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Abstract. Liquid welfare is an alternative efficiency measure for auc-
tions with budget constrained agents. Previous studies focused on auc-
tions of a single (type of) good. In this paper, we initiate the study of
general multi-item auctions, obtaining a truthful budget feasible auction
with constant approximation ratio of liquid welfare under the assump-
tion of large market.

Our main technique is random sampling. Previously, random sam-
pling was usually used in the setting of single-parameter auctions. When
it comes to multi-dimensional settings, this technique meets a number
of obstacles and difficulties. In this work, we develop a series of analysis
tools and frameworks to overcome these. These tools and frameworks are
quite general and they may find applications in other scenarios.

1 Introduction

Let us consider the following auction environment: there is one auctioneer, who
has m heterogeneous divisible items and wants to distribute them among n
agents. Since the items are divisible, W.L.O.G we assume that each item is
of one unit. Each agent i has a value per unit vij for item j. Each agent i is
also constrained by a budget Bi, which is the maximum amount of money i is
able to pay during the auction. An allocation rule A = (xij)n×m specifies the
fraction of items everyone is allocated in an auction, where xij denotes that i is
allocated xij fraction of item j. We say an allocation is feasible if for each item
j,

∑
i xij ≤ 1. A feasible payment rule p = (p1, . . . , pn) specifies the amount

of money each agent needs to pay, while satisfying budget constraint pi ≤ Bi.
Basically, an auction is an algorithm that takes all agents’ bids as inputs, and
outputs a feasible allocation and payment rule. We say an auction is truthful if
it is every agent’s dominant strategy to bid her/his true private profile (here it
means value and budget). We say an auction is universally truthful if this auction
is a distribution over deterministic truthful auctions. Put it more precisely, agent
i’s utility is xijvij − pi if pi ≤ Bi and −∞ if pi ≥ Bi. We also assume that the
agents are risk-neutral.

Liquid Welfare. Due to the budget constraints, it is impossible to get any
reasonable guarantee for the social welfare objective, even in the simplest setting
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of single item auction. The main obstacle is that we cannot allocate item(s) to
an agent with very high value but low budget truthfully. To overcome this, an
alternative measure called liquid welfare was proposed in [16]. Basically, each
agent’s contribution to the liquid welfare is her/his valuation for the allocated
bundle, capped by her/his budget. A precise definition is given as follows.

Definition 1. The liquid welfare of an assignment A = (xij)n×m in the multi-
item setting is

LW (A) =
n∑

i=1

min{
m∑

j=1

vijxij , Bi}.

Just like social welfare is the maximum amount of money an omniscient auction-
eer can obtain in a budget-free setting, the liquid welfare measure is actually the
maximum amount of money an omniscient auctioneer would be able to extract
from agents in the budget setting. Therefore, this measure is a quite reason-
able efficiency measure in the budget setting. More justification about the liquid
welfare can be found in [16]. Our goal is to design a universally truthful, bud-
get feasible mechanism that guarantees some good approximation towards this
liquid welfare objective.

For the simplest setting of single item environment, the problem was first
studied in [16], where an O(log n) approximation mechanism was obtained. In a
previous work [25], we improved the result to O(1) approximation. Nothing was
previously known for multi-item setting. Although the valuation for each item
is additive, the total budget for each agent is shared by different items. This
fact makes the multi-item setting much more complicated and challenging than
single item setting.

Large Market. Generally speaking, the large market assumption says that
a single agent’s contribution (power) to the total market is very small. There
is a number of recent works which are based on this assumption [2,21]. From
practical point of view, this is a very realistic assumption especially in the age
of internet economy; from theoretical point of view, this assumption is a very
interesting mathematical framework to overcome some impossibility results or
get better results than general setting.

In this paper, we study the above liquid welfare maximization problem also
with the assumption of large market. It is crucial to give a good characterization
of this large market assumption. There are a number of alternative definitions
characterizing this. We choose the following one:

∀i, Bi ≤ OPT

m · c
,

where OPT is the liquid welfare for an optimal allocation and c is some large
constant. The quantity of OPT

m represents the average contribution of each item
to the total market. Basically, the above assumption says that each agent does
not have enough budget to make a significant interference to a typical item in
the market.
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Results and Techniques. We get the first constant approximation budget
feasible truthful mechanism for liquid welfare maximization problem under the
large market assumption. Notice that the liquid welfare is an upper bound for
revenue obtained in any individual rational auction. From our proof of liquid
welfare guarantee by our auction, what we indeed prove is that the revenue from
our auction is a constant fraction of the optimal liquid welfare. As a corollary,
our mechanism also guarantees a constant approximation in terms of revenue.

The main technique used in designing our auction is random sampling. Ran-
dom sampling is a very powerful tool in designing truthful mechanisms, which
is widely applied in various of different settings [4–7,23,24]. A typical random
sampling mechanism follows the following routine: first divides the agents into
two groups randomly, then gathers information from one group and uses this
information as a guide to design mechanism for the agents in other group. This
approach is usually seen to be applied on single item setting. However, for the
multi-item setting, there could be a number of equally optimal solutions for the
sample set of agents, but the allocations in these different optimal solutions can
be quite different for the same item. Such fragility of optimal solutions brings
in difficulty in directly applying random sampling: from the sampling set, one
can get good estimation of the total welfare of the set, but does not necessary
give stable and useful information for individual items. To overcome this, we
use a greedy solution rather than the optimal solution as the guidance. The
greedy solution has certain robustness and monotonicity properties which are
very helpful to get useful information for every single item.

To argue that a random sampling algorithm does give a good guarantee to
some objective, the analysis usually has two steps. In the first step, one proves
that with a constant probability, the sampling set is a good estimation of the
remaining set. Then, in the second step, one proves that under the condition
that it is a good sampling, one can get a good allocation from the remaining
set. But in the multi-item setting, there are obstacles in proving both steps.
With the large market assumption, one can prove that for a single item, with a
constant probability, it is a good sampling. But to show that a sampling indeed
gives a good estimation for a constant fraction of items, it is not sufficient to
apply union bound and it is not clear if applying any other tool from probability
theory would work, since the correlation between different items could be very
complicated. We still do not know how to prove that this is true. Instead, we are
able to bypass this with a very subtle and direct estimation of the performance
without conditioning that the sampling is a good one. Our analysis has some
similarities with that in [12].

Related Work. As budget is becoming an important issue that cannot be
neglected in practice, many theoretical investigations have been devoted to ana-
lyzing auctions for budget constrained agents. One of the important directions
leads to optimal auction design which tries to maximize revenue for the auc-
tioneer [1,8,10,14,20]. Another direction focus on maximizing social efficiency.
In particular, there are a number of previous works focusing on a solution con-
cept of Pareto Efficiency [15,22]. Note that the liquid welfare is not the only
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quantifiable measure for efficiency for budget constrained agents. There are sim-
ilar alternatives for this measure, studied in [14,27], but for different solution
concepts.

Beyond designing auctions that maximize liquid welfare itself, there are other
interesting works that follow this liquid welfare notion. For example [3,9,13,18,
27] focus on the liquid welfare guarantee at equilibrium. [19] focused on an online
version of auctions with budget constraints.

Another line of research is devoted to study budget feasible mechanism design
for reversal auction, in which the budget constrained buyer becomes the auction-
eer rather than bidder. This model was first proposed and studied by Singer [26].
Since then, several improvements have been obtained [7,11,17].

For random sampling technique applied on mechanism design, there are also
a long line of research focusing on it [4–7,23–25]. Most of them are for single item
setting. Some of them [4–6] also applied random sampling techniques on multi-
item setting. But unlike our setting, they have constraints on solution space,
number of agents and value profile.

Open Problems and Discussions. Here, we consider the simplest valuation
function, which is linear for each item and additive across different items. It is
natural to extend them to more complicated ones. We conjecture that a similar
mechanism can be applied to concave (for each item) and sub-modular (across
items) functions and leave it to future work.

Theoretically, the most important and interesting open question is whether
we can remove the large market assumption and obtain a constant approximation
mechanism in general multi item setting. It is easy to see that one can combine
the random sampling mechanism with the modified ground bundle second price
auction to get an O(m) approximation mechanism. So, it is a constant approxi-
mation when the number of items is a constant. But if m is not a constant, the
problem remains open.

2 Greedy Algorithm

If all valuations and budgets are common knowledge, the off line liquid welfare
maximization problem can be solved by a simple linear program. However, due
to the dedication of linear programming, we do not really have much structural
understanding or nice properties about this optimal solution. This is in contrast
to the single item setting where the optimal solution can be obtained by a simple
greedy algorithm.

To overcome this, we propose the following natural greedy algorithm for the
multi-item setting. A high level idea of this algorithm is the following: traverse
entry (i, j) in decreasing order of value (per unit). At entry (i, j), let agent i buy
some fraction of item j at price vij per unit, so that this fraction is constrained
by remaining supply and budget. A detailed formulation can be referred in the
following.

Unlike in the single item case, this greedy algorithm is not necessarily opti-
mal but gives a good guarantee towards the optimal. We shall prove that the
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Algorithm 1. Greedy Algorithm
input : n agents with valuations (vij)n×m and corresponding budgets

B1, . . . , Bn

output: An allocation (xij)n×m

begin
for each i ∈ [n] do

Ci ← Bi;

for each j ∈ [m] do
sj ← 1;

for each i ∈ [n] and j ∈ [m] do
xij ← 0;

for each vij > 0 in decreasing order do
if Ci > vijsj then

xij ← sj ;
Ci ← Ci − vijsj ;
sj ← 0;

else

xij ← Ci
vij

;

sj ← sj − Ci
vij

;

Ci ← 0;

greedy solution is a 2-approximation to optimal liquid welfare, implying that
this solution is good enough to serve as a reference to design mechanism. Most
importantly, this greedy solution enjoys a number of nice monotonicity proper-
ties which are very essential for the analysis of our mechanism in Sect. 3.

In the algorithm, if there are ties among different vijs, we break them arbi-
trary but in fixed order (a simple way is to break ties by the index of agents
and items). The tie breaking rule gives a total order on vij ’s, thus making the
algorithm outputs solution deterministically.

Before we analyze the properties of the algorithm, we introduce a few more
necessary notations. Let A = (xij)n×m be some allocation. We say an allocation
is budget compatible if for every i we have

∑m
j=1 vijxij ≤ Bi. It is obvious that

the allocation derived from the above greedy algorithm is budget compatible. For
a feasible allocation that is not budget compatible, we can get a new allocation
that is budget compatible while achieving the same liquid welfare by just cutting
off some fraction of items given to this agent in order to make the value equals
to the budget. Thus we can also assume that the optimal allocation given by
linear programming is budget compatible. For budget compatible allocations, the
liquid welfare is the same as social welfare. For convenience we denote vi(A) =∑m

j=1 vijxij , v(Aj) =
∑n

i=1 vijxij and v(A) =
∑

i

∑
j vijxij respectively. In this

paper, unless otherwise specified, we always use A = (xij)n×m to denote the
allocation outputted by the above greedy algorithm. For any subset T ⊆ [n], we
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use AT to denote the allocation when running the greedy algorithm only on the
subset of agents in T . We use A∗ = (x∗

ij)n×m to denote a budget compatible
optimal allocation.

We first prove that greedy algorithm with full information guarantees at least
half of optimal liquid welfare.

Lemma 1. v(A) ≥ 1
2OPT .

Proof. In the greedy algorithm, by decreasing order of vijs, we always allocate
fraction of item j to agent i until agent i’s budget is exhausted or item j is sold
out. Up to the termination of the algorithm, we denote by D ⊆ [n] the subset of
agents who exhaust their budgets (Ci = 0), and by F ⊆ [m] the subset of items
which are sold out (sj = 0). It is clear that we have vij = 0 if i /∈ D and j /∈ F .

A lower bound of greedy algorithm’s liquid welfare is as follows:

2v(A) ≥
∑

i∈D

vi(A) +
∑

j∈F

v(Aj) =
∑

i∈D

Bi +
∑

j∈F

v(Aj)

For i, j such that i /∈ D and j ∈ F , we can see that in greedy algorithm,
after the algorithm go through this entry (i, j), item j is already sold out. This
implies vij ≤ v(Aj) since every fraction of item j is sold at a price of at least vij .

To bound optimal liquid welfare, we also divide all the agents into two groups:
D and the rest. We note that these sets D and F are defined with respect to the
greedy solution rather than the optimal solution. We have

OPT = v(A∗) =
∑

i∈D

vijx
∗
ij +

∑

i/∈D

vijx
∗
ij =

∑

i∈D

vijx
∗
ij +

∑

i/∈D

∑

j∈F

vijx
∗
ij ,

where the last equality uses the fact that vij = 0 for i /∈ D and j /∈ F . We can
further bound this by

OPT =
∑

i∈D

vijx
∗
ij +

∑

i/∈D

∑

j∈F

vijx
∗
ij ≤

∑

i∈D

Bi +
∑

i/∈D

∑

j∈F

vijx
∗
ij

≤
∑

i∈D

Bi +
∑

j∈F

v(Aj)
∑

i/∈D

x∗
ij

≤
∑

i∈D

Bi +
∑

j∈F

v(Aj) ≤ 2v(A),

where the first inequality is from the budget compatibility of optimal allocation,
the second inequality uses the fact that vij ≤ v(Aj) for i /∈ D and j ∈ F while the
third inequality uses that fact that

∑
i/∈D x∗

ij ≤ 1 since it is a feasible allocation.
This completes the proof. �	

Not only greedy algorithm is a good approximation, we shall also prove that
it has a nice monotonicity property when running on a subset of the agents. This
is crucial for our random sampling mechanism to work.

Lemma 2. (monotonicity of greedy). Let T ⊆ [n] be a subset of agents, A
and AT be the greedy solutions running on the total set [n] and its subset T
respectively. Then ∀i ∈ T and j, we have vi(AT ) ≥ vi(A) and v(AT

j ) ≤ v(Aj).
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The intuition is clear that when there are less agents, each remaining agent
can get more and each item generates less welfare. Notice that this property does
not necessary hold for every single agent and item if we use optimal solution
rather than greedy solution.

Proof. We prove this by coupling every step of greedy algorithm for the inputs
[n] and T . When generating assignments A and AT , the entries (i, j)s traversed
in the algorithm keep the order in vij , except for [n] it experiences some extra
entries (i, j) when i 
∈ T . For these cases, we couple them with empty steps.

For i ∈ T , we denote the remaining budget for agent i by Ci and CT
i respec-

tively. We also denote remaining supply for item j by sj and sT
j respectively. We

inductively prove that after each step, ∀i ∈ T we have Ci ≥ CT
i , and ∀j ∈ [m]

we have sj ≤ sT
j .

Initially, Ci = Bi = CT
i and sj = 1 = sT

j . Now, we assume that the property
holds before the algorithm processes entry (i, j). Notice that after going through
an entry (i, j), ∀k ∈ T\{i} both CT

k and Ck remain the same. Similarly, ∀l ∈
[m]\{j} both sT

l and sl remain the same. Thus we only need to consider the
changes in Ci, CT

i , sj and sT
j at step (i, j). There are three cases.

i /∈ T . In this case, the only possible change is that sj may decrease by some
certain amount. So, the monotonicity property remains to hold.

i ∈ T and CT
i ≥ sT

j vij . In this case, Ci ≥ CT
i ≥ vijs

T
j ≥ vijsj , thus after step

(i, j), ŝT
j = ŝj = 0, and ĈT

i = CT
i − sT

j vij ≤ Ci − sjvij = Ĉi, which shows that
after this step, the two properties still hold.

i ∈ T and CT
i < sT

j vij . In this case ĈT
i = 0 ≤ Ĉi. Also ŝT

j = sT
j − CT

i

vij
≥

max{sj − Ci

vij
, 0} = ŝj , which shows that after this step, the two properties still

hold.
From the above argument, when both algorithms terminate, ∀i ∈ T , Ci ≥

CT
i , thus ∀i ∈ T , vi(AT ) = Bi − CT

i ≥ Bi − Ci ≥ vi(A).
We further prove that v(AT

j ) ≤ v(Aj). Since ∀j, sj ≤ sT
j at every step of

greedy algorithm, which indicates that each fraction of unit in A is allocated
with a price no less than in AT (if not allocated the price of that fraction is 0).
Thus v(AT

j ) ≤ v(Aj). �	

3 The Random Sampling Mechanism

The greedy algorithm has some nice properties but is obviously not truthful.
To design truthful mechanism that has good guarantee, we combine this greedy
algorithm with random sampling. The idea is very simple, we randomly divide
all the agents into two groups T and R. For agents in T , they do not get any
allocation in the auction. We run the greedy algorithm on set T , and use this
result as a guide for pricing for agents in R. From the solution of the greedy
algorithm, we have a rough idea of how to set the price for each item. Then, we
simply sell the items to agents in R at fixed prices which are determined by the
output of greedy algorithm. A formal description of the auction is as follows.

We present our main theorem in the following.
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Algorithm 2. Random Sampling Mechanism
input : n agents with valuations (vij)n×m and corresponding budgets

B1, . . . , Bn

output: An allocation and payments

begin
Randomly divide all agents with equal probability into group T and R
AT ← the greedy solution running on group T .
for j ∈ [m] do

pj = 1
6
v(AT

j );

Each agent i ∈ R comes in a given fixed order and buy the most profitable
part with respect to price vector {pj} under budget feasibility and unit item
supply constraint.

Theorem 1. The random sampling mechanism is a universal truthful budget
feasible mechanism which guarantees a constant fraction of the liquid welfare
under the large market assumption.

The truthfulness and budget feasibility of this auction is obvious. In the
following two subsections, we analyse its approximation ratio. Before that, we
introduce one more notion: for a subset of agents T ⊆ [n], denote v(Aj ∩ T ) =∑

i∈T vijxij .

3.1 Random Sampling and Large Market

We divide all the items into two groups. Let H be the set of easily samplable
items consists of item j that satisfies condition PrT ( 13v(Aj) ≤ v(Aj ∩ T ) ≤
2
3v(Aj)) ≥ 3

4 . We also denote the remaining set as G.
Firstly, we provide a simple technical concentration lemma.

Lemma 3. [12] Let a1 ≥ a2 ≥ · · · ≥ al be positive real numbers such that
the sum a =

∑l
i=1 ai satisfies a > 36a1. We select each number a1, · · · , al inde-

pendently at random with probability 1/2 each and let b be a random variable
representing the sum of these selected numbers. Then

Pr[
a

3
< b <

2a

3
] ≥ 3

4
.

The key lemma in this subsection is as follows. It basically says that the
items in group G do not contribute too much in the greedy solution. This is also
the only place we use the assumption of large market throughout this paper.

Lemma 4.
∑

j∈G v(Aj) ≤ 1
6v(A)

Proof. Lemma 3 provides a sufficient condition for an item to be in H, namely,
Bi ≤ v(Aj)

36 ,∀i ∈ [n]. So, for j ∈ G, there exist i ∈ [n] such that Bi >
v(Aj)
36 . By

the large market assumption, we have that Bi ≤ OPT
m·c . As a result, we have that

v(Aj) < 36OPT
m·c ≤ 72v(A)

m·c for all j ∈ G. Since there are at most m items in G, we
get

∑
j∈G v(Aj) ≤ 72

c v(A). By choosing c = 432 in the large market assumption,
we get the claimed result. �	
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3.2 Approximation Ratio

In the above section, we already show that items in G do not contribute much.
Thus, if our auction do get a good guarantee on items in H, then we are done. In
this subsection we will prove this. Before that we introduce a few more necessary
definitions. For an item j ∈ H, we denote by Πj the set of T such that for
T ∈ Πj , 1

3v(Aj) ≤ v(Aj ∩T ) ≤ 2
3v(Aj). Then, from the definition, we know that

for j ∈ H, Pr(T ∈ Πj) ≥ 3
4 . For convenience, we also abuse the notation Πj to

denote the conditional distribution of T over the subset Πj . We use Π to denote
the distribution of T in the mechanism.

The following lemma shows that even if we restrict to the agents in T and
only count these T in Πj , the contribution from items in H is still significant.

Lemma 5. ∑

j∈H

Pr(T ∈ Πj)ET∼Πj
v(AT

j ) ≥ 1
8
v(A).

Proof. We give both lower bound and upper bound for the term
∑

j ET∼Πv(AT
j ).

On one hand, we have
∑

j

ET∼Πv(AT
j ) =

∑

i

ET∼Πvi(A
T ) ≥

∑

i

Pr(i ∈ T )vi(A) =
1

2

∑

i

vi(A) =
1

2
v(A),

where the inequality uses the fact that vi(AT ) ≥ vi(A) for any subset T and
i ∈ T .

On the other hand, we have
∑

j

ET∼Πv(AT
j ) =

∑

j∈G

ET∼Πv(AT
j ) +

∑

j∈H

ET∼Πv(AT
j )

=
∑

j∈G

ET∼Πv(AT
j ) +

∑

j∈H

[Pr(T ∈ Πj)ET∼Πj
v(AT

j )

+ Pr(T /∈ Πj)ET∼Π\Πj
v(AT

j )]

≤
∑

j∈G

ET∼Πv(Aj) +
∑

j∈H

[Pr(T ∈ Πj)ET∼Πj
v(AT

j ) +
1
4
v(Aj)]

=
1
4
v(A) +

3
4

∑

j∈G

v(Aj) +
∑

j∈H

Pr(T ∈ Πj)ET∼Πj
v(AT

j )

≤ 1
4
v(A) +

1
8
v(A) +

∑

j∈H

Pr(T ∈ Πj)ET∼Πj
v(AT

j )

=
3
8
v(A) +

∑

j∈H

Pr(T ∈ Πj)ET∼Πj
v(AT

j )

where the first inequality uses the fact that Pr(T /∈ Πj) ≤ 1
4 and v(AT

j ) ≤ v(Aj)
for all item j, while the last inequality uses Lemma 4.



50 P. Lu and T. Xiao

Connecting the lower and upper bounds for
∑

j ET∼Πv(AT
j ), we have that

∑

j∈H

Pr(T ∈ Πj)ET∼Πj
v(AT

j ) ≥ 1
8
v(A).

�	
Up to this point, we have not talked about the allocation of our random

sampling algorithm but only the property of greedy solution under random sam-
pling. The following lemma gives the last piece of the analysis which connects
liquid welfare of our mechanism to the above quantity.

Lemma 6. The liquid welfare obtained from the random sampling algorithm is
at least

1
12

∑

j∈H

Pr(T ∈ Πj)ET∼Πj
v(AT

j ).

Proof. We note that the allocation outputted by our mechanism may not be
budget compatible. However, the liquid welfare is always lower bounded by the
revenue obtained by a truthful auction (note that the payment of each agent is
also bounded by both value and budget), so we only need to bound the revenue
obtained by our mechanism.

In our auction, we denote by D ⊆ R the subset of agents who exhaust their
budgets, and by F ⊆ [m] the subset of items which are sold out. Both sets are
random which depend on the random set T . One key observation is that for all
j /∈ F and i ∈ R \ D, we have vij ≤ 1

6v(AT
j ). For j /∈ F and i ∈ R \ D, agent

i did not exhaust his/her budget and item j is not sold out. The only possible
reason why agent i did not buy item j is that the price of 1

6v(AT
j ) is higher than

his/her value vij , thus we have vij ≤ 1
6v(AT

j ).
On one hand, the revenue (and thus the liquid welfare) is bounded by∑

i∈D Bi. We further have that

∑

i∈D

Bi ≥
∑

i∈D

∑

j /∈F

vijxij =
∑

j /∈F

∑

i∈D

vijxij =
∑

j /∈F

⎛

⎝
∑

i∈R

vijxij −
∑

i∈R\D

vijxij

⎞

⎠

≥
∑

j /∈F

max
{

0, (v(Aj ∩ R) − 1
6
v(AT

j ))
}

.

We note that the allocation A and xij in the above calculation are from
the greedy solution rather than the allocation given by the random sampling
mechanism. According to the above argument, this quantity does give a lower
bound for the liquid welfare of the random sampling mechanism.

On the other hand, we can also bound the revenue (and thus the liquid
welfare) from the item point of view. It is bounded by

∑
j∈F

1
6v(AT

j ) as the item
j ∈ F is sold out at a price 1

6v(AT
j ) per unit.

Let Yj be a random variable that

Yj := 1j∈F

v(AT
j )

6
+ 1j /∈F max

{

0, (v(Aj ∩ R) − 1
6
v(AT

j ))
}

.
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Then the above argument showed that the expected liquid welfare of our
mechanism is bounded by 1

2

∑
j ET∼ΠYj . We further have that

∑

j

ET∼ΠYj ≥
∑

j∈H

ET∼ΠYj ≥
∑

j∈H

Pr(T ∈ Πj)ET∼Πj
Yj ,

where the inequalities use the simple fact that Yj ≥ 0 and one simply throw
away some terms in the summation for computing expectation.

For j ∈ H and T ∈ Πj , we have a better bound for Yj . If j ∈ F , we directly
have Yj ≥ 1

6v(AT
j ). For j /∈ F we have Yj ≥ v(Aj ∩ R) − 1

6v(AT
j ). Since j ∈ H

and T ∈ Πj , we have

v(Aj ∩ R) − 1
6
v(AT

j ) ≥ 1
3
v(Aj) − 1

6
v(AT

j ) ≥ 1
3
v(AT

j ) − 1
6
v(AT

j ) =
1
6
v(AT

j ).

Thus ∀j ∈ H and T ∈ Πj , we have Yj ≥ 1
6v(AT

j ). Therefore, the
expected liquid welfare obtained by our mechanism is at least 1

12

∑
j∈H Pr(T ∈

Πj)ET∼Πj
v(AT

j ). This completes the proof. �	
Put Lemmas 1, 5 and 6 together, we know that the liquid welfare of random

sampling mechanism is at least 1
192 of the optimal one. This completes the proof

of the main theorem.
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