of the buyer, which is the topic
of our paper. That is, we assume that every hired worker i ∈W generates a value of vi ≥ 0 to the
buyer, whose total valuation from all the hired workers W is equal to v (W ) =

∑
i ∈W vi . Without

any incentive constraints, this naturally defines the Knapsack optimization problem:

Find workers S ⊆ A: max
S ⊆A

v (S ) =
∑
i ∈S

vi , subject to
∑
i ∈S

ci ≤ B.

In the budget-feasible framework, the goal is to design truthful direct-revelation mechanisms1 that
decide (1) which workers W ⊆ A to select and (2) how much to pay them under the budget con-
straint. A mechanism is evaluated against the benchmark of the optimal solution to the Knapsack

problem. Over all possible choices of the value vi ’s and the cost ci ’s, the worst-case multiplicative
gap between the outcome v (W ) and the optimal Knapsack solution is called the approximation

ratio of this mechanism.
For the above problem with an additive buyer, Singer [24] gave the first 5-approximation mecha-

nism. Later, the result was improved by Chen et al. [11] via a (2 +
√

2)-approximation deterministic
mechanism and a 3-approximation randomized mechanism, which still remain the best known up-
per bounds for the problem for nearly a decade. Further, the best known lower bounds are (

√
2 + 1)

for the deterministic mechanisms and 2 for the randomized ones [11]. Thus, there are gaps for both
the deterministic mechanisms [

√
2 + 1, 2 +

√
2] and the randomized ones [2, 3]. Since these two in-

tervals intersect, it is even unclear whether the best randomized mechanism is indeed better than
the best deterministic one.

Also, for the above problem with an additive buyer, Anari et al. [4] studied an important special
case of large markets (i.e., the setting where each worker has vanishingly small cost compared to
the buyer’s budget) and acquired the tight bound of e

e−1 .

Fractional Knapsack. Interestingly, all previous work on budget-feasible mechanisms for an
additive buyer actually obtained results against the stronger benchmark of the optimal solution
to Fractional Knapsack, i.e., the fractional relaxation of the Knapsack problem. (Nonetheless, the
lower bounds apply to the Knapsack benchmark instead of the Fractional Knapsack benchmark.)
Indeed, although Knapsack is a well-known NP-hard problem, its fractional relaxation admits
an efficient solution by a simple greedy algorithm, and generally has much better behavior than
the integral optimum. We also compare the performance of our mechanisms to the Fractional

Knapsack benchmark.

1Typically, there are no assumptions in the literature about the prior distribution of the agents’ costs. The truthfulness
condition means that the strategy of reporting the true cost is ex post a dominant and individually rational strategy for
every single agent.
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Our Results. We propose two natural mechanisms that both achieve tight guarantees against the
Fractional Knapsack benchmark. Namely, we prove a 3-approximation guarantee for a determinis-
tic mechanism and a 2-approximation guarantee for a randomized one. Given the matching lower
bound of 2 even against the weaker Knapsack benchmark, the guarantee from our randomized
mechanism is also tight against the standard benchmark. Our results establish a clear separa-
tion between the respective power of randomized and deterministic mechanisms: no deterministic
mechanism has an approximation guarantee better than (

√
2 + 1), whereas our randomized mech-

anism already achieves a 2-approximation.
Concretely, we propose a new natural design principle of two-stage mechanisms. In the first

stage, we greedily exclude the items with low value-per-cost ratios.2 Then, in the second stage,
we leverage the simple posted-price schemes based on the values of the remaining items. Both of
our randomized and deterministic mechanisms share the first stage, which stops earlier than its
analogues from the previous work. A remarkable property of the first stage, which we call pruning

(similar to the pruning approach in the frugality literature [10, 20]) is that it can be composed (in the
sense of Ref. [1]) with any truthful follow-up mechanism that runs on the items left to the second
stage. The difference between our randomized and deterministic mechanisms lies in the follow-
up posted-price schemes—the randomized mechanism uses non-adaptive posted prices with the
total sum below the budget, whereas our deterministic mechanism employs adaptive pricing that
depends on whether the previous agents accepted or rejected their posted-price offers.

Intuition behind our mechanism. The pruning stage of both mechanisms allows the buyer
to reduce the choice complexity, and gives a reasonable upper bound on the payment to each
remaining agent. The value of the fractional optimum never decreases too much, especially when
the individual true cost ci of each remaining agent is a non-negligible fraction of the budget B. We
prove that the fractional optimum drops at most by a factor of two after the pruning stage for an
arbitrary set of values and costs.

The idea behind the pruning stage is that the removed agents can be safely ignored by the
mechanism, since the remaining items suffice to get the desired approximation to the fractional
optimum. Moreover, the mechanism should naturally prefer the items with higher value-per-cost
ratios. Our pruning process is based on the value-per-cost ratio, and works specifically for an
additive-valuation buyer. That is, it is still unknown how to extend such a pruning stage to more
general classes of valuation functions.

The second stage of our randomized mechanism draws a random vector of budget-feasible
posted prices. This is the same type of the mechanism as was used by Bei et al. [9] to establish the
tight approximation ratio of 2 for a subadditive buyer in the promise version of the problem (i.e.,
where the buyer is ensured to have a budget higher than the total cost of all items). Their result
holds in the Bayesian setting, which by the minimax principle implies the existence of a random-
ized posted-price mechanism with the same approximation ratio in the worst-case setting. In our
problem with an additive buyer, we explicitly construct a desired distribution over the posted-price
vectors. Such posted-price schemes seem to be useful and easily adaptable to more general classes
of valuation functions.

1.1 Related Work

A complementary concept of budget-feasible mechanism design is frugality, for which the objec-
tive is payment minimization under the feasibility constraint on the set of winning agents. In that

2This is essentially the main approach used in the previous work, had we continued until the remaining items (as a whole)
become budget-feasible.
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framework, there is a rich literature studying different systems of feasible sets, including matroid
set systems [19], path and k-paths auctions [5, 10, 12, 15, 27], vertex cover, and k-vertex cover
[14, 17, 20].

The framework of budget-feasible mechanism design was proposed by Singer [24]. Beyond ad-
ditive valuations, other more general classes of complement-free valuations also have been con-
sidered in the literature:

submodular ⊂ fractionally subadditive ⊂ subadditive.

Singer gave an 112-approximation mechanism for submodular valuations [24]. This bound was im-
proved to 7.91 and 8.34, respectively, for the randomized and deterministic mechanisms by Chen
et al. [11], and then to 4 and 5 by Jalaly and Tardos in Ref. [21]. For fractionally subadditive val-
uations, Bei et al. [9] gave a 768-approximation randomized mechanism. For subadditive valua-
tions, Dobzinski et al. [13] first gave an O (log2 n)-approximation randomized mechanism and an
O (log3 n)-approximation deterministic mechanism. Later, Bei et al. [9] showed the existence of an
O (1)-approximation mechanism in this most general setting. Nonetheless, an explicit description
of such a mechanism is still unknown.

There also have been many interesting and practically motivated adjustments to the original
budget feasibility model. In particular, Anari et al. [4] investigated the variant with the additional
large market assumption (namely, every agent has a negligible cost compared to the whole bud-
get) and attained the tight result of e

e−1 for an additive buyer. Leonardi et al. [22] explored an
additive-valuation model where the winning agents must form an independent set from a matroid.
Amanatidis et al. [2, 3] investigated the variants with several important subclasses of submodu-
lar and fractionally subadditive valuations. Badanidiyuru et al. [6] studied the family of online
pricing mechanisms in the budget feasibility model, motivated by practical restrictions given by
the existing platforms. Balkanski and Hartline [7] obtained improved guarantees in the Bayesian
framework. Goel et al. [16] concerned more complex scenarios on a crowdsourcing platform, where
the buyer hires the workers to complete more than one task. Balkanski and Singer [8] considered
fair mechanisms (instead of truthful mechanisms) in the budget feasibility model.

2 PRELIMINARIES

In the procurement auction, there are n items for sale, each held by a single agent i ∈ [n] with
a privately known cost ci ≥ 0 and a publicly known value vi > 0 for the buyer. The buyer has
an additive valuation function v (A) =

∑
i ∈Avi for purchasing a subset A ⊆ [n] of items. Due to

the revelation principle, we only consider direct-revelation mechanisms. Upon receiving bids b =

(bi )n

i=1 of the claimed costs from the agents, a mechanism determines a set W ⊆ [n] of winning

agents and the payments p = (pi )n

i=1 to the agents.
In the budget feasibility model, a deterministic mechanismM is specified by an allocation func-

tion x(b) : Rn
+ → {0, 1}n (thus, the winning setW

def
= {i ∈ [n] | xi (b) = 1}) and a payment function

p(b) : Rn
+ → Rn

+. We use the notation bi to denote the i-th entry of the bid vector b, and the nota-
tion b−i the bid vector without bidder i ∈ [n]. We are interested in those truthful mechanisms that
satisfy the following properties for any b = (bi )n

i=1 and any c = (ci )n

i=1.

— Individual rationality: pi (b) ≥ ci and, thus, ui (b) = pi (b) − ci ≥ 0 for every i ∈W , while
pi (b) ≥ 0 and, thus, ui (b) = pi (b) ≥ 0 for every i �W . Namely, every agent i ∈ [n] gets a
non-negative utility.

—Budget feasibility: the total payment
∑

i ∈W pi (b) is capped with a given budget B ∈ R+.
—Truthfulness: every agent i ∈ [n] maximizes his utility when he bids the true cost bi = ci ;

namely, ui (ci , b−i ) ≥ ui (bi , b−i ) for any ci and any b = (bi , b−i ).
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It is well known (see Ref. [23]) that truthfulness holds if and only if: (1) the allocation function
xi (bi , b−i ) is monotone in bid bi , i.e., each winning agent i ∈W keeps winning when he unilat-
erally claims a lower bid bi ≤ ci ; and (2) the payment pi (b) to each winning agent i ∈W is the
threshold/maximum bid for him to keep winning, i.e., pi (b) = sup{bi ∈ R+ | xi (bi , b−i ) = 1}.

In general, a mechanism can have randomized allocation and payment rules. We restrict our
attention to the mechanisms that can be described as a probability distribution over truthful de-
terministic mechanisms. Namely, any realization of such a randomized mechanism is some de-
terministic truthful mechanism that satisfies the above properties. A randomized mechanism of
this type is called a universally truthful mechanism. We notice that most of the previous work on
budget feasible mechanism only studies universally truthful mechanisms.

We denote by alg the value
∑

i ∈W vi derived from a deterministic mechanism, or the expected
value E

[∑
i ∈W vi

]
in case of a randomized mechanism. W.l.o.g., we assume ci ≤ B for each agent

i ∈ [n], since this agent cannot win when ci > B (due to the individual rationality and the budget
feasibility constraints). If the buyer knows the private costs c = (ci )n

i=1 of the items, he would
simply select the subset of items with the maximum total value, under the budget constraint. Let
opt denote the optimal solution to this Knapsack problem:

opt
def
= max

(xi )n

i=1∈{0,1}n

n∑
i=1

xi · vi , subject to
n∑

i=1

xi · ci ≤ B. (Knapsack)

We also consider the fractional relaxation of the problem, and define its optimum as

fopt
def
= max

(xi )n

i=1∈[0,1]n

n∑
i=1

xi · vi , subject to
n∑

i=1

xi · ci ≤ B. (Fractional Knapsack)

Although opt is NP-hard to calculate, finding fopt is easy: one greedily and divisibly takes the
items in the decreasing order of their value-per-cost ratios,3 until the budget is exhausted or no

item is left. Under our assumption that ci ≤ B for all i ∈ [n], we have 1 ≤ fopt

opt
≤ 2.4

We say that a mechanism achieves an α-approximation against the benchmark opt, if under
whatever values v = (vi )n

i=1 and costs c = (ci )n

i=1, the outcome value alg is at least an 1
α

-fraction of
the Knapsack solution opt. In what follows, we usually evaluate a mechanism against the stronger
benchmark fopt, i.e., the solution to the Fractional Knapsack problem.

α ≤ max
v,c,B

opt

alg
⇐ α ≤ max

v,c,B

fopt

alg
.

3 COMPOSITION OF MECHANISMS: PRUNING

Every mechanism presented in this work can be described as a composition of two stages. In partic-
ular, all of our mechanisms share the same first stage, called Pruning-Mechanism (see Figure 1),
which serves to exclude the items with low value-per-cost ratios.

In Step (2b), if there are multiple items such that vk

ck
≤ r , we discard them one by one in lex-

icographical order, and stop discarding items once the While-Loop meets the Stop-Condition.
The output set S (r ) is always nonempty, since the Stop-Condition of the While-Loop is violated
when S (r ) contains only one item.

Pruning-Mechanism possesses a remarkable composability property: the combination of it with
any truthful follow-up mechanismM running on the remaining items i ∈ S (r ) is still a truthful

3Namely, the decreasing order (σi )n

i=1 is a permutation of [n] such that
vσ1
cσ1
≥ vσ2

cσ2
≥ · · · ≥ vσn

cσn
.

4Without this assumption, the gap between the two optima fopt
opt can be arbitrarily large.
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Fig. 1. The first stage, Pruning-Mechanism, shared by all of our mechanisms.

Fig. 2. The template of a composition mechanismM.

mechanism. More concretely (see Figure 2), the composition mechanismM = (x, p) of Pruning-
Mechanism with a follow-up mechanismM = (x, p) works as follows:

Lemma 3.1 (Composability). If a follow-up mechanism M is individually rational, budget-

feasible, and truthful, then so is the composition mechanismM.

Proof. By Step (1b) of Pruning-Mechanism, every item i ∈ S (r ) has a value-per-cost ratio
at least r , which means ci ≤ vi

r
. Thus, capping the payment with vi

r
does not break the individual

rationality. The follow-up mechanism M itself is budget-feasible, and the composition mecha-
nism M can only reduce the payment for a winning item. Given these, we are left to show the
truthfulness ofM.

We claim that no winning item i ∈ S (r ) may change the output of Pruning-Mechanism by
manipulating its bid to c ′

i
, unless this item gets excluded from S (r ) because of a too high bid c ′

i
.

Indeed, suppose item i is still winning with the bid c ′
i
; then, item i was never removed from the

set S (r ), i.e., vi

c ′
i

≥ r at all times in the While-Loop of the Pruning-Mechanism. Given that item i

stays in the set S (r ), the Stop-Condition of the While-Loop and the order in which we discard
other items do not depend on the exact bid c ′

i
of item i .

Since the follow-up mechanism M has a monotone allocation rule, so does the composition
mechanism M. Regarding a losing item i �W (i.e., item i loses in M when it bids truthfully),
reporting a higher bid c ′

i
> ci does not help this item to pass the Pruning-Mechanism stage. As

we discussed above, suppose that item i passes the Pruning-Mechanism stage by bidding c ′
i
> ci ,

namely, i ∈ S ′(r ′); then, the two outcomes of Pruning-Mechanism under the two bids c ′
i

and ci

must be the same, namely (r ′, S ′(r ′)) = (r , S (r )). In other words, when item i reports the true cost
ci , it passes the Pruning-Mechanism stage as well, but then loses in the follow-up mechanismM.
Given that the follow-up mechanismM is truthful and runs on the same pair (r ′, S ′(r ′)) = (r , S (r ))
in both scenarios, item i will lose again in the follow-up mechanismM, when it reports the higher
bid c ′

i
> ci .

The payment p
i
= min{pi ,

vi

r
} of the composition mechanismM is exactly the threshold bid for

an item i ∈W to keep winning: (1) passing the Pruning-Mechanism stage requires a bid of at
least vi

r
; and (2) winning in the follow-up mechanismM (after passing the Pruning-Mechanism

stage) requires a bid of at least pi .
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In addition, a winning item i ∈W cannot improve its utility by reporting a lower bid c ′
i
< ci .

As mentioned, when this winning item bids a lower c ′
i
< ci , the Pruning-Mechanism returns

the same pair (r ′, S ′(r ′)) = (r , S (r )). Since the follow-up mechanism M = (x, p) is truthful (i.e.,
a monotone allocation rule and a threshold-based payment rule), item i gets the same payment
p ′

i
= pi under either bid c ′

i
or ci . The composition mechanismM thus has the same payment p ′

i
=

min{p ′
i
, vi

r ′ } = min{pi ,
vi

r
} = p

i
in both scenarios.

This completes the proof of Lemma 3.1. �

We show now several useful properties of the output (r , S (r )) of Pruning-Mechanism.

Lemma 3.2 (Pruning Mechanism). Let i∗ ∈ arg max{vi | i ∈ S (r )} denote the highest-value item

or one of the highest-value items,5 and let T
def
= S (r ) \ {i∗}. Then, the following hold:

(a) ci ≤ vi

r
≤ B for each item i ∈ S (r ).

(b) v (T ) ≤ rB < v (S (r )).
(c) fopt ≤ v (S (r )) + r · (B − c (S (r )) < 2 · v (S (r )).

Proof. Property (a). The first inequality follows from Step (1b) of Pruning-Mechanism;
the second inequality holds, since the ratio r is initialized to be 1

B
·max{vi | i ∈ [n]} and keeps

increasing during the While-Loop.
Property (b). We observe that the first inequality is a reformulation of the Stop-Condition of

the While-Loop. To prove the second inequality, we note that there are two possibilities that can
lead to the termination of the While-Loop, and rB < v (S (r )) holds in both cases.

—[Increase of ratio r]. Continuous increase of r implies rB = v (T ) < v (S (r )).
—[Discard of an item k]. Value-per-cost ratio r is fixed before and after the discard.

Before the discard, in that Stop-Condition has not been invoked,

rB < v (S (r )) +vk −max{vi∗ , vk } ≤ v (S (r )).

Property (c). The second inequality follows from Property (b). We show the first inequality
based on case analysis. Let x = (xi )n

i=1 denote the solution to the Fractional Knapsack problem. We
have either S (r ) ⊆ {i ∈ [n] | xi = 1} or S (r ) ⊇ {i ∈ [n] | xi > 0}. This claim holds since: (1) Pruning-
Mechanism discards the items in increasing order of the value-per-cost ratios; but (2) the greedy
algorithm takes the items in decreasing order of the value-per-cost ratios; and (3) in both processes,
we break ties lexicographically.

—[When S (r ) ⊆ {i ∈ [n] | xi = 1}]. We notice that c (S (r )) ≤ ∑
i ∈[n] xi · ci ≤ B. Namely, re-

garding the Fractional Knapsack optimum, the total cost
∑

i ∈[n] xi · ci is at least the cost
on the items in S (r ), and is at most the budget B. In addition, every item i � S (r ) has a
value-per-cost ratio vi

ci
≤ r . Consequently, the total value of the items beyond set S (r ) is∑

i�S (r ) xi · vi ≤ r ·∑i�S (r ) xi · ci ≤ r · (B − c (S (r ))).
—[When S (r ) ⊇ {i ∈ [n] | xi > 0}]. We have

∑
i ∈[n] xi · ci ≤ c (S (r )) and

∑
i ∈[n] xi · ci ≤ B,

and every item i ∈ S (r ) has a value-per-cost ratio vi

ci
≥ r . As a result, v (S (r )) − fopt =∑

i ∈S (r ) (1 − xi ) · vi ≥ r ·∑i ∈S (r ) (1 − xi ) · ci ≥ r · (c (S (r )) − B).

This completes the proof of properties (a), (b), and (c). �

Mechanisms in the Second Stage. Given Lemma 3.1, Pruning-Mechanism can be com-
posed with any follow-up truthful mechanism. Actually, we focus on the class of posted-price

5When there are multiple highest-value items, we break ties lexicographically.
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Fig. 3. A 4-approximation deterministic budget-feasible mechanism.

Fig. 4. A new (2 +
√

2)-approximation deterministic budget-feasible mechanism.

mechanisms.6 Such a mechanism is determined by a set of prices (Bi )i ∈S (r ) subject to the budget
constraint

∑
i ∈S (r ) Bi ≤ B, and naturally meets the individual rationality, the budget feasibility,

and the truthfulness.7

To illustrate how to analyze the approximability of a two-stage posted-price mechanism, and as
a warm-up exercise, below, we discuss two simple mechanisms.

Warm-Up. Our first mechanism (see Figure 3) chooses the higher-value subset between {i∗} andT
as the winning setW , where i∗ ∈ arg max{vi | i ∈ S (r )} is the highest-value item andT = S (r ) \ {i∗}
(see Lemma 3.2), by offering price vi

r
to each i ∈ {i∗} or to each i ∈ T . Hence, we deduce from

Lemma 3.2(c) that fopt ≤ 2 · v (S (r )) ≤ 4 ·max{vi∗ , v (T )} = 4 · alg.
Our second posted-price mechanism (see Figure 4) recovers the best known result of (2 +

√
2)

by Chen et al. [11]. This statement is formalized as the following theorem.

Theorem 3.3. Second-Warm-Up–Mechanism is a (2 +
√

2)-approximation mechanism (individ-

ually rational, budget-feasible, and truthful) against the Fractional Knapsack benchmark.

Proof. We only show the approximability via case analysis; the other properties are obvious.

—[Case 1 that vi∗ ≥
√

2 · v (T )]. The highest-value item i∗ is the only winner, and, thus,
the outcome value alg = vi∗ . Then, according to Lemma 3.2(c), we have

fopt ≤ 2 · v (S (r )) = 2 · (vi∗ +v (T )) ≤ (2 +
√

2) · vi∗ = (2 +
√

2) · alg.

—[Case 2 that vi∗ <
√

2 · v (T )]. There are two possibilities. First, when ci∗ ≤ B − v (T )
r

,
all items i ∈ S (r ) together form the winning setW , i.e., alg = v (S (r )). Due to Lemma 3.2(c),

fopt ≤ 2 · v (S (r )) = 2 · alg. Second, when ci∗ > B − v (T )
r

, only the items i ∈ T are chosen as

6To obtain our 3-approximation deterministic mechanism in Section 4, we actually use an adaptive posted-price scheme.
Namely, the take-it-or-leave price offered to a specific item i ∈ S (r ) can change, depending on whether the items that have
already made decisions accepted or rejected their posted-price offers.
7In the case of a randomized mechanism, any realization is given by a particular set of budget-feasible posted prices
(Bi )i∈S (r ) , i.e., a truthful deterministic mechanism. Thus, this randomized mechanism is universally truthful.

ACM Transactions on Economics and Computation, Vol. 8, No. 4, Article 21. Publication date: October 2020.



Optimal Budget-Feasible Mechanisms for Additive Valuations 21:9

Fig. 5. The 3-approximation deterministic budget-feasible mechanism.

the winners, i.e., alg = v (T ). Consequently,

fopt ≤ v (S (r )) + r · (B − c (S (r ))) (Lemma 3.2(c))

≤ v (S (r )) +v (T )

(
as c (S (r )) ≥ ci∗ > B − v (T )

r

)

= v (i∗) + 2 · v (T ) (as v (S (r )) = v (i∗) +v (T ))

< (2 +
√

2) · alg. (as vi∗ <
√

2 · v (T ) =
√

2 · alg).

This completes the proof of Theorem 3.3. �

We emphasize that our Second-Warm-Up–Mechanism achieves a 2-approximation, whenvi∗ <√
2 · v (T ) and ci∗ ≤ B − v (T )

r
. One might ask a natural question: is it possible to achieve a better

trade-off between this 2-approximation case and the (2 +
√

2)-approximation cases? In the next
section, we will confirm this guess by presenting a slightly more complicated adaptive posted-
price scheme, resulting in a 3-approximation deterministic mechanism.

4 DETERMINISTIC MECHANISM

The warm-up mechanisms have merely a few possible outcomes and do not adapt to the decisions
of the items: either the highest-value item i∗, or the remaining items T , or, rarely, both item i∗

and items T win; all the posted prices (Bi )i ∈S (r ) are almost equal to the maximum possible values
( vi

r
)i ∈S (r ) . Such rigid structure hinders both warm-up mechanisms from achieving better perfor-

mance guarantees than a (2 +
√

2)-approximation.
Now, we give a mechanism (called Deterministic-Mechanism, see Figure 5) that achieves a bet-

ter approximation. This mechanism (first stage) gets the pair (r , S (r )) via the Pruning-Mechanism
given in Section 3, and then (second stage) applies an adaptive posted-price scheme.

Theorem 4.1. Deterministic-Mechanism is a 3-approximation mechanism (individually ratio-

nal, budget-feasible, and truthful) against the Fractional Knapsack benchmark.

Proof. The individual rationality and the truthfulness are easy to see, regarding the pricing na-
ture of Deterministic-mechanism, Lemma 3.1, and Lemma 3.2(a). To show the budget feasibility,
we consider either Case (3b) or Case (3c) in the mechanism:

—[Case (3b)].
∑

i ∈W Bi ≤ Bi∗ +
∑

i ∈T
vi

v (T ) · (B − Bi∗ ) = B.

—[Case (3c)]. SinceW = T , we know from Lemma 3.2(b) that
∑

i ∈W
vi

r
=

v (T )
r
≤ B.
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We now show the approximation guarantee. Both Case (1) and Case (2), where either vi∗ ≤
1
2 · v (T ) or vi∗ ≥ 2 · v (T ), are easy to analyze. Since alg = max{vi∗ , v (T )} in either case,

fopt < 2 · v (S (r )) = 2 · (vi∗ +v (T )) ≤ 3 ·max{vi∗ , v (T )} = 3 · alg,

where the first step applies Lemma 3.2(c), and the third step holds since we have 2 · vi∗ ≤ v (T ) or
vi∗ ≥ 2 · v (T ) in both cases.

From now on, we safely assume 1
2 · v (T ) < vi∗ < 2 · v (T ). Conditioned on either ci∗ ≤ Bi∗ or

ci∗ > Bi∗ , we are only left to deal with Case (3b) and Case (3c).

[Case (3b) that ci∗ ≤ Bi∗]. We denote by U
def
= {i ∈ T | ci ≤ Bi } the set of winners in T , so

the outcome value alg = vi∗ +v (U ). Of course, a losing item i ∈ (T \U ) rejects the offered price
Bi = min{vi

r
, vi

v (T ) · (B − Bi∗ )} (by definition), since it has a too large cost ci > Bi . But this losing
item was not discarded during Pruning-Mechanism, so it has a high enough value-per-cost ratio
vi

ci
≥ r (see Lemma 3.2(a)) and thus a cost ci ≤ vi

r
. For these reasons, the price offered to this losing

item is exactly Bi =
vi

v (T ) · (B − Bi∗ ). We deduce that

c (S (r )) ≥
∑

i ∈(T \U )

ci >
∑

i ∈(T \U )

Bi =
v (T \U )

v (T )
· (B − Bi∗ ). (1)

By Lemma 3.2(c), fopt ≤ v (S (r )) + r · (B − c (S (r ))). We plug Inequality (1) into it and get

fopt
(1)
< v (S (r )) + r ·

(
v (U )

v (T )
· B + v (T \U )

v (T )
· Bi∗

)

<v (S (r )) ·
(
1 +

v (U )

v (T )
+
v (T \U )

v (T )
· Bi∗

B

)
(Lemma 3.2(b): rB < v (S (r )))

≤v (S (r )) ·
(
1 +

v (U )

v (T )

)
+
v (T \U )

v (T )
· (2 · vi∗ −v (T ))

(
as Bi∗ ≤ 2·vi∗−v (T )

v (S (r )) · B
)

= 3 · vi∗ +v (U ) ·
(
2 − vi∗

v (T )

)
(as v (S (r )) = vi∗ +v (T ))

≤ 3 · vi∗ + 3 · v (U ) = 3 · alg.

[Case (3c) that ci∗ > Bi∗]. According to Lemma 3.2(a), ci∗ ≤ vi∗
r

, and ci ≤ vi

r
for any i ∈ T .

Since Bi∗ < ci∗ ≤ vi∗
r

, we have Bi∗ = min{vi∗
r
,

2·vi∗−v (T )
v (S (r )) · B} =

2·vi∗−v (T )
v (S (r )) · B.

In this case, the highest-value item i∗ rejects its offer, but all the remaining items i ∈ T accept
their offers. Thus, the winning set isW = T , and the outcome value is alg = v (T ). We then deduce
that

fopt ≤v (S (r )) + r · (B − c (S (r ))) (Lemma 3.2(c))

≤v (S (r )) + r · (B − Bi∗ ) (as c (S (r )) ≥ ci∗ > Bi∗ )

≤v (S (r )) ·
(
2 − Bi∗

B

)
(Lemma 3.2(b): rB < v (S (r )))

= 3 · v (T ) = 3 · alg.

(
as Bi∗ =

2 · vi∗ −v (T )

v (S (r ))
· B

)

To conclude, we have 3 · alg ≥ fopt in all cases, which completes the proof of Theorem 4.1. �

ACM Transactions on Economics and Computation, Vol. 8, No. 4, Article 21. Publication date: October 2020.



Optimal Budget-Feasible Mechanisms for Additive Valuations 21:11

Fig. 6. The 2-approximation randomized budget-feasible mechanism.

4.1 Matching Lower Bound

Against the Fractional Knapsack benchmark, our Deterministic-Mechanism turns out to have
the best possible approximation ratio among all deterministic mechanisms. To see so, we now
construct a matching lower-bound instance, which is similar to Ref. [24, Proposition 5.2].

Theorem 4.2. No deterministic mechanism (truthful, individually rational, and budget-feasible)

has an approximation ratio less than 3 against the Fractional Knapsack benchmark, even if there are

only three items.

Proof. For the sake of contradiction, assume that there is a (3 − ε )-approximation deterministic
mechanism for some constant ε > 0. Consider the following two scenarios with three items having

values v1 = v2 = v3 = 1. Let c∗
def
= B

2−ε/2 ; notice that 2c∗ > B.

—[With costs (c∗, c∗, c∗)]. Due to the individual rationality, each winning item gains a
payment of at least c∗. To guarantee the promised approximation ratio of (3 − ε ) under
budget feasibility, there is exactly one winning item. W.l.o.g., we assume that the winner is
the first item.

—[With costs (0, c∗, c∗)]. By the truthfulness, item 1 wins once again, getting the same
payment of at least c∗. As a result, the budget left is at most (B − c∗) < c∗. Regarding the
budget feasibility and individual rationality, neither item 2 nor item 3 can win.

In the later scenario, the mechanism generates value alg = 1, yet the Fractional Knapsack bench-
mark achieves value fopt = 1 + B

c∗ = 3 − ε

2 > 3 − ε . This contradicts our assumption that the mech-
anism is (3 − ε )-approximation, concluding the proof of the theorem. �

5 MAIN RESULT: RANDOMIZED MECHANISM

We now present the main result of our work, a randomized mechanism (called Randomized-
Mechanism, see Figure 6) that achieves a 2-approximation to the Fractional Knapsack benchmark.
Regarding the matching lower bound by Chen et al. [11, Theorem 4.2] against the weaker Knap-

sack benchmark, this approximation guarantee is tight for both benchmarks. Our mechanism (first
stage) gets the pair (r , S (r )) from the Pruning-Mechanism given in Section 3, and then (second
stage) applies a randomized non-adaptive posted-price scheme.

We first verify that all quantities in Randomized-Mechanism are well defined.

Lemma 5.1. 0 ≤ q = 1
2 ·

v (S (r ))−r B

min{vi∗, v (T ) } ≤
1
2 and 0 ≤ B − v (T )

r
<

vi∗
r

.
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Proof. The first inequality is due to Lemma 3.2(b) that v (S (r )) > rB. Lemma 3.2 further im-
plies rB ≥ vi∗ and rB ≥ v (T ), i.e., rB ≥ max{vi∗ , v (T )}. Now, the second inequality in Lemma 5.1

follows, as q = 1
2 ·

vi∗+v (T )−r B

min{vi∗, v (T ) } ≤
1
2 ·

vi∗+v (T )−max{vi∗, v (T ) }
min{vi∗ , v (T ) } = 1

2 . Finally, rearranging v (T ) ≤ rB <

v (S (r )) = vi∗ +v (T ) leads to the last two inequalities. �

Similar to Deterministic-Mechanism in Section 4, we also slightly abuse notations and also
refer to Randomized-Mechanism as the composition of two mechanisms: Pruning-Mechanism
with Randomized-Mechanism.

Theorem 5.2. Randomized-Mechanism is a 2-approximation mechanism (individually rational,

budget-feasible, and universally truthful) against the Fractional Knapsack benchmark.

Proof. Since Randomized-Mechanism is a posted-price scheme, it is individually rational.
Since each random realization of the prices (Bi )i ∈S (r ) is budget-feasible, i.e.,

∑
i ∈S (r ) Bi = B by con-

struction, the mechanism is also budget-feasible. Note that (1) all random choices in Randomized-
Mechanism, i.e., the prices (Bi )i ∈S (r ) , can be made before execution of the mechanism; and (2) for
each such choice, the resulting posted-price mechanism is obviously truthful. Due to Lemma 3.1,
all desired properties extend to the composition mechanism, hence, being individually rational,
budget-feasible, and universally truthful.

In the rest of the proof, we show that Randomized-Mechanism is a 2-approximation to fopt.
Let (xi )i ∈S (r ) denote the allocation probabilities; then, the mechanism generates an expected value
of alg =

∑
i ∈S (r ) vi · xi . In order to prove the approximation guarantee, we need the following:

Equation (2), Inequality (3), and Inequality (4), which will be proved later.

rB = 2qi∗ · vi∗ + 2qT · v (T ), (2)

vi∗ · xi∗ ≥ qi∗ · vi∗ +
1
2 · (vi∗ − r · ci∗ ), (3)

vi · xi ≥ qT · vi +
1
2 · (vi − r · ci ), ∀i ∈ T . (4)

Indeed, these mathematical facts together with Lemma 3.2(c) imply that 2 · alg ≥ fopt.

fopt ≤ v (S (r )) + r · (B − c (S (r )))

(2)
= (vi∗ +v (T )) + 2 · (qi∗ · vi∗ + qT · v (T )) − r · (ci∗ + c (T ))

(3,4)
≤ 2vi∗ · xi∗ + 2 ·

∑
i ∈T

vi · xi

= 2 · alg.

Now, we are only left to prove Equation (2), Inequality (3) and Inequality (4).

[Equation (2)]. By the definitions of qi∗ and qT , in either case of Step (2) or Step (3),

qi∗ · vi∗ + qT · v (T ) = 1
2 · (vi∗ +v (T )) − q ·min{vi∗ , v (T )}
= 1

2 · (vi∗ +v (T )) − 1
2 · (v (S (r )) − rB) (definition of q)

= 1
2 · rB.

[Inequality (3)]. It is equivalent to showing that Pr[Bi∗ ≥ ci∗] = xi∗ ≥ qi∗ +
vi∗−r ·ci∗

2vi∗
.

—[When ci∗ ≤ B − v (T )
r

]. Item i∗ always accepts price Bi∗ , i.e., Pr[Bi∗ ≥ ci∗] = 1, which gives
us the desired bound of 1 ≥ qi∗ +

vi∗−r ·ci∗
2vi∗

, because qi∗ ≤ 1
2 .
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—[When ci∗ > B − v (T )
r

]. Due to Lemma 3.2(a), vi∗
r
≥ ci∗ . We consider the random events

in Step (4a) that Bi∗ =
vi∗
r

and in Step (4c) that Bi∗ ∼ Uniform[B − v (T )
r
,

vi∗
r

]. Since
Pr[Step (4a)] = qi∗ and Pr[Step (4c)] = q, putting everything together gives

Pr[Bi∗ ≥ ci∗] =qi∗ + q ·
vi∗/r − ci∗

vi∗/r − (B −v (T )/r )

(
Lemma 3.2(a) :

vi

r
≥ ci

)

=qi∗ +
1

2
· vi∗ − r · ci∗

min{vi∗ , v (T )} (definition of q)

≥ qi∗ +
vi∗ − r · ci∗

2vi∗
.

(
as vi∗ ≥ min{vi∗ , v (T )} and

vi

r
≥ ci

)

[Inequality (4)]. The argument is similar to the above. For each item i ∈ T , we claim that
Pr[Bi ≥ ci ] = xi ≥ qT +

vi−r ·ci

2vi
.

—[When ci ≤ vi

v (T ) · (B −
vi∗
r

)]. Item i always accepts price Bi , i.e., Pr[Bi ≥ ci ] = 1, which

gives us the desired bound of 1 ≥ qT +
vi−r ·ci

2vi
, in that qT ≤ 1

2 .

—[When ci >
vi

v (T ) · (B −
vi∗
r

)]. By Step (5), Bi ≥ ci if and only if Bi∗ ≤ B −v (T ) · ci

vi
. We

consider the random events in Step (4b) that Bi∗ = B − v (T )
r

and in Step (4c) that Bi∗ ∼
Uniform[B − v (T )

r
,

vi∗
r

]. Because Pr[Step (4b)] = qT and Pr[Step (4c)] = q,

Pr[Bi ≥ ci ] =qT + q ·
(B −v (T ) · ci/vi ) − (B −v (T )/r )

vi∗/r − (B −v (T )/r )

=qT + q ·
v (T )

v (S (r )) − rB ·
vi − r · ci

vi

(as v (S (r )) = vi∗ +v (T ))

=qT +
1

2
· v (T )

min{vi∗ , v (T )} ·
vi − r · ci

vi

(definition of q)

≥ qT +
vi − r · ci

2vi

,
(
Lemma 3.2(a) :

vi

r
≥ ci

)

This completes the proof of Theorem 5.2. �

6 CONCLUSION AND OPEN QUESTION

In this work, we proposed a budget-feasible randomized mechanism with the best possible ap-
proximation guarantee for an additive buyer. In addition, our deterministic mechanism still leaves
some room for improvement: the best possible approximation guarantee is somewhere between
[
√

2 + 1, 3]. However, our instance from Theorem 4.2 clearly demonstrates that quite a different
approach that is specifically tailored to the real Knapsack optimum (rather than the fractional
relaxation solution) is needed.

The class of additive valuations is the most basic class of valuations in the research agenda for
budget-feasible mechanisms. We hope that our results may lead to new mechanisms and improved
analysis for broader valuation classes. Indeed, given the same factor 2-approximation result of Ref.
[9] for the promise version of the problem for a subadditive buyer, we are even so bold as to
conjecture that the true approximation guarantee for a subadditive buyer is still 2 (leaving all
computational considerations aside).

Our composition approach has a lot of resemblance to the pruning ideas from the frugality liter-
ature. This demonstrates that ideas and approaches from one area of reverse auction design might
be beneficial to another. We believe that there could be more interesting connections between
these two complementary agendas.
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Finally, our mechanisms use posted prices in the second stage. Besides the practical interest and
motivation of posted-price mechanisms in the prior work, our work gives additional support to
study this family of mechanisms in budget-feasible framework from a theoretical viewpoint.
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