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HOLOGRAPHIC ALGORITHMS WITH MATCHGATES CAPTURE
PRECISELY TRACTABLE PLANAR #CSP∗

JIN-YI CAI† , PINYAN LU‡ , AND MINGJI XIA§

Abstract. Valiant introduced matchgate computation and holographic algorithms. A number of
seemingly exponential time problems can be solved by this novel algorithmic paradigm in polynomial
time. We show that, in a very strong sense, matchgate computations and holographic algorithms
based on them provide a universal methodology to a broad class of counting problems studied in
the statistical physics community for decades. They capture precisely those problems which are
#P-hard on general graphs but computable in polynomial time on planar graphs. More precisely,
we prove complexity dichotomy theorems in the framework of counting CSP problems. The local
constraint functions take Boolean inputs and can be arbitrary real-valued symmetric functions. We
prove that every problem in this class belongs to precisely three categories: (1) those which are
tractable (i.e., polynomial time computable) on general graphs, or (2) those which are #P-hard on
general graphs but tractable on planar graphs, or (3) those which are #P-hard even on planar graphs.
The classification criteria are explicit. Moreover, problems in category (2) are tractable on planar
graphs precisely by holographic algorithms with matchgates.
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1. Introduction. Given a set of functions F , the counting constraint satisfac-
tion problem #CSP(F) is the following problem: An input instance consists of a set
of variables X = {x1, x2, . . . , xn} and a set of constraints where each constraint is
a function f ∈ F applied to some variables in X. The output is the sum, over all
assignments to X, of the products of these function evaluations. This sum-of-product
evaluation is called the partition function. In the special case where f ∈ F out-
puts values in {0, 1} it counts the number of satisfying assignments. But constraint
functions taking real or complex values are also interesting, called (real or complex)
weighted #CSP. Our F consists of real or complex valued functions in general. There
is a deeper reason for allowing this generality: The theory of holographic reductions
is a powerful tool which operates naturally over C, even if the original problem has
only 0–1 valued functions.

A closely related framework for locally constrained counting problems is called
Holant problems [18, 20]. This framework is inspired by the introduction of holo-
graphic algorithms by Valiant [45, 44]. In two groundbreaking papers [43, 45] Valiant
introduced matchgates and holographic algorithms based on matchgates to solve a
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number of problems in polynomial time, which appear to require exponential time.
At the heart of these exotic algorithms is a tensor transformation from a given problem
to the problem of counting (complex) weighted perfect matchings over planar graphs.
The latter problem has a remarkable P-time algorithm (FKT-algorithm) [38, 29, 30].
Planarity is crucial, as counting perfect matchings over general graphs is #P-hard [40].
Most of these holographic algorithms use a suitable linear basis to realize locally a
symmetric function with at most three Boolean variables on a matchgate. This work
has been extended in [14]. In particular we have obtained a complete characterization
of all realizable symmetric functions by matchgates over the complex field C.

The study of “tractable #CSP” type problems has a much longer history in the
statistical physics community (under different names). Ever since Wilhelm Lenz, who
invented what is now known as the Ising model, asked his student Ernst Ising [27]
to work on it, physicists have studied so-called exactly solved models [1, 35]. In
the language of modern complexity theory, physicists’ notion of an exactly solvable
system corresponds to systems with polynomial time computable partition functions
in spirit. This is captured completely by the computer science notion of “tractable
#CSP” and “tractable Holant problems.” In physics, many great researchers worked
to build this intellectual edifice, with remarkable contributions by Ising, Onsager, C.
N. Yang, T. D. Lee, Fisher, Temperley, Kasteleyn, Baxter, Lieb, Wilson, etc. [27, 36,
48, 49, 33, 38, 29, 30, 1, 34, 46]. A central question is to identify what “systems” can
be solved “exactly” and what “systems” are “difficult.” The basic conclusion from
physicists is that some “systems,” including the Ising model, are “exactly solvable”
for planar graphs, but they appear difficult for higher dimensions. There does not
exist any rigorous or provable classification. This is partly because the notion of a
“difficult” partition function had no rigorous definition in physics. However, in the
language of complexity theory, it is natural to consider the classification problem. In
this paper we do that, in the general setting of #CSP with real-valued symmetric
constraint functions. This will also shed light on why the valiant efforts by physicists
to generalize the “exactly solved” planar system to higher dimensions failed. (In the
appendix we will give some more background.)

Now turning from physics to computer science, after Valiant introduced his holo-
graphic algorithms with matchgates, the following question can be raised: Do these
novel algorithms capture all P-time tractable counting problems on planar graphs, or
are there other more exotic algorithmic paradigms yet undiscovered? A suspicion (and
perhaps an audacious proposition) is that they have indeed captured all tractable pla-
nar counting problems. If so it would provide a universal methodology to a broad class
of counting problems studied in statistical physics and beyond. The results of this
paper can be viewed as an affirmation that within the framework of weighted Boolean
#CSP problems the answer is YES, for all symmetric real-valued constraint functions.

While #CSP problems provide a natural framework to address this question, it
turns out that the deeper reason comes from Holant problems, which can be described
as follows: An input graph G = (V,E) is given, where each v ∈ V is attached a
function fv ∈ F , mapping {0, 1}deg(v) → R or C. We consider all edge assignments
σ : E → {0, 1}. For each σ, fv takes its input bits from the incident edges E(v) at
v and evaluates to fv(σ |E(v)). The counting problem on instance G is to compute
HolantG =

∑
σ

∏
v∈V fv(σ |E(v)). In effect, in a Holant problem, edges are variables

and vertices represent constraint functions. This framework is very natural; e.g., the
problem of Perfect Matching corresponds to attaching the Exact-One function
at each vertex, taking 0–1 inputs. The class of all Holant problems with function set
F is denoted by Holant(F).
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Every #CSP problem can be simulated by a Holant problem. Represent any
instance of a #CSP problem by a bipartite graph where left-hand sides (LHS) are
labeled by variables and RHS are labeled by constraints. Denote by =k: {0, 1}k →
{0, 1} the Equality function of arity k, which is 1 on 0k and 1k, and is 0 elsewhere.
Then we can turn the #CSP instance to an input graph of a Holant problem, by
replacing every variable vertex v on the LHS by =deg(v). Thus #CSP(F) can be
simulated by Holant(F ∪ {=k| k ≥ 1}). In fact, #CSP(F) is exactly the same as
Holant(F∪{=k| k ≥ 1}). To see this, suppose we are given an instance for Holant(F∪
{=k| k ≥ 1}). If two adjacent vertices u and v are both labeled by Equality, then
we can contract the edge (u, v) and merge them by a single vertex, labeled by an
Equality of arity deg(u) + deg(v) − 2. Repeat this step until there are no more
adjacent vertices with Equality functions. Now move all vertices with Equality
functions to the LHS and rename as variables, and keep all other vertices with labels
from F on the RHS, we get an equivalent #CSP(F) instance. Thus, #CSP problems
can be viewed as Holant problems where all Equality functions are available for free,
or assumed to be present. However, when we wish to discuss some restricted classes
of counting problems, e.g., for 3-regular graphs, the framework of Holant problems is
the more natural one. And as it turns out, the main technical breakthrough for our
dichotomy theorem for planar #CSP comes from Holant problems.

In this paper we will only consider constraint functions on Boolean variables. For a
symmetric function f on k variables X = {x1, . . . , xk}, we denote it as [f0, f1, . . . , fk],
where fi is the value of f on inputs of Hamming weight i, e.g., (=1) = [1, 1],
(=2) = [1, 0, 1], and (=3) = [1, 0, 0, 1], etc. When we relax Holant problems by al-
lowing all Equality functions for free, we obtain #CSP. We can also consider other
relaxations. Let 0 = [1, 0] and 1 = [0, 1] denote the unary (arity 1) pinning functions
that set a variable to the constant values 0 and 1, respectively. Then Holantc is the
class of Holant problems where 0 and 1 are freely available. This amounts to comput-
ing Holant on input graphs where we can set 0 or 1 to some dangling edges (each end
has degree 1). Another class of Holant problems is called Holant∗ problems, where
we assume all unary functions [u0, u1] are freely available.

In [20] we obtained a dichotomy theorem for (complex) Holant∗ problems and
(real) Holantc problems for all symmetric constraints. The dichotomy criterion for
Holant∗ problems is still valid for planar graphs. The proofs of dichotomy theorems
in this paper start from there.

In section 4, we prove that for any real-valued symmetric function set F , the
planar Holantc(F) problem is tractable (i.e., computable in P) if either it is tractable
over general graphs (for which we already have an effective dichotomy theorem [20])
or it is tractable because every function in F is realizable by a matchgate, in which
case the planar Holantc(F) problem is computable by matchgates in P-time using
FKT. In all other cases the problem is #P-hard.1 Thus, assuming P 6= #P, the
tractability criterion is a necessary and sufficient condition, i.e., a characterization.
A crucial ingredient of the proof is a crossover construction whose validity is proved
algebraically, which seems to defy any direct combinatorial justification.

Our second theorem (section 5) is about planar #CSP problems. We prove that
for any set of real-valued symmetric functions F , the planar #CSP(F) problem is
tractable if either it is tractable as #CSP(F) without the planarity restriction (for
which we have an effective dichotomy theorem [20]) or it is tractable because every

1Strictly speaking, we must only consider F where functions take computable real numbers; this
will be assumed implicitly.
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function in F is realizable by a matchgate under a specific holographic basis transfor-
mation. Thus planar #CSP(F) is solvable by a holographic algorithm in the second
case. For all other F the problem is #P-hard. Thus, the tractability criterion is again
a characterization assuming P 6= #P. The proof of this dichotomy theorem for planar
#CSP is built on the one for planar Holantc in section 4.

Our third result is a dichotomy theorem for planar 2–3 regular bipartite Holant
problems (section 6). (This theorem deals with Holant problems without assuming
unary 0 and 1.) This includes Holant problems for 3-regular graphs as a special case.
The tractability criterion is the same: Either it is tractable for general graphs (for
which we also have an effective dichotomy theorem [12]) or it is tractable by a suitable
holographic algorithm, which is a holographic reduction to FKT using matchgates.
In all other cases the problem is #P-hard.

The three dichotomy theorems are not mutually subsumed by each other and are
of independent interest. In each framework the respective theorem is a demonstra-
tion that holographic algorithms with matchgates capture precisely those problems
expressible within the framework that are #P-hard in general but become polynomial
time tractable on planar graphs. Following the suggestion of a referee, to help readers
better understand, we present a roadmap in section 7 explaining how some earlier
work led to these dichotomy theorems. In an appendix we discuss some connections
to statistical physics.

2. Preliminaries.

2.1. Problem and definitions. Our functions take values in C by default. The
framework of Holant problems is defined for functions mapping any [q]k → C for a
finite q. Our results in this paper are for the Boolean case q = 2. So we give the
following definitions only for q = 2 for notational simplicity.

A signature grid Ω = (H,F , π) consists of a graph H = (V,E) and a labeling π
which labels each vertex with a function fv ∈ F . The Holant problem on instance
Ω is to compute HolantΩ =

∑
σ

∏
v∈V fv(σ |E(v)), a sum over all edge assignments

σ : E → {0, 1}. A function fv can be represented as a vector of length 2deg(v), or
a tensor in (C2)⊗ deg(v). A function f ∈ F is also called a signature. We denote
by =k the Equality signature of arity k. A symmetric function f on k Boolean
variables can be expressed by [f0, f1, . . . , fk], where fi is the value of f on inputs
of Hamming weight i. Thus, (=k) = [1, 0, . . . , 0, 1] (with k − 1 zeros). The unary
functions [1, 0] and [0, 1] are called pinning functions; they set a variable to the values
0 and 1, respectively. Given a signature f = [f0, f1, . . . , fk], for any 0 ≤ i < j ≤ k,
the signature [fi, fi+1, . . . , fj ] is called a subsignature of f and can be obtained by
connecting the pinning functions to f .

A Holant problem is parameterized by a set of signatures.

Definition 2.1. Given a set of signatures F , we define a counting problem
Holant(F):

Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

Planar Holant problems are Holant problems on planar graphs.

Definition 2.2. Given a set of signatures F , we define a counting problem
Pl-Holant(F):

Input: A signature grid Ω = (G,F , π), where G is a planar graph;
Output: HolantΩ.
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We would like to characterize the complexity of Holant problems in terms of
signature sets.2 For some F , it is possible that Holant(F) is #P-hard, while Pl-
Holant(F) is tractable. These new tractable cases make dichotomies for planar Holant
problems more challenging. This is also the focus of this work. Some special families
of Holant problems have already been widely studied. For example, if F contains
all Equality signatures {=1,=2,=3, . . .}, then this is exactly the weighted #CSP
problem. Pl-#CSP denotes the restriction of #CSP to planar structures, i.e., the
standard bipartite graphs representing the input instances of #CSP are planar. In
[20], we also introduced the following two special families of Holant problems by
assuming some signatures are freely available.

Definition 2.3. Let U denote the set of all unary signatures. Given a set of
signatures F , we use Holant∗(F) (or Pl-Holant∗(F), respectively) to denote Holant
(F ∪ U) (or Pl-Holant(F ∪ U), respectively).

Definition 2.4. Given a set of signatures F , we use Holantc(F) (or Pl-Holantc

(F), respectively) to denote Holant(F∪{[1, 0], [0, 1]}) (or Pl-Holant(F∪{[1, 0], [0, 1]}),
respectively).

Replacing a signature f ∈ F by a constant multiple cf , where c 6= 0, does not
change the complexity of Holant(F). So we view f and cf as the same signature. An
important property of a signature is whether it is degenerate.

Definition 2.5. A signature is degenerate iff it is a tensor product of unary
signatures. In particular, a symmetric signature in F is degenerate iff it can be
expressed as λ[x, y]⊗k.

2.2. F-gate and matchgate. A signature from F is a basic function which
can be used at a vertex in an input graph. Instead of a single vertex, we can use
graph fragments to generalize this notion. An F-gate Γ is a tuple (H,F , π), where
H = (V,E,D) is a graph where the edge set consists of regular edges E and dangling
edges D. Some nodes of degree 1 are designated as external nodes, and all other nodes
are internal nodes; a dangling edge connects an internal node to an external node,
while a regular edge connects two internal nodes. The labeling π assigns a function
from F to each internal node. The dangling edges define variables for the F-gate.
(See Figure 1 for one example.) We denote the regular edges in E by 1, 2, . . . ,m and
denote the dangling edges in D by m + 1,m + 2, . . . ,m + n. Then we can define a
function for this F-gate Γ = (H,F , π),

Γ(y1, y2, . . . , yn) =
∑

x1,x2,...xm

H(x1, x2, . . . , xm, y1, y2, . . . yn),

where (y1, y2, . . . , yn) ∈ {0, 1}n denotes an assignment on the dangling edges and
H(x1, x2, . . . , xm, y1, y2, . . . , yn) denotes the value of the signature grid on an assign-
ment of all edges. We will also call this function the signature of the F-gate Γ. An
F-gate can be used in a signature grid as if it is just a single node with the particular
signature.

2Usually our set of signatures F is a finite set, and the assertion of either Holant(F) is tractable
or #P-hard has the usual meaning. However, our dichotomy theorem is actually stronger: we allow
F to be infinite, e.g., to include {=1,=2,=3, . . .} or all unary signatures. Holant(F) is tractable
means that it is computable in P even when we include the description of the signatures in the input
Ω in the input size. Holant(F) is #P-hard means that there exists a finite subset of F for which the
problem is #P-hard.
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Fig. 1. An F-gate with five dangling edges.

Using the idea of F-gates, we can reduce one Holant problem to another in
polynomial time. Let g be the signature of some F-gate Γ. Then Holant(F ∪{g}) ≤T
Holant(F). The reduction is quite simple. Given an instance of Holant(F ∪ {g}), by
replacing every appearance of g by an F-gate Γ, we get an instance of Holant(F).
Since the signature of Γ is g, the values for these two signature grids are identical.

We note that even for a very simple signature set F , the signatures for all F-
gates can be quite complicated and expressive. Matchgate signatures are an example.
Matchgate is introduced by Valiant [43, 42, 45], whose definition is combinatorial
in nature. Matchgates can be viewed as a special case of planar F-gates, where F
contains Exact-One functions of all arities and weight functions ([1, 0, w], w ∈ C) on
edges. (Formally, we replace each matchgate edge of weight w by a path of length 2,
and the new node on the path is assigned weight function [1, 0, w].) The signature
function Γ defined above for a matchgate is called a matchgate signature, or a standard
signature. A signature function is realizable by a matchgate if it is the standard
signature of that matchgate. (After a holographic transformation, a signature function
is realizable under a basis if it is the transformed signature of a matchgate; see below.)

2.3. Holographic reduction. To introduce the idea of holographic reductions,
it is convenient to consider bipartite graphs. This is without loss of generality. For
any general graph, we can make it bipartite by replacing each edge by a path of length
two and giving each new vertex the Equality function =2 on 2 inputs. (This is just
the incidence graph.)

We use Holant(G|R) to denote all counting problems, expressed as Holant prob-
lems on bipartite graphs H = (U, V,E), where each signature for a vertex in U or
V is from G or R, respectively. An input instance for the bipartite Holant problem
is a bipartite signature grid and is denoted as Ω = (H,G|R, π). Signatures in G are
denoted by column vectors (or contravariant tensors); signatures in R are denoted by
row vectors (or covariant tensors) [22].

One can perform (contravariant and covariant) tensor transformations on the sig-
natures. We will define a simple version of holographic reductions, which are invert-
ible. They are called holographic because they may produce exponential cancellations
in the tensor space. Suppose Holant(G|R) and Holant(G′|R′) are two Holant prob-
lems defined for the same family of graphs, and T ∈ GL2(C). We say that there
is an (invertible) holographic reduction from Holant(G|R) to Holant(G′|R′), and T
is the basis transformation, if the contravariant transformation G′ = T⊗gG and the
covariant transformation R = R′T⊗r map G ∈ G to G′ ∈ G′ and R ∈ R to R′ ∈ R′,
and vice versa, where G and R have arity g and r, respectively. (Notice the reversal
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of directions when the transformation T⊗n is applied. This is the meaning of con-
travariance and covariance.)

Theorem 2.6 (Valiant’s Holant theorem [45]). Suppose there is a holographic
reduction from Holant(G|R) to Holant(G′|R′), mapping a signature grid Ω to another
Ω′, then HolantΩ = HolantΩ′ .

In particular, for invertible holographic reductions from Holant(G|R) to
Holant(G′|R′), one problem is in P iff the other one is, and similarly one problem
is #P-hard iff the other one is also.

In the study of Holant problems, we will commonly transfer between bipartite
and nonbipartite settings. When this does not cause confusion, we do not distinguish
signatures between column vectors (or contravariant tensors) and row vectors (or
covariant tensors). Whenever we write a transformation as T⊗nF or TF , we view
the signature or signatures as column vectors (or contravariant tensors); whenever we
write a transformation as FT⊗n or FT , we view the signature or signatures as row
vectors (or covariant tensors).

2.4. Some known dichotomy results. In this subsection, we state some known
dichotomy theorems. We first review three dichotomy theorems from [20].

Theorem 2.7. Let F be a set of symmetric signatures over C. Then Holant∗(F)
is computable in polynomial time in the following three cases. In all other cases,
Holant∗(F) is #P-hard.

1. Every signature in F is of arity no more than two.
2. There exist two constants a and b (not both zero, depending only on F) such

that for every signature [x0, x1, . . . , xn] ∈ F one of the two conditions is
satisfied: (1) for every k = 0, 1, . . . , n− 2, we have axk + bxk+1 − axk+2 = 0;
(2) n = 2 and the signature [x0, x1, x2] is of form [2aλ, bλ,−2aλ].

3. For every signature [x0, x1, . . . , xn] ∈ F , one of the two conditions is satisfied:
(1) For every k = 0, 1, . . . , n − 2, we have xk + xk+2 = 0; (2) n = 2 and the
signature [x0, x1, x2] is of form [λ, 0, λ].

The same dichotomy criterion also holds for Pl-Holant∗(F).

Theorem 2.8. Let F be a set of real symmetric signatures, and let F1,F2, and
F3 be three families of signatures defined as

F1 = {λ([1, 0]⊗k + ir[0, 1]⊗k)|λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3};
F2 = {λ([1, 1]⊗k + ir[1,−1]⊗k)|λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3};
F3 = {λ([1, i]⊗k + ir[1,−i]⊗k)|λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3}.

Then Holantc(F) is computable in polynomial time if (1) After removing unary sig-
natures from F , it falls in one of the three classes of Theorem 2.7 (this implies
Holant∗(F) is computable in polynomial time) or (2) (without removing any unary sig-
nature but replacing each degenerate signature [x, y]⊗k ∈ F by [x, y]) F ⊆ F1∪F2∪F3.
Otherwise, Holantc(F) is #P-hard.

Here we explicitly list all the real signatures in F1 ∪ F2 ∪ F3, up to an arbitrary
scalar factor:

1. (F1): [1, 0, 0, . . . , 0, 1 (or − 1)],
2. (F2): [1, 0, 1, 0, . . . , 0 (or 1)],
3. (F2): [0, 1, 0, 1, . . . , 0 (or 1)],
4. (F3): [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 (or 1 or − 1)],
5. (F3): [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 (or 1 or − 1)],
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6. (F3): [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 (or − 1)],
7. (F3): [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 (or − 1)].

Definition 2.9. A k-ary function f(x1, . . . , xk) is affine if it has the form

λ · χ[AX=0] · i
∑n

j=1〈αj ,X〉,

where λ ∈ C, X = (x1, x2, . . . , xk, 1), and χ is a 0–1 indicator function such that
χ[AX=0] is 1 iff AX = 0. Here the notation 〈α,X〉 denotes an integer value 0, 1 ∈ Z
by performing a dot product on α and X over Z2. The sum over j on the exponent
of i =

√
−1 is an integer sum in Z, or Z4 (but not in Z2). We use A to denote the

set of all affine functions.
We use P to denote the set of functions which can be expressed as a product of

unary functions, binary equality functions ([1, 0, 1] on some two variables), and binary
disequality functions ([0, 1, 0] on some two variables).

Theorem 2.10. Suppose F is a set of functions mapping Boolean inputs to com-
plex numbers. If F ⊆ A or F ⊆ P, then #CSP(F) is computable in polynomial time.
Otherwise, #CSP(F) is #P-hard.

As we mentioned in [20], the class A is a natural generalization of the family of
symmetric signatures F1 ∪ F2 ∪ F3. Indeed one can show that F1 ∪ F2 ∪ F3 consists
of precisely all scalar multiples of unary or nondegenerate symmetric signatures in A.

The following dichotomy for 2–3 regular graphs is from [32].

Theorem 2.11. (see [32]) The problem Holant([y0, y1, y2]|[1, 0, 0, 1]) is #P-hard
for all y0, y1, y2 ∈ C except in the following cases, for which the problem is in P: (1)
y2

1 = y0y2; (2) y12
0 = y12

1 and y0y2 = −y2
1 ( y1 6= 0); (3) y1 = 0; (4) y0 = y2 = 0. If

we restrict the input to planar graphs, then these four categories are tractable in P, as
well as a fifth category y3

0 = y3
2, and the problem remains #P-hard in all other cases.

2.5. Characterization of realizable signatures by matchgates. A signa-
ture f is said to satisfy the even parity condition if the value f at any input of odd
Hamming weight is 0. It satisfies the odd parity condition if the value f at any input
of even Hamming weight is 0. It satisfies the parity condition if it satisfies either the
even parity condition or the odd parity condition.

A matchgate is called even (respectively, odd) if it has an even (respectively,
odd) number of vertices. A matchgate signature satisfies the parity condition. The
following two lemmas are from [9].

Lemma 2.12. A symmetric signature [z0, . . . , zm] is the standard signature of
some even matchgate iff for all odd i, zi = 0, and there exist r1 and r2 not both
zero, such that for every even 2 ≤ k ≤ m,

r1zk−2 = r2zk.

Lemma 2.13. A symmetric signature [z0, . . . , zm] is the standard signature of
some odd matchgate iff for all even i, zi = 0, and there exist r1 and r2 not both
zero, such that for every odd 3 ≤ k ≤ m,

r1zk−2 = r2zk.

In particular, any symmetric signature of arity at most 3 that satisfies the parity
condition is the standard signature of a matchgate.

In [17], we characterized all symmetric signatures realizable by matchgates under
a given basis. Here we state the theorem for a particular basis

[
1 1
1 −1

]
, which will be

used in Theorem 5.1.
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Theorem 2.14. A symmetric signature [x0, x1, . . . , xn] is realizable under the ba-
sis
[

1 1
1 −1

]
iff it takes one of the following forms:

• Form 1: there exist constants λ, s, t, and ε where ε = ±1 such that for all
i, 0 ≤ i ≤ n,

xi = λ[(s+ t)n−i(s− t)i + ε(s− t)n−i(s+ t)i].

• Form 2: there exist a constant λ such that for all i, 0 ≤ i ≤ n,

xi = λ[(n− i)(−1)i + i(−1)i−1].

• Form 3: there exist a constant λ such that for all i, 0 ≤ i ≤ n,

xi = λ[(n− 2)i].

3. Polynomial interpolation. In this section, we discuss the interpolation
method we will use in this paper. Polynomial interpolation is a powerful tool in the
study of counting problems initiated by Valiant [41] and further developed by Vadhan
[39], Dyer and Greenhill [24], and others. The method we use here is essentially the
same as Vadhan’s [39].

For some set of signatures F , suppose we want to show that for all unary sig-
natures f = [x, y], we have Holant(F ∪ {[x, y]}) ≤T Holant(F). Let Ω = (G,F ∪
{[x, y]}, π). We want to compute HolantΩ in polynomial time using an oracle for
Holant(F).

Let Vf be the subset of vertices in G assigned f in Ω. Suppose |Vf | = n. We can
classify all 0–1 assignments σ in the Holant sum according to the number of vertices
in Vf whose incident edge is assigned a 0 or a 1. Then the Holant value can be
expressed as

(1) HolantΩ =
∑

0≤i≤n

cix
iyn−i,

where ci is the sum over all edge assignments σ, of products of evaluations at all
v ∈ V (G)−Vf , where σ is such that exactly i vertices in Vf have their incident edges
assigned 0 (and n− i have their incident edges assigned 1.) If we can evaluate these
ci, we can evaluate HolantΩ.

Now suppose {Gs} is a sequence of F-gates, and each Gs has one dangling edge.
Denote the signature of Gs by fs = [xs, ys] for s = 0, 1, . . .. If we replace each
occurrence of f by fs in Ω we get a new signature grid Ωs, which is an instance of
Holant(F), with

(2) HolantΩs
=
∑

0≤i≤n

cix
i
sy
n−i
s .

One can evaluate HolantΩs
by oracle access to Holant(F). Note that the same set of

values ci occurs. We can treat ci in (2) as a set of unknowns in a linear system. The
idea of interpolation is to find a suitable sequence {fs} such that the evaluation of
HolantΩs

gives a linear system (2) of full rank, from which we can solve all ci.
In this paper, the sequence {Gs} will be constructed recursively using suitable

gadgetry. There are two gadgets in a recursive construction: one gadget has arity
1, giving the initial signature g = [x0, y0]; the other has arity 2, giving the recursive
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Fig. 2. Recursive construction.

iteration. It is more convenient to use a 2 × 2 matrix A to denote it. So we can
recursively connect them as in Figure 2 and get {Gs}.

The signatures of {Gs} have the following relation:

(3)

[
xs
ys

]
=

[
a11 a12

a21 a22

] [
xs−1

ys−1

]
,

where A = [ a11 a12a21 a22 ] and g = [ x0
y0 ].

We call this gadget pair (A, g) a recursive construction. The next lemma follows
from Lemma 6.1 in [39].

Lemma 3.1. Let α, β be the two eigenvalues of A. If the three conditions
1. det(A) 6= 0;
2. g is not a column eigenvector of A (nor the zero vector);
3. α/β is not a root of unity

are satisfied, then the recursive construction (A, g) can be used to interpolate all unary
signatures.

A similar interpolation method also works for signatures with larger arity but
having two degrees of freedom, for example, all signatures of the form [0, x, 0, y]. This
is used in the proof of Lemma 4.9.

Starting from section 4 we will present the three dichotomy theorems of this paper.
Following the suggestion of a referee, to aid the readers, we will present a “roadmap”
in section 7, explaining how some earlier work led to these dichotomy theorems, and
what would help the readers to understand more easily the details of what is done here.
We will present a “revisionist” perspective, taking into account some understanding
that has been gained only after the results of this paper appeared in [13]; some of this
understanding is influenced by the present paper itself. In order not to interrupt the
flow we will present this “roadmap” after the three dichotomy theorems are proved.
However, readers may wish to look at that before reading through the proofs.

4. Dichotomy for planar Holantc problems. Before presenting the dicho-
tomy theorem for planar Holantc problems of this paper, Theorem 4.5, we prove the
following theorem, which is a special case of Theorem 4.5 and plays a crucial role in
the proof of the more general Theorem 4.5.

Theorem 4.1. Let a, b ∈ R.
• If ab 6= 1 then Pl-Holantc([a, 0, 1, 0, b]) is #P-hard.
• If ab = 1 then Pl-Holantc([a, 0, 1, 0, b]) is solvable in P.

We first prove three lemmas which will be used in the proof of this theorem.

Lemma 4.2. Let a, b, x ∈ R, ab 6= 0 and x 6= ±1. Then Pl-Holantc({[a, 0, 0, 0, b],
[0, 1, 0, x]}) is #P-hard.

Proof. Let f = [a, 0, 0, 0, b]. First, we show how to realize (=6) = [1, 0, 0, 0, 0, 0, 1]
by f . The signature f has arity 4 and can be attached to a vertex of degree 4. We can
take two copies of f ; let it be f(x1, x2, x3, x4) and f(y1, y2, y3, y4). We connect three
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pairs of edges to realize a binary function g(x, y) =
∑
u,v,w=0,1 f(x, u, v, w)f(w, v, u, y).

This is a planar gadget construction, resulting in a symmetric binary signature g =
[a2, 0, b2].

If a2 = b2, then we connect one pair of edges from two copies of f and get∑
z=0,1 f(x1, x2, x3, z)f(z, y1, y2, y3), which is the symmetric signature [a2, 0, 0, 0, 0,

0, b2]. This is the same as (=6) = [1, 0, 0, 0, 0, 0, 1] after factoring out the nonzero
factor a2 = b2.

If a2 6= b2, then being positive, either a2 > b2 > 0 or b2 > a2 > 0. Hence
(a/b)2k = 1 implies that k = 0. We connect [a, 0, 0, 0, b] with a chain of [a2, 0, b2] of
length i to get [a2i+1, 0, 0, 0, b2i+1]. Because for any i 6= j, a2i+1/b2i+1 6= a2j+1/b2j+1,
we can realize (=4) = [1, 0, 0, 0, 1] using polynomial interpolation, as follows. Consider
any signature grid on a planar graph G with n occurrences of =4 together with some
other signatures. Let xk,` be the sum, over all 0–1 edge assignments σ, of the products
of all other vertex function values in G except at n vertices with =4, where k, ` ≥ 0
and k + ` = n, and in σ exactly k occurrences of =4 have input 0, and exactly `
occurrences of =4 have input 1. The Holant value is

∑
k+`=n xk,`. Now substitute

each occurrence of =4 by [a2i+1, 0, 0, 0, b2i+1]. The new signature grid has Holant
value

∑
k+`=n xk,`(a

kb`)2i+1. This gives a Vandermonde system from which we solve
for xk,`. Now we have =4. Then we connect two copies of =4 on one pair of edges to
get =6.

Take a vertex of degree 6 in a planar graph attached with =6, where the six
incident edges are its variables. We will bundle two adjacent variables to form three
bundles of two edges each. Then if the inputs are restricted to {(0, 0), (1, 1)} on each
bundle, the function takes value 1 on ((0, 0), (0, 0), (0, 0)) and ((1, 1), (1, 1), (1, 1)) and
takes value 0 elsewhere. Thus if we restrict the domain to {(0, 0), (1, 1)}, then the
arity 6 Equality function =6 behaves as the ternary Equality function =3.

Let F = [0, 1, 0, x] and letH(x1, x2, y1, y2) =
∑
z=0,1 F (x1, y1, z)F (z, y2, x2). This

H is realizable by connecting one pair of edges of two copies of F . (See Figure 3.) We
will consider H as a function in (x1, x2) and (y1, y2). However, we will only connect
H externally by connecting (x1, x2) and (y1, y2) to some bundle of two adjacent edges
of some =6. Since =6 enforces the values on the bundle to be either (0, 0) or (1, 1), we
will only be interested in the restriction of H to the domain {(0, 0), (1, 1)}. On this
domain, H is a symmetric function of arity 2 and can be denoted as [1, 1, x2]. (Note
that H is not a symmetric function of arity 4 on {0, 1}, as H(0, 1, 0, 1) = x.)

Now we have reduced Pl-Holantc({[1, 0, 0, 1], [1, 1, x2]}) to Pl-Holantc({[a, 0, 0,
0, b], [0, 1, 0, x]}).

Using (=3) = [1, 0, 0, 1], we can realize the Equality function =k of any arity
k ≥ 3 by a tree gadget composed of k − 2 many (=3) nodes. Then we can realize
[1, 1, x2k] for all k ≥ 1 as in Figure 3. There are k parallel paths in the figure. The
signature at each vertex of degree 2 on the parallel paths is [1, 1, x] and the signatures
at the two vertices on both sides are =k+1. If x = 0, then we already have [1, 1, 0].

Fig. 3. The gadget for function H and [1, 1, x2k].
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Fig. 4. The gadget for H4.

Suppose x 6= 0. Because x2 6= 1 and being a positive real number, we can realize
[1, 1, 0] by interpolation. Now we have reduced the problem Pl-Holant([1, 0, 0, 1] |
[1, 1, 0]) to Pl-Holantc({[1, 0, 0, 1], [1, 1, x2]}). The bipartite problem Pl-Holant([1, 0,
0, 1] | [1, 1, 0]) is #P-hard since it is counting Vertex Covers on planar 3-regular
graphs [47]. (This is also a consequence of Theorem 2.11.)

The following lemma handles a special case of Theorem 4.1. The proof uses
Lemma 4.2.

Lemma 4.3. Pl-Holantc([0, 0, 1, 0, 0]) is #P-hard.

Proof. We construct a reduction from Pl-Holantc([1, 0, 0, 0, 1], [0, 1, 0, 0]), which is
#P-hard by Lemma 4.2, to Pl-Holantc([0, 0, 1, 0, 0]) by polynomial interpolation.

Let F = [0, 0, 1, 0, 0]. There is a series of planar gadgets (a chain of F ) realizing
the following sequence of functions:

H2(x1, x2, y1, y2) =
∑

x3,x4=0,1

F (x1, x2, x3, x4)F (y1, y2, x3, x4),

and for i ≥ 1,

H2i+2(x1, x2, y1, y2) =
∑

x3,x4=0,1

H2i(x1, x2, x3, x4)H2(y1, y2, x3, x4).

The gadget for H2i is composed of 2i functions F . As an example, the gadget for H4

is shown in Figure 4.
By calculation, H2i(0, 0, 0, 0) = H2i(1, 1, 1, 1) = 1, and H2i(0, 1, 0, 1) = H2i(0, 1,

1, 0) = H2i(1, 0, 0, 1) = H2i(1, 0, 1, 0) = 22i−1, and H2i is zero on other inputs. Again
we will consider the inputs to H2i as bundled into (x1, x2) and (y1, y2).

Given a planar graph G as an instance of Pl-Holantc([1, 0, 0, 0, 1], [0, 1, 0, 0]), sup-
pose there are n vertices in G attached with the function (=4) = [1, 0, 0, 0, 1]. For
i = 1, 2, . . . , n + 1, we construct an instance Gi of Pl-Holantc([0, 0, 1, 0, 0]) as fol-
lows: Replace each occurrence of =4 by a copy of H2i, and replace each occurrence
of [0, 1, 0, 0] by [0, 0, 1, 0, 0] connected with a [0, 1], which exactly realizes [0, 1, 0, 0].
Note that by replacing =4 with H2i, we have bundled two adjacent edges together (in
the planar embedding) for each vertex attached with =4.

Let xa,b denote the summation, over all 0–1 edge assignments σ, of the products
of all other vertex function values in G except at those n vertices with =4, where
a, b ≥ 0 and a+ b = n, and in σ exactly a occurrences of =4 have inputs {0000, 1111},
and exactly b occurrences of =4 have inputs {0101, 0110, 1001, 1010}.

Note that the Holant value on Gi is∑
a+b=n

xab1
a(22i−1)b.

On the other hand, the value of Pl-Holantc([1, 0, 0, 0, 1], [0, 1, 0, 0]) on G is exactly
xn,0.
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Fig. 5. The recursive construction. The signature of every vertex in the gadget is [0, 1, 0, a].

When we take 1 ≤ i ≤ n + 1, we get a system of linear equations in xab, whose
coefficient matrix is a full ranked Vandermonde matrix. Solving this Vandermonde
system we obtain the value xn,0.

The following result can be proved by interpolation as well.

Lemma 4.4. Let a 6∈ {−1, 0, 1} be a real number. Then we can interpolate all
[x, 0, y, 0] and [0, y, 0, x] for x, y ∈ C starting from either [0, 1, 0, a] or [a, 0, 1, 0], in
Pl-Holantc.

Proof. From either [0, 1, 0, a] or [a, 0, 1, 0], we can get [0, 1, 0] by pinning. Us-
ing three copies of the binary Disequality function (6=2) = [0, 1, 0] we can flip all
three variables of a ternary function f , and transform between [f0, f1, f2, f3] and its
reversal [f3, f2, f1, f0]. Hence, we only need to prove how to interpolate [0, y, 0, x]
from [0, 1, 0, a]. The recursive construction is depicted by Figure 5. By a simple par-
ity argument, every F-gate Ni has a signature of the form [0, xi, 0, yi]. After some
calculation, we see that they satisfy the following recursive relation:[

xi+1

yi+1

]
=

[
3(a2 + 1) a3 + a
3(a3 + a) a6 + 1

] [
xi
yi

]
.

The signatures we want to interpolate are of arity 3. But since all of them take the
form [0, xi, 0, yi] with two degrees of freedom, we can use the interpolation method
in section 3. Now we verify that the conditions of that theorem are satisfied. Let

A = [ 3(a2+1) a3+a

3(a3+a) a6+1
]; then (A, [1, a]T) forms a recursive construction. Since det(A) =

3(a4 − 1)2 6= 0, the first condition holds. Its characteristic equation is X2 − (a6 +
3a2 + 4)X + 3(a4 − 1)2 = 0. For this quadratic equation, the discriminant ∆ =
(a6 − 3a2 − 2)2 + 12(a + a3)2 > 0. So A has two distinct real eigenvalues. The sum
of the two eigenvalues is trA = a6 + 3a2 + 4 > 0. So they are not opposite to each
other. Therefore, the ratio of these two eigenvalues is not a root of unity and the
third condition holds. Consider the second condition: if the initial vector [1, a]T is
a column eigenvector of A, then we have A [ 1

a ] = λ [ 1
a ], where λ is an eigenvalue of

A. From this (the second entry of A [ 1
a ] is a times its first entry), we will conclude

that a(a2 − 1)(a4 − 1) = 0. But this is a contradiction to the given condition that
a 6∈ {−1, 0, 1}. To sum up, this recursive construction satisfies all three conditions of
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Fig. 6. The signature of the degree 1 vertex in the gadget is [1, 0] or [0, 1].

Lemma 3.1 and can be used to interpolate all signatures of the form [0, x, 0, y]. This
completes the proof.

Proof of Theorem 4.1. If ab = 1, then [a, 0, 1, 0, b] is realizable by some match-
gate, by Lemma 2.12. This realizability also holds for the unary functions [1, 0] and
[0, 1]. Hence the problem Pl-Holantc([a, 0, 1, 0, b]) can be solved in polynomial time by
matchgate computation via the FKT method [38, 29, 30]. In the following we assume
that ab 6= 1 and prove that the problem is #P-hard. The case a = b = 0 is proved in
Lemma 4.3. Now we can assume at least one of a and b is nonzero, and by symmetry
we assume a 6= 0.

We know from our dichotomy for Holantc problems [20], Theorem 2.8, that
Holantc([a, 0, 1, 0, b]) for general graphs is #P-hard unless a = b = 1 or a = b = −1,
in which cases it is tractable. Both of these tractable cases are also included in the
tractable cases (ab = 1) here for Pl-Holantc. Therefore, if we can realize a cross func-
tion X of arity 4 with a planar gadget when ab 6= 1, we can reduce Holantc([a, 0, 1, 0, b])
for general graphs to Pl-Holantc([a, 0, 1, 0, b]) and finish the proof. Here a cross func-
tion X satisfies

X0000 =X0101 = X1010 = X1111 = 1 and Xα = 0 for all other inputs α ∈ {0, 1}4.

If {a, b} 6⊂ {−1, 0, 1}, we can apply the pinning functions [1, 0] and [0, 1] on
[a, 0, 1, 0, b], and use Lemma 4.4 to interpolate all [x, 0, y, 0], for x, y ∈ C. If {a, b} ⊂
{−1, 0, 1}, then there are only four cases because a 6= 0 and ab 6= 1: [1, 0, 1, 0,−1],
[1, 0, 1, 0, 0], [−1, 0, 1, 0, 1], and [−1, 0, 1, 0, 0]. In all four cases, it is easy to verify that
we can realize a signature of the form [c1, 0, c2, 0] where c1c2 6= 0 and c1 6= ±c2 using
the gadget in Figure 6. (For [1, 0, 1, 0,−1], we get [8, 0, 4, 0] by using [1, 0] for the
degree 1 vertex in the gadget; for [1, 0, 1, 0, 0], we get [8, 0, 5, 0] by using [1, 0]; for
[−1, 0, 1, 0, 1], we get [0, 4, 0, 8] by using [0, 1]; and for [−1, 0, 1, 0, 0], we get [0, 1, 0, 3]
by using [0, 1].) After factoring out a nonzero factor, we have a signature of the form
[c′, 0, 1, 0], or its reversal, where c′ ∈ R and c′ 6∈ {0,±1}. As a result, by Lemma 4.4,
we can also interpolate all [x, 0, y, 0], where x, y ∈ C.

Now we can use all signatures of the form [x, 0, y, 0], for arbitrary x, y ∈ C,
to build new gadgets. We also have all [x, 0, y] by connecting [x, 0, y, 0] to a [1, 0].
By connecting a [ 4

√
t/a, 0, 4

√
a/t] to each edge of the signature [a, 0, 1, 0, b], we get

[t, 0, 1, 0, ct ] for all t 6= 0, where c = ab 6= 1. Using all these, we will build a planar
gadget in Figure 7 to realize the cross function X. In the equations below x, y, t are
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HOLOGRAPHIC ALGORITHMS AND PLANAR #CSP 867

Fig. 7. This gadget is used to realize the cross function. The signature for the center ver-
tex (black square) is [t, 0, 1, 0, c

t
]. The signature for the vertices in the four corners (red circles)

is [x, 0, 1, 0]. The signature for the vertices in the middle of the boundaries (green triangles) is
[y, 0, 1, 0].

three variables we can set to any complex numbers, with t 6= 0. The parameter c is
given and not equal to 1.

(Of course we presumably could not build a cross function X if c = 1; this is
exactly when the problem is in P, and this is also exactly when our construction of X
fails. If a cross function X were to exist when c = 1, by any construction whatsoever,
then P = #P would follow. However, it is still rather mysterious that algebraically
c = 1 is exactly when our construction fails, and it succeeds everywhere else. This
failure condition is by no means obvious from the equations below. We will comment
more on that later when we present the “roadmap.”)

We can compute the signature of the gadget in Figure 7. If the input (the four
bits given to the four external dangling edges) has an odd number of 1s, then the
value is 0. This is because all nine signatures satisfy the even parity condition. For
other inputs, note that the gadget is rotationally symmetric. A calculation shows that

X0000 = x4y4t+ t+ 4x3y2 + 4x+ 4x2y +
2cx2

t
, (A)

X1111 = 2y2t+ 12y +
2c

t
, (B)

X0101 = X1010 = 2xy2t+ 4x2y2 + 4 + 4xy +
2cx

t
, (C)

X0011 = X1001 = X1100 = X0110 = x2y3t+ yt+ 3x2y2 + 3 + 6xy +
2cx

t
. (D)

The construction of the cross function X will succeed if we can prove the following:
For any c 6= 1, we can assign suitable complex values to x, y, and t,
where t 6= 0, such that A = B = C 6= 0 and D = 0, where A, B, C,
and D denote respectively the four functions of x, y, and t listed in
the four lines above.

Claim 1. For any c 6= 1,

(x− 1)2 =
16

c− 1

has a solution x ∈ C such that x 6∈ {0,+1,−1}. This x satisfies
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2− x(x+ 3)

x− 1

)(
x+ 3

x− 1

)
+ cx+ 6 = 0.(4)

Proof. Clearly x = 1 is not a solution to (x − 1)2 = 16
c−1 . Also the equation has

two distinct roots in C. When c = 17 there is a solution x = 2 6∈ {0,+1,−1}. When
c 6= 17, clearly x = 0 is not a solution. Hence the equation always has a solution other
than 0,±1.

To verify (4) we have

(2x− 2− x2 − 3x)(x+ 3) + (cx+ 6)(x2 − 2x+ 1)

= −(x3 + 4x2 + 5x+ 6) + cx3 + (6− 2c)x2 + (−12 + c)x+ 6

= (c− 1)x3 − 2(c− 1)x2 + (c− 17)x

= (c− 1)x[(x− 1)2 − 16/(c− 1)]

= 0.

Now we fix x 6∈ {0,+1,−1} satisfying (4) for any given c 6= 1.

Claim 2. For any c 6= 1, we can pick z 6= ±1 such that

4z

(1 + z)2
=
x(x+ 3)

x− 1
.(5)

Proof. We are given x 6= 0,±1. If x = −3, we can pick z = 0. Now suppose
x 6= −3. Consider the quadratic equation in z,

4z(x− 1) = x(x+ 3)(1 + z)2.

This is quadratic since x(x+3) 6= 0. We can check that z = +1 (and −1, respectively)
is not a solution, as this would force x = −1 (and +1, respectively). However, any
solution where z 6= −1 and x 6= 1 is equivalent to (5). Hence we have a solution
z 6= ±1 to (5).

Now we further fix a z 6= ±1 satisfying (5), and let y = z/x such that xy 6= ±1,
for any c 6= 1.

Claim 3. For any c 6= 1, there exist x 6∈ {0,+1,−1} and y such that xy 6= ±1
satisfying

(6)
2(1 + x2y2)

(1 + xy)2
· x+ 3

x− 1
+ cx+ 6 = 0.

Proof.

2(1 + x2y2)

(1 + xy)2
· x+ 3

x− 1
+ cx+ 6

= 2

(
1− 2z

(1 + z)2

)
· x+ 3

x− 1
+ cx+ 6

=

(
2− x(x+ 3)

x− 1

)
· x+ 3

x− 1
+ cx+ 6

= 0.

Here we used (5) and (4).
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Now we will set t = 4/(1+xy)2. Since z = xy 6= −1, this t is well defined. Clearly
t 6= 0. We next verify that D = 0. By (5) and (6) we get

8y(1 + x2y2)

(1 + xy)4
+ cx+ 6 = 0.

Then

t2y(1 + x2y2) + 2cx+ 3t(1 + xy)2 = 0.

Thus

D = yt(1 + x2y2) + 3(1 + xy)2 +
2cx

t
= 0.

Next we show that C = 4(1−xy)2

1−x 6= 0. By D = 0, we have

C = 2xy2 4

(1 + xy)2
+ 4(1 + xy)2 − 4xy + [−yt(1 + x2y2)− 3(1 + xy)2].

Hence

C =
8xy2

(1 + xy)2
+ (1 + xy)2 − 4xy − y 4(1 + x2y2)

(1 + xy)2

=
4y

(1 + xy)2

[
2xy − 1− x2y2

]
+ (1− xy)2

=

(
−4y

(1 + xy)2
+ 1

)
(1− xy)2

=
4(1− xy)2

1− x
6= 0,

where the last step uses (5).
The next task is to show that B = C. We have

C = 4(1− xy)2 + xB.

Hence

B =
1

x

[
4(1− xy)2

1− x
− 4(1− xy)2

]
=

4(1− xy)2

x

[
1

1− x
− 1

]
=

4(1− xy)2

1− x
= C.

Finally we verify A = C as well:

A = (x4y4 + 1)t+ x[C − 2xy2t] = C + (x− 1)C − 2x2y2t+ (x4y4 + 1)t

= C − 4(1− xy)2 + t(x2y2 − 1)2 = C.

Now we come to the dichotomy theorem for Pl-Holantc problems.

Theorem 4.5. Let F be a set of real symmetric signatures. Pl-Holantc(F) is #P-
hard unless F satisfies one of the following conditions, in which case it is tractable:

1. Holantc(F) is tractable (for which we have an effective dichotomy [20], The-
orem 2.8); or

2. Every signature in F is realizable by some matchgate (for which we have a
complete characterization [9]).
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Before giving the proof of Theorem 4.5, we normalize the signature set F . If
F contains any identically zero signature we can remove it from F . This is because
if it appears in any signature grid then the Holant value is 0, and the removal of
it from F does not change the complexity of Pl-Holantc(F), nor the validity of the
tractability criterion. So we may assume no signature in F is identically zero. Since
[1, 0] and [0, 1] are freely available, we can construct any subsignature of a given
signature. From any degenerate (but not identically zero) signature [x, y]⊗k, we can
get the unary subsignature xk−1[x, y] and yk−1[x, y] by pinning. Either x or y is
nonzero, hence we can get [x, y]. On the other hand, one can easily get [x, y]⊗k

from [x, y]; therefore we can replace any degenerate signature [x, y]⊗k in F by [x, y],
without changing the complexity of Holantc(F) and Pl-Holantc(F) or the validity of
the tractability criterion. So in the following we assume that all signatures in F of
arity greater than 1 are nondegenerate.

The main idea of the proof is to interpolate all unary functions. If we can do that,
we can reduce the problem Pl-Holant∗(F) to Pl-Holantc(F) and finish the proof. We
note that the dichotomy criterion in Theorem 2.7 for Holant∗(F) is also valid for planar
graphs. In some cases, we cannot interpolate all unary functions; then we prove the
theorem separately, mainly using Lemma 4.2 and Theorem 4.1. The following lemma
is for interpolation of unary functions.

Lemma 4.6. If Pl-Holantc(F ∪ {[a, b, c]}) ≤T Pl-Holantc(F), where the binary
signature [a, b, c] satisfies the condition b2 6= ac, b 6= 0, and a + c 6= 0, then we can
interpolate all unary functions,

Pl-Holantc(F ∪ U) ≤T Pl-Holantc(F).

Remark. If the condition of Lemma 4.6 holds, then Pl-Holantc(F) ≡T Pl-Holantc

(F ∪U) ≡T Pl-Holant∗(F). Since the dichotomy criterion in Theorem 2.7 for Holant∗

problems also holds for Pl-Holant∗ problems, we have proved a dichotomy for Pl-
Holantc(F) under this condition. We argue that the dichotomy criterion stated in
Theorem 4.5 is indeed the correct criterion in this case. If P = #P, then stating
that Pl-Holantc(F) is in P or is #P-hard are the same thing, and Theorem 4.5 is
formally valid. Now we suppose P 6= #P. We have the equivalence Pl-Holantc(F) ≡T

Pl-Holant∗(F) by Lemma 4.6. We can apply Theorem 2.7, the Holant∗ dichotomy.
If F satisfies the tractability criterion of Theorem 2.7 then F also satisfies item 1
of Theorem 4.5 (which refers to Theorem 2.8 of which its item (1) is satisfied.) If
F does not satisfy the tractability criterion of Theorem 2.7 then Pl-Holantc(F) is
#P-hard by the equivalence and Theorem 2.7. Then we claim that F must not
satisfy the tractability criterion of Theorem 4.5. Otherwise, by the tractability part
of Theorem 4.5, we would have concluded that Pl-Holantc(F) is in P, a contradiction
since P 6= #P.

There is a subtlety in the argument above. Suppose F fails item (1) of
Theorem 2.8 (the tractability criterion of Theorem 2.7). It is true that Pl-Holantc(F)
≡T Pl-Holantc(F ∪ U), and U 6⊆ F1 ∪ F2 ∪ F3. Thus the signature set F ∪ U also
fails item (2) of Theorem 2.8. As well, not all of U are matchgates realizable, and so
F ∪ U fails item 2 of Theorem 4.5. But this argument is deficient, because it applies
the criteria of Theorem 4.5 on the set F ∪ U , but not on F alone. Ideally one should
prove directly that when we can construct or interpolate [a, b, c] in Pl-Holantc(F) sat-
isfying the conditions of Lemma 4.6, the set F cannot be a subset of F1∪F2∪F3 nor
matchgates realizable. But we do not have such a direct proof. What we presented
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is an “end run” around it, based on a complexity theoretic argument accounting for
both logical alternatives of the P = #P question.

Proof of Lemma 4.6. We use the interpolation method as described in section 3.
Consider the recursive construction

([
a b
b c ,

1
0

])
. We use A to denote

[
a b
b c

]
. Since

b2 6= ac, A is nondegenerate, the first condition of Lemma 3.1 is satisfied. If [ 1
0 ] is

a column eigenvector of A, then b = 0, a contradiction. So it satisfies the second
condition of Lemma 3.1. Since A is a real symmetric matrix, both its eigenvalues are
real. If the ratio of two real numbers is a root of unity, they must be the same or
opposite to each other. If the two eigenvalues are the same, since a real symmetric
matrix is diagonalizable, this would imply that A is a scalar matrix, and we have
b = 0 and a = c, a contradiction. If the two eigenvalues are opposite to each other,
then we have the trace a+ c = 0, also a contradiction. Therefore, the third condition
of Lemma 3.1 is also satisfied. This completes the proof.

If we can construct from F a gadget with a binary symmetric signature [a, b, c],
which satisfies all the conditions in Lemma 4.6, then we are done. For most cases,
we prove the theorem by interpolating all unary signatures. However, in some more
delicate cases, we are not able to do that. For example, if all signatures from F satisfy
the parity condition, which includes a proper superset of matchgate signatures, then
all the unary signatures we can realize also satisfy the parity condition and therefore
have the form [a, 0] or [0, a]. So we cannot interpolate all unary signatures in this
case. For such cases, our starting point is Theorem 4.1.

We define some families of symmetric signatures, which will be used in our proof.

G1 = {[a, 0, . . . , 0, b] | ab 6= 0},
G2 = {[x0, x1, . . . , xk] | ∀i is even, xi = 0 or ∀i is odd, xi = 0},
G3 = {[x0, x1, . . . , xk] | ∀i, xi + xi+2 = 0},
M = { f | f is realizable by some matchgate }.

All signatures here have arity at least 1. The signatures in G1 are the (nondegenerate)
Generalized Equalities. The set G2 consists of signatures satisfying the parity
condition. The signatures in G3 are those that satisfy the second order linear recur-
rence xi+2 + xi = 0, which is the same recurrence satisfied by the signatures in F3,
having characteristic equation X2 + 1 = 0 with roots ±

√
−1.

We note that G1, G2, and G3 are supersets of (not identically 0 signatures of) F1,
F2, and F3, respectively. (Here we only consider the real part of F2; the nonreal part of
F2 is not a subset of G2.) Furthermore the matchgate signature setM is sandwiched
between (the real part of) F2 and G2, i.e., (the real part of) F2 ⊆ M ⊆ G2. The
following several lemmas are what we call a “squeeze.” They successively narrow the
scope of possible F for which we have to prove Theorem 4.5. They all have the form,
for some class C, “If F 6⊆ C, then the conclusions of Theorem 4.5 hold.” After proving
each lemma, in subsequent lemmas, we only need to consider the case that F ⊆ C.

Lemma 4.7. If F 6⊆ G1 ∪ G2 ∪ G3, then the conclusions of Theorem 4.5 hold.

Proof. Since F 6⊆ G1 ∪ G2 ∪ G3, there exists an f ∈ F and f 6∈ G1 ∪ G2 ∪ G3.
Since all unary signatures are in G3, the arity of f is greater than 1, and by our
normalization of F , f is nondegenerate, in particular not identically zero. There are
two cases depending on whether f has a zero entry:

(1) f has some zero entries. If there exists a subsignature of f of the form [0, a, b]
or [a, b, 0], where ab 6= 0, then we are done by Lemma 4.6. Otherwise, there
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are no two successive nonzero entries. If f has only one nonzero entry then
it belongs to G2. Hence f has at least two nonzero entries. So the signature
f has this form [0i0x10i1x20i2 . . . xk0ik ], where k ≥ 2, xj 6= 0 and for all
1 ≤ j ≤ k − 1, ij ≥ 1. If for all 1 ≤ j ≤ k − 1, ij is odd, then f satisfies
the parity condition, and so f ∈ G2, a contradiction. Otherwise there exists a
subsignature of the form [x, 0, . . . , 0, y], where xy 6= 0 and there are a positive
even number of 0s between x and y. If this is the entire f , then f ∈ G1, a
contradiction. So there is one 0 before x or after y. By symmetry, we assume
there is a 0 before x, so we have a subsignature [0, x, 0, . . . , 0, y] which is of
even arity at least 4. We label its dangling edges 1, 2, . . . , 2k. Then for every
i = 1, 2, . . . , k−1, we connect dangling edges 2i+1 and 2i+2 together to form
a regular edge. After that, we have an F-gate with arity 2, and its signature
is [0, x, y]. Then we are done by Lemma 4.6.

(2) f has no zero entry. We only need to prove that we can construct a function
[a′, b′, c′] satisfying the three conditions in Lemma 4.6. Suppose all subsig-
natures of f with arity 2 do not satisfy all three conditions. Then for each
sub-signature [a′, b′, c′], either a′ + c′ = 0, or b′2 = a′c′. If all of them satisfy
a′+ c′ = 0, then f ∈ G3, a contradiction. If all of them satisfy b′2 = a′c′, then
f is degenerate, a contradiction. Without loss of generality, we can assume
there is a subsignature [a, b, c, d] of f , such that a + c = 0, b + d 6= 0, and
c2 = bd. We get this subsignature [a, b, c, d] by [1, 0] and [0, 1]. Connecting
two copies of [a, b, c, d] by two edges, we can get a binary function [a′, b′, c′] =
[a2 + 2b2 + c2, ab + 2bc + cd, b2 + 2c2 + d2] = [2(b2 + c2), c(b + d), (b + d)2].
Since f has no zero entries, we have b′ = c(b + d) 6= 0, a′ + c′ > 0, and
a′c′ − b′2 = (b+ d)2(2b2 + c2) > 0. We are done by Lemma 4.6.

The following lemma “squeezes” G2 down to M. It uses Theorem 4.1 in an
essential way, which in turn depends on the cross function.

Lemma 4.8. If F 6⊆ G1 ∪M∪ G3, then the conclusions of Theorem 4.5 hold.

Proof. If F 6⊆ G1 ∪ G2 ∪ G3, then by Lemma 4.7, we are done. Otherwise, there
exists a signature f ∈ F ⊆ G1 ∪ G2 ∪ G3 and f 6∈ G1 ∪ M ∪ G3. Then it must be
the case that f ∈ G2. Note that every signature with arity at most 3 in G2 (thus
satisfying the parity condition) is also contained inM, so f has arity greater than 3.
Let f = [x0, x1, . . . , xn] for some n ≥ 4. In particular f is nondegenerate. Suppose
there exists some i ∈ {2, 3, . . . , n − 2} such that xi 6= 0. If xi−2xi+2 6= x2

i , then we
can get [xi−2, 0, xi, 0, xi+2] by [1, 0] and [0, 1] as a subsignature. Then the problem is
#P-hard by Theorem 4.1 and we are done. Otherwise, we have xi−2xi+2 = x2

i 6= 0.
Then starting from xi−2 6= 0 and if i − 2 ∈ {2, 3, . . . , n − 2}, we can get xi−4xi =
x2
i−2 6= 0. Similarly we can start with xi+2 6= 0 and get xixi+4 = x2

i+2 6= 0 if
i + 2 ∈ {2, 3, . . . , n − 2}. A signature satisfying the parity condition and that is a
geometric series on the alternate entries is realizable by a matchgate, by Lemmas 2.12
and 2.13. This is a contradiction.

Now we may assume xi = 0 for all i ∈ {2, 3, . . . , n − 2}, and f has the form
[x0, x1, 0, . . . , 0, xn−1, xn]. If n is odd then n ≥ 5, and since f ∈ G2, either x0 =
xn−1 = 0 or x1 = xn = 0. In the former case, if x1 = 0 then f would be degenerate,
and if xn = 0 then f ∈ M. Since f is nondegenerate and f ∈ G2 −M, we have
x1xn 6= 0. In the latter case that x1 = xn = 0, by the same argument we have
x0xn−1 6= 0. If n is even, then since f ∈ G2, either x0 = xn = 0 or x1 = xn−1 = 0.
The latter case is impossible because f is nondegenerate and f ∈ G2 − G1. In the
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former case, it must be that x1xn−1 6= 0, for otherwise f ∈ M. Furthermore in fact
n ≥ 6 if n is even, because [0, x1, 0, x3, 0] ∈M, for any x1, x3.

Therefore, given that f ∈ G2 − (M∪G1), there are only three possible subcases:
(1) n is odd, n ≥ 5, x1xn 6= 0, and x0 = xn−1 = 0; (2) n is odd, n ≥ 5, x0xn−1 6= 0,
and x1 = xn = 0; (3) n ≥ 6 is even, x1xn−1 6= 0, and x0 = xn = 0. The subcases
(1) and (2) are reversals of each other and (3) contains a subsignature of form (1).
By pinning we can get (6=2) = [0, 1, 0], and therefore we can get reversals. So after
normalizing (and connecting pairs of edges together if n > 5), we can get a signature
[0, 1, 0, 0, 0, z] of arity 5, where z 6= 0. So we have both subsignatures [0, 1, 0, 0] and
[1, 0, 0, 0, z]. As we proved in Lemma 4.2, the problem is #P-hard and we are done.
This finishes the proof.

Lemma 4.9. If [0, 1, 0, x] ∈ F (or [x, 0, 1, 0] ∈ F), where x ∈ R, x 6= ±1, then the
conclusions of Theorem 4.5 hold.

Proof. By pinning we can get ( 6=2) = [0, 1, 0] in either case, so we can get reversal,
and therefore we only need to consider the case [0, 1, 0, x] ∈ F . If x 6= 0, we can use
Lemma 4.4 to interpolate [0, 1, 0, 0]. So we assume we have [0, 1, 0, 0] from F . If
F 6⊆ G1 ∪M∪ G3, then by Lemma 4.8, we are done. If F ⊆M, then the problem is
tractable and we are done. Otherwise, there exists a signature f ∈ F ⊆ G1 ∪M∪ G3

and f 6∈ M. Thus f ∈ G1 ∪ G3 −M.
If f ∈ G3, then f has the form [x0, x1,−x0,−x1, . . .] having arity ≥ 1. If x0 or

x1 = 0, we would have f ∈ M by Lemmas 2.12 and 2.13, a contradiction. Hence
x0x1 6= 0. We can get the unary signature [x0, x1] by pinning. Connecting [x0, x1]
to [0, 1, 0, 0] we get [x1, x0, 0], which satisfies all the conditions in Lemma 4.6, and we
are done.

Now suppose f ∈ G1; then it has the form [1, 0, . . . , 0, y] after normalization,
where y 6= 0. If it has arity 1, then connecting [1, y] to [0, 1, 0, 0] we can also finish
the proof by Lemma 4.6. If it has arity 2, then [1, 0, y] ∈ M, a contradiction. Hence
f has arity n ≥ 3. If n is odd, we can connect its edges in pairs except one to get
a unary signature [1, y]. Then we can use the same argument as above and we are
done. If n is even, then it is at least 4. After connecting its edges in pairs except
four of them, we can get [1, 0, 0, 0, y]. Together with [0, 1, 0, 0], we know the problem
is #P-hard by Lemma 4.2. This completes the proof.

Now we resume the “squeeze” from M down to (the real part of) F2.

Lemma 4.10. If F 6⊆ G1 ∪ F2 ∪ G3, then the conclusions of Theorem 4.5 hold.

Proof. If F 6⊆ G1 ∪ G2 ∪ G3, then by Lemma 4.7, we are done. Otherwise, there
exists a signature f ∈ F ⊆ G1 ∪ G2 ∪ G3 and f 6∈ G1 ∪ F2 ∪ G3. Then it must be the
case that f ∈ G2. Note that every unary or nondegenerate binary signature in G2

is also contained in G1 ∪ G3, so f has arity at least 3. Since f is nondegenerate and
f 6∈ G1, there is some nonzero in the middle of the signature f . Moreover, by f ∈ G2

(the parity condition), there is a 0 entry just before this nonzero entry as well as a 0
entry just after it. After normalization, we can assume there is a subsignature of the
form [0, 1, 0, x] (or [x, 0, 1, 0]). By pinning we can get [0, 1, 0] and take reversal, and so
we have [0, 1, 0, x]. If x 6= ±1, then by Lemma 4.9, we are done. Otherwise, for every
such pattern, we have x = ±1. Thus f consists of alternatingly zero and nonzero
entries, and all nonzero entries are ±1. The nonzero entries cannot all be of the same
sign, because f 6∈ F2. Also all nonzero entries of f cannot always strictly alternate
between +1 and −1 because f 6∈ G3. Hence we can get a subsignature [1, 0, 1, 0,−1]
or [1, 0,−1, 0,−1] of f , up to a nonzero scalar, by pinning. By taking a reversal, if
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necessary, we get [1, 0, 1, 0,−1]. Then by Theorem 4.1, we know that the problem is
#P-hard and we are done. This completes the proof.

The next lemma “squeezes” by dropping F2.

Lemma 4.11. If F 6⊆ G1 ∪ G3, then the conclusions of Theorem 4.5 hold.

Proof. If F 6⊆ G1 ∪ F2 ∪ G3, then by Lemma 4.10, we are done. Otherwise, there
exists a signature f ∈ F ⊆ G1 ∪ F2 ∪ G3 and f 6∈ G1 ∪ G3. Then it must be the case
that f ∈ F2. Note that every (real-valued) signature with arity at most 2 in F2 is also
contained in G1 ∪ G3, so f has arity at least 3. Then f has a subsignature [1, 0, 1, 0]
or [0, 1, 0, 1]. By pinning we get [0, 1, 0], and then taking reversal, we assume it is
[1, 0, 1, 0]. If F ⊆ F1 ∪F2 ∪F3, then Theorem 4.5 trivially holds and there is nothing
to prove. If not, there exists a signature g ∈ F −F1 ∪F2 ∪F3. By F ⊆ G1 ∪F2 ∪G3,
either g ∈ G1 −F1 ∪ F2 ∪ F3 (⊆ G1 −F1) or g ∈ G3 −F1 ∪ F2 ∪ F3 (⊆ G3 −F3).

For the first case, g ∈ G1 − F1. After a nonzero scalar multiple, g has the form
[1, 0, . . . , 0, b], where b 6∈ {−1, 0, 1}. If the arity of g is odd, we can realize [1, b] by
connecting every two adjacent dangling edges into one edge and leave one dangling
edge. Then connecting this unary signature to one dangling edge of [1, 0, 1, 0], we can
realize a binary signature [1, b, 1]. Then by Lemma 4.6, Theorem 4.5 holds. If the
arity of g is even, we can realize [1, 0, b] (leave two dangling edges). By connecting
one dangling edge of [1, 0, b] to one dangling edge of [1, 0, 1, 0], we have a new ternary
signature [1, 0, b, 0]. By Lemma 4.9, we are done.

For the second case g ∈ G3 − F3, g has a subsignature of the form [1, b], where
b 6∈ {−1, 0, 1}. By the same argument as above, Theorem 4.5 holds. This completes
the proof.

The next lemma “squeezes” G3 down to F3.

Lemma 4.12. If F 6⊆ G1 ∪ F3, then the conclusions of Theorem 4.5 hold.

Proof. If F 6⊆ G1 ∪G3, then by Lemma 4.11, we are done. Otherwise, there exists
a signature f ∈ F ⊆ G1 ∪ G3 and f 6∈ G1 ∪ F3. Then it must be the case that f ∈ G3,
and so f has the form [x0, x1,−x0,−x1, . . .]. If either x0 or x1 = 0, then f ∈ F3.
After normalizing x0 = 1, we must have x1 6= ±1 for otherwise f ∈ F3. The arity of f
is at least 2, for otherwise f ∈ G1. Hence f has a subsignature of the form [1, a,−1],
where a 6∈ {−1, 0, 1}.

If F ⊆ {[1, 0, 1]}∪G3, then Holant∗(F) is polynomial time computable by Theorem
2.7 and as a result Theorem 4.5 trivially holds and we are done.

If not, there exists a signature g ∈ F ⊆ G1 ∪ G3 and g 6∈ {[1, 0, 1]} ∪ G3. Then it
must be the case that g ∈ G1. The arity of g is greater than 1, as g 6∈ G3.

If the arity of g is 2, then g has the form [1, 0, b] by g ∈ G1. Here b 6= 0 by the
definition of G1, and b 6= −1 by g 6∈ G3. That b 6= 1 is given by g 6∈ {[1, 0, 1]} ∪ G3.
Hence b 6∈ {−1, 0, 1}. Connecting two copies of the signature [1, 0, b] to both sides
of one binary signature [1, a,−1], we can get a new binary signature [1, ab,−b2]. It
satisfies all the conditions of Lemma 4.6, and we are done. If the arity of g is greater
than 2, then we can always realize a signature [1, 0, 0, b], where b 6= 0 (by pinning
we obtain [1, a] from [1, a,−1], and then connecting the unary signature [1, a] to all
dangling edges of g except three of them). Then we can use an F-gate in Figure 8. Its
signature is [1, a2b, b2], and by Lemma 4.6, we are done. This completes the proof.

By the above lemmas, the only case left we have to handle is that F ⊆ G1 ∪ F3.
This final “squeeze” is done by the following lemma, which completes the proof of
Theorem 4.5.
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Fig. 8. The function on degree 2 nodes is [1, a,−1], and the function on degree 3 nodes is
[1, 0, 0, b].

Lemma 4.13. If F ⊆ G1 ∪ F3, then the conclusions of Theorem 4.5 hold.

Proof. If F ⊆ F1 ∪F3, then by Theorem 2.8, part (2), Holantc(F) is computable
in polynomial time. Similarly, if F ⊆ U ∪ F3 ∪ {[1, 0, 1]}, then by Theorem 2.8, part
(1), and then by Theorem 2.7, part (3), Holantc(F) is computable in polynomial
time. Hence in these two cases, Theorem 4.5 holds. Now suppose F 6⊆ F1 ∪ F3 and
F 6⊆ U ∪ F3 ∪ {[1, 0, 1]}.

There exists f ∈ F − F1 ∪ F3. Since F ⊆ G1 ∪ F3, such an f ∈ G1.
We want to show that we can get a signature of the form [1, 0, a] or [1, 0, 0, a],

where a 6∈ {−1, 0, 1}. There are two cases. The first case is that we have a signature
f ∈ F∩G1−(F1∪F3) such that f 6∈ U . The arity of f is greater than 1. By connecting
its dangling edges together except two or three depending on the parity of the arity
of f , we can assume f has the form [1, 0, a] or [1, 0, 0, a], where a 6∈ {−1, 0, 1}.

The second case is every f ∈ F ∩ G1 − (F1 ∪ F3) is also in U . By F 6⊆ U ∪
F3 ∪ {[1, 0, 1]}, there exists f1 ∈ F − (U ∪ F3 ∪ {[1, 0, 1]}). Since F ⊆ G1 ∪ F3, and
f1 6∈ F3, we get f1 ∈ G1. If f1 6∈ F1, we could use this f1 as the f above, namely,
f1 ∈ F ∩ G1 − (F1 ∪ F3 ∪ U), a contradiction. Thus f1 ∈ F1. Also we still have some
f2 ∈ F − (F1 ∪ F3). So f2 ∈ G1, since F ⊆ G1 ∪ F3. Also since we are in this second
case, certainly f2 ∈ U .

So we have f1, f2 ∈ F ∩ G1 such that f1 ∈ F1 but f1 6∈ U ∪ F3 ∪ {[1, 0, 1]}, and
f2 ∈ U but f2 6∈ F1. The arity of f1 is at least 2. We claim it is greater than 2.
Otherwise, f1 being from F1 and not [1, 0, 1], it would be f1 = [1, 0,−1] ∈ F3, a
contradiction. So f1 has the form [1, 0, . . . , 0,±1] of arity at least 3. f2 has the form
[1, a′], where a′ 6∈ {−1, 0, 1}; this follows from f2 ∈ U ∩ G1 − F1. By connecting all
dangling edges of f1 except two with f2, we can construct an F-gate with signature
of the form [1, 0, a], where a 6∈ {−1, 0, 1}. This is one of the desired forms we want.

To sum up, in both cases, we have some f of the form [1, 0, a] or [1, 0, 0, a], where
a 6∈ {−1, 0, 1}.

If F ⊆ G1∪{[0, 1, 0]}∪U , then by Theorem 2.8, part (1), and then by Theorem 2.7,
part (2) (with a = 0 and b = 1), Holantc(F) is computable in polynomial time
and Theorem 4.5 holds. Otherwise, there exists g ∈ F ⊆ G1 ∪ F3, and g 6∈ G1 ∪
{[0, 1, 0]} ∪ U . Then g must be in F3 and have one of the following subsignatures:
[1, 1,−1], [1,−1,−1], [1, 0,−1, 0], [0, 1, 0,−1]; this follows from a careful examination
of the forms of F3. By symmetry (taking the reversal of both f and g), we only need
to consider the cases f = [1, 0, a] or [1, 0, 0, a], where a 6∈ {−1, 0, 1}, and g = [1, 1,−1]
or [1, 0,−1, 0].

According to f and g, we have four cases. If f = [1, 0, a] and g = [1, 1,−1], then
connecting them together into a chain of first f then g and then f again, we can realize
[1, a,−a2]. By Lemma 4.6, we are done. If f = [1, 0, a] and g = [1, 0,−1, 0], for each
dangling edge of g, we extend it by one copy of f . Then we can realize [1, 0,−a2, 0].
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So by Lemma 4.9, we are done. If f = [1, 0, 0, a] and g = [1, 1,−1], we can connect
a unary signature [1, 1] (a subsignature of g) to one dangling edge of f and realize a
binary signature f = [1, 0, a]. This reduces it to the first case, which has been proved.
If f = [1, 0, 0, a] and g = [1, 0,−1, 0], we can realize a unary signature [1, a] from f by
connecting two of its dangling edges together and then connect this unary signature
to one dangling edge of g to realize [1,−a,−1]. Note that [1,−a,−1] 6∈ G1 ∪ F3, and
by Lemma 4.12, we are done.

5. Dichotomy for planar weighted #CSP. In this section, we prove a di-
chotomy for planar real weighted #CSP. Compared to the dichotomy for general
real weighted #CSP, the new tractable cases for planar structures are precisely those
problems that can be computed by holographic algorithms with matchgates.

Let EQ = {=k| k ≥ 1} = {[1, 1], [1, 0, 1], [1, 0, 0, 1], . . .} be the set of Equality
signatures of all arities. A #CSP problem is just a Holant problem with EQ as-
sumed to be freely available, i.e., #CSP(F) ≡T Holant(F ∪EQ), and Pl-#CSP(F) ≡T

Pl-Holant(F∪EQ). One can show using the signature theory developed in [14] that the
only holographic transformation that is relevant in transforming a planar #CSP prob-
lem to be computable by matchgates is the Hadamard transformation H =

[
1 1
1 −1

]
.

(This fact will not be used in the proof of this paper in a logical sense. However, it
is certainly what led to the formulation of Theorem 5.1. The signature theory de-
veloped in [14] says that in order to transform all EQ to be realizable by matchgate
signatures, H can accomplish that, and any other transformation that accomplishes
that is essentially equivalent to H.)

Now we present the dichotomy theorem for planar weighted #CSP.

Theorem 5.1. Let F be a set of real symmetric functions. Pl-#CSP(F) is #P-
hard unless F satisfies one of the following conditions, in which case it is polynomial
time tractable:

1. #CSP(F) is polynomial time tractable (for which we have an effective di-
chotomy [20], Theorem 2.10); or

2. Every function in F is realizable by some matchgate under basis
[

1 1
1 −1

]
(for

which we have a complete characterization [14], Theorem 2.14).

The main proof idea is to reduce Pl-Holantc problems to Pl-#CSP problems. Pl-
#CSP(F) is exactly the same as planar Holant with all the Equality functions, i.e.,
Pl-Holant(F ∪ EQ). We can use a holographic reduction H. Note that 1√

2
H is an

orthogonal matrix, thus (=2)( 1√
2
H)⊗2 = (=2) is invariant. Pl-Holant(F ∪EQ) can be

written as a bipartite Holant problem Pl-Holant(=2| F ∪EQ). Under the transforma-

tion by H we get the transformed bipartite Holant problem Pl-Holant(=2| HF ∪ÊQ),

where ÊQ = {[1, 0], [1, 0, 1], [1, 0, 1, 0], [1, 0, 1, 0, 1], . . .} is the set of transformed signa-

tures from EQ by H. Thus the problem Pl-Holant(HF∪ÊQ) has the same complexity
as Pl-#CSP(F).

This holographic transformation gives us [1, 0] ∈ ÊQ (from [1, 1]). If we can
further realize (or interpolate) [0, 1], then we can view the problem as a Pl-Holantc

problem and apply Theorem 4.5 to HF ∪ ÊQ to get a proof of Theorem 5.1. In
the following, we show how to realize (or interpolate) [0, 1]. Once we have [0, 1], the
translation of the criterion of Theorem 4.5 to Theorem 5.1 is straightforward.

It turns out that to realize (or interpolate) [0, 1] in some cases is difficult. The
following lemma says that it is also sufficient if we can realize (or interpolate) [0, 0, 1] =
[0, 1]⊗2. The signature [0, 0, 1] can be viewed as two copies of [0, 1]. Intuitively, we
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will use one copy of [0, 0, 1] to replace two occurrences of [0, 1]. However, there are
two technical difficulties. One is that there may be an odd number of occurrences of
[0, 1] used in the input instance; the second difficulty, which is more subtle, is that we
have to pair up two copies of [0, 1] while maintaining planarity of the instance.

For any set of signatures G, let Σ denote the problem Pl-Holantc(G ∪ ÊQ), and

let Π denote the problem Pl-Holant(G ∪ ÊQ ∪ {[0, 1]⊗2}).
Lemma 5.2. If Σ is in P, then so is Π. If Σ is #P-hard, then so is Π.

Proof. Both problems have the signature [1, 0]. Problem Σ has [0, 1], which can
obtain [0, 1]⊗ easily. So clearly Π ≤T Σ. Thus if Σ is in P, so is Π.

We have already proved a dichotomy theorem for Pl-Holantc problems. So if Σ
is not in P, then it is #P-hard, and there is a reduction guaranteed by Theorem 4.5.
In this case we prove that Π is also #P-hard.

We observe that in all the proofs that lead to Theorem 4.5 asserting Σ is #P-hard,
there is a chain of reductions that ultimately comes from following three problems:
(a) Pl-Holant([1, 0, 0, 1]|[1, 1, 0]), (b) Pl-Holant([1, 1, 0, 0]), or (c) Holant[0, 1, 0, 0] (re-
spectively counting Vertex Cover, Matching for planar 3-regular graphs, or
Perfect Matching for general 3-regular graphs). There are only three reduction
methods in this reduction chain: direct gadget construction, polynomial interpola-
tion, and holographic reduction. We further observe that these reduction methods all
share a certain local property described below.

Given an instance G of Pl-Holant([1, 0, 0, 1]|[1, 1, 0]), Pl-Holant([1, 1, 0, 0]), or
Holant[0, 1, 0, 0], notice that the value of Pl-Holant([1, 0, 0, 1]|[1, 1, 0]), Pl-Holant([1, 1,
0, 0]), or Holant[0, 1, 0, 0] on the instance G is a nonnegative integer. We consider
the graph G ∪G, which denotes the disjoint union of two copies of G. The value on
G ∪ G is the square of the value on G. So we can compute the value on G uniquely
from its square. Suppose the reduction chain on the instance G produced instances
G1, G2, . . . , Gm of the problem Σ. The same reduction applied to G ∪ G produces
instances of the problem Σ of the form G1 ∪G1, G2 ∪G2, . . . , Gm′ ∪Gm′ . (This is the
local property of the reduction. We note that the reduction on G ∪ G may produce
polynomially more instances than on G because of polynomial interpolation.)

Now we only need to show how to transform instances G1∪G1, G2∪G2, . . . , Gm′∪
Gm′ in the problem Σ to instances of the problem Π with the same values (replacing
all occurrences of the signature [0, 1] by some [0, 0, 1]). Gi ∪Gi is a planar graph with
zero or more vertices of degree 1 attached with the function [0, 1] (the total number
of [0, 1] is clearly even). We want to use one copy of [0, 0, 1] to replace one pair of
[0, 1], while maintaining planarity.

Take a spanning tree of the dual graph of Gi. Let the outer face be the root.
Choose an arbitrary leaf of this tree, which corresponds to a face C of Gi. Suppose C ′

is the face corresponding to the parent of C in the tree. If there are an even number
of vertices of degree 1 attached with [0, 1] in face C, we can perfectly match them and
realize them using [0, 0, 1] while maintaining planarity in this face. This can be done
by matching these dangling vertices of degree 1 in a clockwise fashion on this face C.
If there are an odd number of [0, 1] in face C, we choose one edge e between C and
C ′, and add a new vertex ve on e, and connect two new vertices of degree 1 to ve. The
two new vertices are attached [0, 1], and ve has degree 4 and is attached [1, 0, 1, 0, 1].
The effect of [1, 0, 1, 0, 1] connected by two [0, 1] is the same as the function [1, 0, 1],
which is exactly the same as the edge e itself. We put one new vertex with [0, 1] in
face C and the other one in face C ′. Now, there are an even number of [0, 1] in face
C, and we can replace them by [0, 0, 1] in C, as before. We may repeat this process,
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until we reach the root in the dual graph of Gi. If we do the same for the two copies
Gi in Gi ∪ Gi, we will have an even number of [0, 1] in the common outer face and
can at last perfectly match the [0, 1] vertices and realize them by [0, 0, 1]. In the end
we get an instance of the problem Π, which has the same value.

To sum up the above discussion, and apply Theorem 4.5, we have the following
lemma, which is the starting point of our proof of Theorem 5.1.

Lemma 5.3. If we can realize (or interpolate) [0, 1] or [0, 0, 1] from HF ∪ ÊQ,
then the conclusion of Theorem 5.1 holds.

Next we give two lemmas which give a general condition to realize or interpolate
[0, 1] or [0, 0, 1].

Lemma 5.4. Let a ∈ R. If a 6∈ {0, 1,−1}, then we can interpolate [0, 1] from

ÊQ ∪ {[1, a]}.
Proof. For every j ≥ 1, we can take a function Fj+1 = [1, 0, 1, 0, 1, . . .] of arity

j + 1 and connect j functions [1, a] to it.
The row vector form of the function (i.e., a listing of its values) of arity j composed

of j copies of [1, a] is (1, a)⊗j . The column vector form of Fj+1 is 1/2 [ 1
1 ]⊗(j+1) +

1/2 [ 1
−1 ]⊗(j+1). The 2j×2 matrix form of Fj+1 is 1/2 [ 1

1 ]⊗j⊗(1, 1)+1/2 [ 1
−1 ]⊗j⊗

(1,−1).
Our gadget realizes

(1, a)⊗j

{
1/2

[
1
1

]⊗j
⊗ (1, 1) + 1/2

[
1
−1

]⊗j
⊗ (1,−1)

}

=
(1 + a)j

2
(1, 1) +

(1− a)j

2
(1,−1).

Because a ∈ R and a 6∈ {0, 1,−1}, (1 + a)/(1 − a) is well defined and is neither
zero nor a root of unity. We can interpolate any unary function x(1, 1) + y(1,−1), in
particular [0, 1].

Lemma 5.5. Let a ∈ R. If a 6∈ {0, 1,−1}, then we can interpolate [0, 0, 1] from
[1, 0, a].

Proof. The function of a chain of length j composed of [1, 0, a] is [1, 0, aj ]. Since
the real number a 6∈ {0, 1,−1}, we can interpolate all [x, 0, y], and in particular [0, 0, 1],
by polynomial interpolation.

Proof of Theorem 5.1. In this proof, we augment the class F1∪F2∪F3 to include
those degenerate signatures that can be obtained from tensor products from unary
signatures in F1 ∪F2 ∪F3. The augmented class is precisely all symmetric signatures
of the affine class A. For any set of symmetric constraint functions F , to be contained
in the augmented class of F1 ∪ F2 ∪ F3 is the same as to be contained in A; however
the former statement is easier to verify by an inspection of the explicit list in subsec-
tion 2.4. Note that for a set of symmetric signatures F , the transformed set HF is
also symmetric.

If HF ⊆ F1 ∪ F2 ∪ F3 (in the augmented sense), then the problem #CSP(F) is
tractable (even for general graphs). In this case, in fact F ⊆ A, since H−1(F1 ∪F2 ∪
F3) = F1 ∪ F2 ∪ F3, and the conclusion of the theorem holds. Now we assume that
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there exists an f ∈ HF − (F1 ∪F2 ∪F3). In the following, we will prove that we can

realize or interpolate either [0, 1] or [0, 0, 1] from f and ÊQ in Pl-Holant.
The general thrust of the proof is to squeeze all possible f into several standardized

forms and prove the ability to directly realize or interpolate either [0, 1] or [0, 0, 1],
using Lemma 5.4 or Lemma 5.5. Suppose f = [f0, f1, . . . , fn]. Since we have [1, 0] ∈
ÊQ, we can always take any subsignature that is an initial segment of a signature
we already have. Given a symmetric signature g with arity r > 1, we often use two
copies of g such that r − 1 inputs of them are connected to each other. We call this
the double gadget from g, which creates a binary symmetric signature. We separate
two cases according to whether f0 = 0 or f0 6= 0, which we normalize to f0 = 1.

1. f0 = 0.
As the identically 0 function is in F1 ∪ F2 ∪ F3, f is not identically 0, and
thus for some i ≥ 1, fi 6= 0. If f0 = 0 and f1 6= 0, then we can connect n− 1
functions [1, 0] to f to get [0, f1], which is [0, 1] up to a nonzero factor.
So we may assume f0 = f1 = 0, then n ≥ 2. If f2 6= 0, then we can connect
n − 2 functions [1, 0] to f to get [0, 0, f2], which is [0, 0, 1] up to a nonzero
factor.
So we may assume f0 = f1 = f2 = 0, then n ≥ 3. Let m ≤ n be the first
nonzero, f0 = f1 = f2 = · · · = fm−1 = 0, fm 6= 0, then m ≥ 3, and we
can first get [f0, f1, . . . , fm−1, fm] = [0, 0, . . . , 0, fm], which is [0, 1]⊗m, up to
a nonzero factor fm. Depending on the parity of m, by connecting [1, 0, 1] to
two dangling edges of it repeatedly we can get either [0, 1] or [0, 0, 1].

2. f0 = 1.
By Lemma 5.4, we only need to consider f1,∈{0, 1,−1}. Otherwise, we
are done.
(a) f0 = 1 and f1 = ±1.

If n = 1, then f = [f0, f1] = [1,±1] ∈ F1 ∪ F2 ∪ F3, a contradiction. So
n ≥ 2, we can take its initial part [1,±1, f2].

Claim 1. If we have a signature of the form g = [g0, g1, g2] = [1,±1, g2],
then either g2 = 1 or we can get [0, 1].

To prove Claim 1, we connect one edge of g to [g0, g1] = [1,±1]. This
gives us a unary signature [g2

0 + g2
1 , g0g1 + g1g2] = [2,±(1 + g2)]. By

Lemma 5.4 either we can get [0, 1] or g2 ∈ {1,−1,−3}. We can construct

another gadget which connects two inputs of [1, 0, 1, 0] ∈ ÊQ by g =
[g0, g1, g2]. This produces a unary signature [g0 + g2, 2g1] = [1 + g2,±2].
It follows that if g2 = −1 then we can get [0, 1]. So we may assume
g2 6= −1. Next consider the double gadget of g, which has signature

matrix [ g0 g1g1 g2 ]
2

=
[

2 ±(1+g2)

±(1+g2) 1+g22

]
. If g2 = −3, then this signature is

[2,∓2, 10], which is a multiple of [1,∓1, 5]. By the first part of the
proof of Claim 1, since 5 6∈ {1,−1,−3}, we can get [0, 1]. So the only
possibility left is g2 = 1. We have proved Claim 1.
By applying Claim 1 to [f0, f1, f2], we conclude that [f0, f1, f2] = [1,±1, 1].
Since f 6∈ F1 ∪ F2 ∪ F3, the arity n of f is greater than 2, and we have
an initial segment [1,±1, 1, f3]. Our goal in this case 2(a) is either to
get [0, 1] or to extend this pattern [1,±1, 1, . . .]. Since f 6∈ F1 ∪F2 ∪F3,
this pattern for f cannot be extended indefinitely, and then we will have
proved that we can get [0, 1].
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Claim 2. If we have a signature of the form g = [g0, g1, g2, . . . , gm,
gm+1] = [1,±1, 1, . . . , gm+1], where m ≥ 1 and either (1) gj = 1 for all
j = 0, 1, . . . ,m, or (2) gj = (−1)j for all j = 0, 1, . . . ,m, then either
gm+1 = 1 in case (1) or gm+1 = (−1)m+1 in case (2), or we can get [0, 1].

We prove Claim 2 by induction on m. The base case m = 1 has already
been proved in Claim 1. Now suppose m ≥ 2. We connect one edge of g
to [g0, g1] = [1,±1] to get [g2

0 + g2
1 , g0g1 + g1g2, g0g2 + g1g3, . . . , g0gm +

g1gm+1], which is either (1) [2, 2, . . . , 1 + gm+1] or (2) [2,−2, . . . , gm−1−
gm, gm−gm+1], both of arity m. In case (1), by the inductive hypothesis,
we get gm+1 = 1, or we can get [0, 1]. In case (2), the entries starting
from 2,−2, . . . up to gm−1−gm = ±2 indexed at m−1 strictly alternate.
Therefore by induction hypothesis, we also either can get [0, 1], or have
gm − gm+1 = −(gm−1 − gm) = 2gm, hence gm+1 = −gm = (−1)m+1.
Claim 2 is proved.
We now apply Claim 2 to f , and since f 6∈ F1 ∪ F2 ∪ F3, this pattern
cannot be indefinitely extended, and therefore we can get [0, 1].

(b) f0 = 1 and f1 = 0.
Since [1, 0] ∈ F2, and f 6∈ F2, we have n > 1. If f = [1, 0]⊗n =
[1, 0, . . . , 0], it would belong to the augmented class of F1∪F2∪F2. But
f does not. So f has another nonzero entry other than f0. Suppose
fm is the first nonzero fi other than f0. Then m > 1. By taking the
initial segment we can get [f0, 0, . . . , 0, fm]. We can connect [1, 0, 1] to
[f0, 0, . . . , 0, fm] to get [1, fm] or [1, 0, fm] depending on the parity of m.
Then we may assume fm = ±1 by Lemmas 5.4 and 5.5; otherwise we
are done. Since f 6∈ F1 we have n > m.
Next we prove that we may assume m is even, or else we are done. If
m is odd, we can get [1, fm, fm+1] by connecting some [1, 0, 1]. Since
fm = ±1, Claim 1 applies. So fm+1 = 1, or else we are done. We can
also get [1, 0, 0, fm, fm+1], since m > 1, whose double gadget has the
signature [1 + f2

m, fmfm+1, 3f
2
m + f2

m+1] = [2,±1, 4]. Then we can get
[2,±1], and we are done by Lemma 5.4.
Now we know m must be even. Next we show that in fact we may
assume m = 2. Otherwise, m ≥ 4 and we can get [1, 0, 0, 0, fm, fm+1]
by connecting some [1, 0, 1] to f . The double gadget of this has the
signature [1 + f2

m, fmfm+1, 4f
2
m + f2

m+1] = [2,±fm+1, 4 + f2
m+1]. From

this we can get [2,±fm+1]. By Lemma 5.4, we can get [0, 1] unless
fm+1 ∈ {0,±2}. If fm+1 = 0, we have [2, 0, 4]. By Lemma 5.5 we can
get [0, 0, 1]. If fm+1 = ±2, then we apply Claim 1 to [2,±fm+1, 4+f2

m+1]
and conclude that we get [0, 1]. Hence m = 2, or we are done.
We have m = 2 and have reached [1, 0,±1, f3], whose double gadget has
the signature [2,±f3, 2 + f2

3 ]. Again by Lemma 5.4 applied to [2,±f3],
and by Claim 1, we conclude that f3 = 0, or we are done.
Now we have the initial segment of f being [1, 0,±1, 0]. Again since
f 6∈ F1 ∪ F2 ∪ F3 we have n > 3. Hence we have [1, 0,±1, 0, f4]. For
[1, 0,−1, 0, f4], by connecting two edges with [1, 0, 1], we get [0, 0, f4−1],
and we must have f4 = 1, or else we have the signature [0, 0, 1], after
normalization. For [1, 0, 1, 0, f4], by connecting two edges with [1, 0, 1],
we get [2, 0, 1+f4], and it follows from Lemma 5.5 that f4 ∈ {1,−1,−3}.
Connecting three edges of [1, 0, 1, 0, f4] to three edges of [1, 0, 1, 0, 1] ∈
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ÊQ, we get [4, 0, 3 + f4], which rules out f4 = −1, by Lemma 5.5 again.
The double gadget of [1, 0, 1, 0, f4] gives [4, 0, 3 + f2

4 ], which rules out
f4 = −3. To sum up, we get f4 = 1, or else we are done.
Since f 6∈ F1 ∪ F2 ∪ F3, we have n > 4. We have reached [1, 0,±1, 0, 1,
f5, . . .], from which we can get an initial segment [1, 0,±1, 0, 1, f5]. The
rest of the proof is similar to the induction proof for case 2(a) but by
skipping all entries with an odd index. Formally we have the next claim.

Claim 3. Suppose we have a signature of the form g = [g0, g1, g2, . . . ,
gm, gm+1] = [1, 0,±1, 0, 1, . . . , gm+1], where m ≥ 2, gj = 0 for all odd
1 ≤ j ≤ m, and either (1) g2j = 1 for all 0 ≤ j ≤ m/2 or (2) g2j = (−1)j

for all 0 ≤ j ≤ m/2. Then either we can get one of [0, 1] or [0, 0, 1] or
we can conclude the following hold: If m is even then gm+1 = 0, and
if m is odd then either gm+1 = 1 in case (1) or gm+1 = (−1)m+1 in
case (2).

Another way to state the pattern is that the entries of the signature
g satisfy the second order recurrence gi = gi−2 for all i ≥ 2, or the
recurrence gi = −gi−2 for all i ≥ 2, with initial values g0 = 1 and
g1 = 0. The claim is that from this pattern holding up to i ≤ m, it must
also hold for the entry at gm+1, or else we can get or interpolate [0, 1]
or [0, 0, 1].
We prove Claim 3 by induction on m. The base cases m = 2 and
m = 3 are proved by repeating the argument above on f applied to g.
Inductively assume m ≥ 4, and for all smaller values of m Claim 3 holds.
First consider case (2), where the even indexed entries of g alternate up
to gm. We connect [1, 0, 1] to two inputs of [g0, g1, . . . , gm+1] to get a
signature of aritym−1 ≥ 3. This signature has the form [0, . . . , 0, gm−1+
gm+1]. If gm−1 + gm+1 6= 0, we can get either [0, 1] or [0, 0, 1]. Hence we
may assume gm+1 = −gm−1. By the induction hypothesis, this shows
that gm+1 = 0 if m is even, or gm+1 = (−1)(m+1)/2 if m is odd,
Now consider case (1). We also connect [1, 0, 1] to two inputs of
[g0, g1, . . . , gm+1] to get a signature of arity m − 1 ≥ 3. The last en-
try of this signature at index m − 1 is gm−1 + gm+1. Before this last
entry, the signature entries alternate between 2 and 0, starting with
g0 + g2 = 2. If m is even, then gm−1 = 0, and this signature has
the form [2, 0, 2 . . . , 0, 2, gm+1]. By the induction hypothesis, we have
gm+1 = 0 or we can get one of [0, 1] or [0, 0, 1]. If m is odd, then this
signature has the form [2, 0, 2 . . . , 2, 0, gm−1 + gm+1]. Again by the in-
duction hypothesis, we have gm−1 + gm+1 = 2 or we are done. It follows
that gm+1 = 1, completing the induction.
Then we apply Claim 3 to the signature f 6∈ F1∪F2∪F3, and since this
pattern cannot continue indefinitely for f , we conclude that we can get
[0, 1] or [0, 0, 1].
This completes the proof.

6. Dichotomy for planar 2–3 regular graphs. In this section we prove a
dichotomy for Holant on planar 2–3 regular graphs. This setting is very interesting
for at least two reasons. From a dichotomy theorem point of view, this is the simplest
nontrivial setting and always serves as the starting point of more general dichotomy
theorems as in [20, 12]. This was also a focus of several previous works [18, 31, 19, 32],
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whose result is the starting point of this theorem. From the holographic algorithms
point of view, most of the known holographic algorithms [45, 44] are essentially for
planar 2–3 regular graphs. The dichotomy theorem here explains the reason why
they are special and why many variations of them are #P-hard. In the previous
two dichotomies for Pl-Holantc and Pl-#CSP, the new tractable cases for planar are
also done by holographic algorithms with matchgates. However, only special basis
transformations are used since we assume some signatures are freely available. In this
planar 2–3 regular graphs setting, no additional signatures are assumed to be freely
available. Therefore all possible bases can be used in tractable cases.

Theorem 6.1. Let [y0, y1, y2] and [x0, x1, x2, x3] be two complex symmetric sig-
natures with arity 2 and 3, respectively. Then Pl-Holant([y0, y1, y2]|[x0, x1, x2, x3]) is
#P-hard unless [y0, y1, y2] and [x0, x1, x2, x3] satisfy one of the following conditions,
in which case it is tractable:

1. Holant([y0, y1, y2]|[x0, x1, x2, x3]) is tractable (for which we have an effective
dichotomy [12]); or

2. There exists a basis T such that both [y0, y1, y2](T−1)⊗2 and T⊗3[x0, x1, x2, x3]
are realizable by some matchgates (for which we have a complete characteri-
zation [14]).

Proof. If [x0, x1, x2, x3] or [y0, y1, y2] is degenerate, the problem is tractable, even
for the nonplanar case, and so this falls in condition 1. Now we assume that they
are both nondegenerate. As proved in [20], we can choose an invertible T1 such
that [x0, x1, x2, x3] (or its reversal, which is similar and we omit that case) can be
written as T⊗3

1 [1, 0, 0, 1] or T⊗3
1 [1, 1, 0, 0]. Therefore by a holographic reduction, we

can always reduce the problem equivalently to one of the following two problems:
(1) Pl-Holant([z0, z1, z2]|[1, 0, 0, 1]) and (2) Pl-Holant([z0, z1, z2]|[1, 1, 0, 0]). So it is
sufficient to prove the theorem for these two cases.

For Pl-Holant([z0, z1, z2]|[1, 0, 0, 1]), by [32], Theorem 2.11, the only case which
is hard for general graphs and tractable for planar graphs is z3

0 = z3
2 . This condi-

tion is exactly the same as the condition that there exists a basis T such that both
[y0, y1, y2](T−1)⊗2 and T⊗3[1, 0, 0, 1] are realizable by some matchgates. (This state-
ment follows from the explicit transformation formulae from the signature theory
developed for matchgates in [14].) This proves Theorem 6.1 for case (1).

Now we consider Pl-Holant([z0, z1, z2]|[1, 1, 0, 0]). If z0 = 0, the problem is triv-
ially tractable even for general graphs. This can be seen by a simple counting argu-
ment: in a bipartite graph the LHS vertices all have the signature [0, z1, z2] and thus at
least half the edges must be 1, while the RHS vertices all have the signature [1, 1, 0, 0]
and thus less than half the edges are 1. This is also the only case where the problem is
not #P-hard for general graphs when the RHS has [1, 1, 0, 0] by [12]. Now we assume
z0 6= 0. Then it is sufficient to prove that either the problem is #P-hard or there exists
a basis transformation T such that [1, 1, 0, 0]T⊗3 and (T−1)⊗2[z0, z1, z2] are realizable

by some matchgates. Let T =
[ √

z0 0

z1/
√

z0

√
(z0z2−(z1)2)/z0

]
. Note that T is well defined

and invertible since z0 6= 0 and [z0, z1, z2] is nondegenerate ( i.e., z0z2 − (z1)2 6= 0).
Then we can verify that

[1, 1, 0, 0]T⊗3 = [
√
z0(z0 + 3z1),

√
z0(z0z2 − (z1)2), 0, 0]

and (T−1)⊗2[z0, z1, z2] = [1, 0, 1].
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Fig. 9. All vertex signatures are [v, 1, 0, 0].

Fig. 10. All vertex signatures are [v, 1, 0, 0].

We note that
√
z0(z0z2 − (z1)2) 6= 0. If

√
z0(z0 + 3z1) = 0, then both [

√
z0(z0 +

3z1),
√
z0(z0z2 − (z1)2), 0, 0] and [1, 0, 1] can be realized by matchgates and the

problem for planar graphs is tractable. We denote v =
√
z0(z0+3z1)√

z0(z0z2−(z1)2)
6= 0. Then the

problem is equivalent to (nonbipartite) Pl-Holant([v, 1, 0, 0]). Now it is sufficient to
prove the following claim.

Claim. Let v 6= 0 be a complex number. Then Pl-Holant([v, 1, 0, 0]) is #P-hard.

We can realize [v3 + 3v, v2 + 1, v, 1] by connecting three copies of [v, 1, 0, 0]’s as
illustrated in Figure 9. If we can prove that Pl-Holant([v3+3v, v2+1, v, 1]) is #P-hard,
then we are done. In tensor product notation this signature is

[v3 + 3v, v2 + 1, v, 1]T =
1

2

([
v + 1

1

]⊗3

+

[
v − 1

1

]⊗3
)
.

Then the following reduction chain holds:

Pl-Holant([v3 + 3v, v2 + 1, v, 1]) ≡T Pl-Holant([1, 0, 1]|[v3 + 3v, v2 + 1, v, 1])

≡T Pl-Holant([v2 + 2v + 2, v2, v2− 2v + 2]|[1, 0, 0, 1]),

where the second step is a holographic reduction using [ v+1 v−1
1 1 ]. This transforms

the problem to our first case where the RHS all have [1, 0, 0, 1]. The only possible
exceptional case happens when (v2 + 2v+ 2)3 = (v2− 2v+ 2)3. Since (v2 + 2v+ 2)3−
(v2− 2v+ 2)3 = 4v(3v4 + 16v2 + 12) and v 6= 0, we will have proved the claim as long
as 3v4 + 16v2 + 12 6= 0. There are four roots for the equation 3v4 + 16v2 + 12 = 0,
and for these four exceptional values of v, we prove it separately as follows.

In addition to the gadget in Figure 9, we can construct a gadget in Figure 10
with a binary signature [v2 + 2, v, 1]. Now it is enough to prove that Pl-Holant([v2 +
2, v, 1]|[v3 + 3v, v2 + 1, v, 1]) is #P-hard. Under the same basis [ v+1 v−1

1 1 ], we will
get an equivalent problem Pl-Holant([X,Y, Z] | [1, 0, 0, 1]), where X = (v2 + 2)
(v2 + 2v + 1) + 2v(v + 1) + 1, Y = (v2 + 2)(v2 − 1) + 2v2 + 1, and Z = (v2 +
2)(v2 − 2v + 1) + 2v(v − 1) + 1. Again this transforms the problem to our first case,
and it is easy to verify that any root of 3v4 + 16v2 + 12 = 0 is not a tractable case
here. This completes the proof of the claim and also the proof of the theorem.
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7. A roadmap. Holographic algorithms using matchgates were introduced by
Valiant [45, 44]. Initially these novel algorithms appeared rather mysterious, and their
success appeared to be equal parts miraculous and coincidental, as perhaps suggested
by the title of the paper [44].

Intrigued by this beautiful development, some of us embarked on a systematic
study to understand the power of these new algorithms. Perhaps our first result was
not a new result in a traditional theoretical computer science sense [8]. This paper
mainly examined the breakthrough in [45] and reformulated it in a framework of
covariant and contravariant tensor transformations, and then gave a tensor theoretic
proof of Valiant’s Holant theorem. While there are few “new” tangible results in a
traditional sense, casting the theory in this new perspective sets the stage for a deeper
understanding of holographic transformations and algorithms.

After this, the first technical inroads were made (1) to capture what exactly
matchgates can express and (2) to capture under a holographic transformation what
matchgates can be. After the initial work in [42], task (1) was largely accomplished
in [7, 9] with a characterization of matchgate signatures by the so-called matchgates
identities (also see [10] for a simplified and more streamlined treatment). Building on
that, and after the preliminary work in [17], task (2) was largely accomplished in [14]
(with extension in [16]). This signature theory is the basis for a more systematic
understanding of the power of holographic algorithms with matchgates. It gives a
more “explanatory” account for the success in [45, 44].

These results paved the way for classification theorems such as those in this paper.
Inspired by the work in [45, 44], we introduced Fibonacci gates [18], which give another
class of holographic algorithms different from the ones based on matchgates. In [18, 20]
we introduced the Holant framework and proved some dichotomy theorems for Holant∗

problems (for complex-valued symmetric signature sets—Theorem 2.7), for Holantc

problems (for real-valued symmetric signature sets—Theorem 2.8), and for #CSP
problems (for complex-valued not necessarily symmetric signature sets—
Theorem 2.10). Two tractable families were isolated, the signatures of product type
P and the signatures of affine type A. It turns out that Fibonacci gates are essentially
what are transformable to P by an orthogonal holographic transformation. Also the
symmetric part of A is captured by F1 ∪ F2 ∪ F3 (augmented by tensor powers of
unary members of F1 ∪ F2 ∪ F3).

The form of the Holant∗ dichotomy stated in Theorem 2.7 is presented in [20] and
is very concrete. This has the advantage of being easy to apply in specific cases. In
later work we have come to realize that perhaps a better conceptual understanding is
as follows [11]: Problems of tractable class 1 of Theorem 2.7 are those with arity at
most 2 as stated, and they are computable by matrix product and taking trace. Prob-
lems of tractable class 2 are those orthogonally transformable to P, plus an additional
type that will be identified as belonging to the so-called vanishing signatures [26, 11].
Problems of tractable class 3 are those transformable to P by the transformation
Z =

[
1 1
i −i

]
. Theorem 2.10 gives a dichotomy for #CSP, where the tractable classes

are P and A. Theorem 2.8 gives a dichotomy for Holantc problems where the tractable
classes are those for Holant∗ and those belonging to the affine class A.

Our results in sections 4 and 5 depend on these results. Theorem 2.11 is not
used in sections 4 and 5 but is used for the results in section 6. In subsequent
work this portion of the research (Holant problems on regular graphs) also plays an
important role. This line of results started in [19]. But for the understanding of a
significant fraction of the results, e.g., for results in sections 4 and 5, this portion is
not needed.
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The crucial technical advance for the dichotomy of sections 4 and 5 is Theorem 4.1.
The proof is a combinatorial gadget that is not terribly tricky, followed by a purely
algebraic demonstration of the remarkable fact that, precisely when the parameters
are right for being matchgates realizable, the construction for the cross function fails.
When the cross function can be constructed, there is no difference in the complexity
of planar versus nonplanar counting problems. When it is matchgates realizable, then
the FKT algorithm can solve the problem in polynomial time for planar instances
of the problem that is #P-hard in general. This theorem was our first glimpse that
matchgates could be universal for #CSP type problems that are #P-hard in general
but polynomial time computable on planar graphs. Moreover it gave us the courage
that such a theorem might be provable with the knowledge and tools already at hand.

We also feel that the algebraic proof of Theorem 4.1, and many subsequent sim-
ilar results, suggests something more fundamental. These algebraic proofs seem to
be devoid of any intuitive combinatorial explanation; the success at such a sharp de-
marcation between P and #P-hard seems most unreal if it were the case that #P
collapses to P. If #P were equal to P, then it is most mysterious why these algebraic
systems would “know” exactly where to stop being solvable (which is where we hap-
pen to know a clever algorithm, e.g., FKT), so that we cannot prove #P-hardness
for a problem known in P, although by #P = P, every such problem has a polyno-
mial time algorithm. It is as if some all-powerful adversary conspires to maintain
this illusion: wherever we know an algorithm the algebraic system will not be solv-
able such that, e.g., our construction of the cross function fails, which stops us from
proving #P-hardness in this case. And yet everywhere else when we do not know an
algorithm the adversary will allow us to prove #P-hardness. This is the import and
consequence of a dichotomy theorem. It seems the only “rational” explanation is that
while we can’t prove it, #P is indeed different from P. The sharp boundary of success
and failure algebraically in these proofs is a manifestation of this reality, of which the
closest nature has allowed us so far is this glimpse of its silhouette.

In the proofs of these dichotomies, we have often used the conjecture P 6= #P as a
guide in predicting which algebraic system has a solution and which one does not and
have designed proof strategies accordingly, much like one reasons about the behavior
of primes assuming the Riemann Hypothesis. Perhaps this aspect will develop to be
a concrete contribution by computer science back to mathematics, as is often said to
be the case with physics.

Appendix: Some connections to statistical physics. In this section we
describe some background and connections from statistical physics. Our discussion
is necessarily a superficial one, both due to our limited knowledge and because the
primary aim of this work is complexity theoretic. The purpose is to illustrate that
even at such a superficial level, a strong connection exists, and that our complexity
results may shed some light on the venerable question from physics: Exactly what
“systems” can be solved “exactly” and what “systems” are “difficult.”

The Ising model was named after Ernst Ising [27]. Wilhelm Lenz invented this
model and gave it to his student Ising to work on. The model consists of a discrete
set of variables, called spins, that can be assigned one of two values (states). These
spins are usually placed on a lattice structure or a graph, and each spin interacts with
its nearest neighbors.

Denoting the values each spin i can take as σi = +1 and −1, the energy (the
Hamiltonian) of the Ising model is H(σ) = −

∑
edge{i,j} Ji,jσiσj . The interaction

between spins i and j is called ferromagnetic if Ji,j > 0, antiferromagnetic if Ji,j < 0,
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and noninteracting if Ji,j = 0. For example, if all the spins are placed on a one-
dimensional lattice, then the antiferromagnetic one-dimensional Ising model (with the
same value Ji,j = J < 0) has the energy function H =

∑
i σiσi+1, after normalization.

The ferromagnetic two-dimensional Ising model on a square lattice (with the same
value Ji,j = J > 0) has energy H = −

∑
i,j(σi,jσi,j+1 + σi,jσi+1,j). The Ising model

may be modified by magnetic fields, which amounts to a unary function at each spin
H = −

∑
edge{i,j} Ji,jσiσj −

∑
i hiσi.

The model is a statistical model. The central premise of statistical physics is
that the probability of each configuration σ is given by the Boltzmann distribution,
e−H(σ)/kT /

∑
σ e
−H(σ)/kT , where k is Boltzmann constant and T is the (absolute)

temperature. This focuses attention on the partition function

Z =
∑
σ

e−H(σ)/kT .

Note that the exponential e−H(σ)/kT turns this into a sum-of-product function exactly
as we discussed in #CSP.

In 1925, Ising solved the one-dimensional Ising model [27]. The two-dimensional
square lattice Ising model with zero magnetic field was solved by Onsager in 1944 [36].
Onsager announced the formula for the spontaneous magnetization for the
two-dimensional model in 1949 but did not give a derivation [37]. Yang (in 1952)
gave the first published proof of this formula [48], using a limit formula for Fredholm
determinants, proved in 1951 by Szegö in direct response to Onsager’s work. There
are many extensions to the basic Ising model [35, 1].

Another landmark achievement is the exact computation of the number of perfect
matchings (dimer problem) on any planar graph using Pfaffians. This was indepen-
dently discovered by Kasteleyn [29, 30] and by Temperley and Fisher [38]. This
problem can also be nicely expressed by a partition function in our Holant frame-
work, where this time the Boolean variables are the edges (to include an edge or not),
and the local constraint function at each vertex is the Exact-One function. Freed-
man, Lovász, and Schrijver [25] recently proved that this partition function cannot be
expressed as a graph homomorphism function, where the vertices are variables as in
the Ising model. However, in the framework of Holant problems we can find a unity
for all these problems.

We note the following. In the paper [14] we gave a complete characterization of
matchgate realizable symmetric signatures. The following lemma is proved [14].

Lemma A.1. The set of bases under which the signature [x0, x1, x2] is realizable
as a signature by some matchgate is{[(

n0

n1

)
,

(
p0

p1

)]
∈ GL2(C)

∣∣∣∣ x0p
2
1 − 2x1p1n1 + x2n

2
1 = 0, x0p

2
0 − 2x1p0n0 + x2n

2
0 = 0

or x0p0p1 − x1(n0p1 + n1p0) + x2n0n1 = 0

}
.

This has the consequence that under the basis [( n0
n1

), ( p0p1 )] = [( 1
1 ), ( 1

−1 )], the
signature [x, y, x] is realizable by a matchgate, for all values x and y. In terms of
the Ising model, when two interacting spins i and j take the same assignment value
σi = σj = ±1, the contribution to the Hamiltonian is −Ji,j , and when they take
the opposite assignment σi = −σj = ±1, the contribution is Ji,j . Translating this
to the contributions to the partition function we get exactly the local constraint
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evaluation x = eJi,j/kT when inputs are 00 or 11 and y = e−Ji,j/kT when inputs are
01 and 10.

Then, the theory of holographic algorithms tells us that for planar graphs, this
Ising model is exactly solvable by a holographic reduction to the FKT algorithm.

The present paper, especially Theorem 5.1, tells us why this is exactly where
physicists stopped, and attempts to generalize this to nonplanar systems have not
been successful in the past 85 years.

Istrail [28] showed that computing the free energy of an arbitrary subgraph of an
Ising model on a lattice of dimension three or more is NP-hard; see a nice article by
Cipra in the SIAM News [21]. A very partial list of a great deal of research on this
and related models, from a computational complexity perspective, can be found in
[2, 3, 4, 7, 17, 20, 19, 23, 31, 5, 6, 16, 15, 14].
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