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Abstract. In this paper, we consider randomized truthful mechanisms
for scheduling tasks to unrelated machines, where each machine is
controlled by a selfish agent. Some previous work on this topic focused on
a special case, scheduling two machines, for which the best approximation
ratio is 1.6737 [5] and the best lower bound is 1.5 [6]. For this case, we
give a unified framework for designing universally truthful mechanisms,
which includes all the known mechanisms, and also a tight analysis
method of their approximation ratios. Based on this, we give an improved
randomized truthful mechanism, whose approximation ratio is 1.5963.
For the general case, when there are m machines, the only known
technique is to obtain a γm

2 -approximation truthful mechanism by
generalizing a γ-approximation truthful mechanism for two machines[6].
There is a barrier of 0.75m for this technique due to the lower bound of
1.5 for two machines. We break this 0.75m barrier by a new designing
technique, rounding a fractional solution. We propose a randomized
truthful-in-expectation mechanism that achieves approximation of m+5

2 ,
for m machines.

For the lower bound side, we focus on an interesting family of
mechanisms, namely task-independent truthful mechanisms. We prove
a lower bound of 11/7 for two machines and a lower bound of m+1

2 for
m machines with respect to this family. They almost match our upper
bounds in both cases.

1 Introduction

Mechanism design, an important area both in Game Theory and Computer
Science, has received extensive study in the past few years. It is usually used
to design a protocol for achieving some global objective, however requiring the
interaction of some selfish agents. To deal with this, the most common solution
concept is “truthfulness”, where the mechanism is designed so that for any
participant agent, reporting his/her private data truthfully to the mechanism
will always maximize his/her own utility, no matter how other agents act. We
also focus on truthful mechanisms in this paper.
� Supported by the National Natural Science Foundation of China Grant 60553001

and the National Basic Research Program of China Grant 2007CB807900,
2007CB807901.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 402–413, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Randomized Truthful Mechanisms for Scheduling Unrelated Machines 403

The study of the algorithmic aspect of mechanism design was initiated by
Nisan and Ronen in their seminal paper “Algorithmic Mechanism Design”[8].
Some computational properties such as good approximation ratios and polyno-
mial running time are studied in mechanism design setting. Nisan and Ronen’s
work mainly focused on a fundamental problem in computer science, scheduling
unrelated machines. In a scheduling problem, there are n tasks to be allocated to
m machines, which are controlled by selfish agents. The objective is to allocate
the tasks so that the maximum completion time of these machines ( called
makespan) is minimized. A mechanism for the scheduling problem consists of
two algorithms, the allocation algorithm and the payment algorithm. Our main
interest is on the approximation ratio of the allocation algorithm. Nisan and
Ronen proposed a deterministic truthful mechanism with an approximation ratio
of m. Moreover, they proved a lower bound of 2 for all the deterministic truthful
mechanisms. Randomization is always more powerful, and this is also true for
this scheduling problem. They provided a randomized truthful mechanism with
approximation ratio of 1.75 for two machines. Recently Mu’alem and Schapira
gave a lower bound of 2 − 1/m for randomized truthful mechanisms[6]. They
also generalized the 1.75 approximation mechanism for two machines to a
0.875m-approximation mechanism for m machines. In a previous work[5], we
improved Nisan and Ronen’s result by a 1.67-approximation randomized truthful
mechanism for two machines, together with a 0.837m-approximation mechanism
for m machines using Mu’alem and Schapira’s technique in [6].

A fractional variant of truthful scheduling unrelated machines was first
considered by Christodoulou, Koutsoupias and Kovács in [2]. They gave a
fractional truthful mechanism with approximation ratio of (m+1)/2, and a lower
bound of 2 − 1/m for any fractional truthful mechanisms. They also defined a
family of allocation algorithms named as task-independent algorithm, in which
tasks are allocated independently. For the task-independent truthful fractional
mechanisms, they proved a tight lower bound of (m+ 1)/2.

1.1 Our Results

In this paper, we first propose a unified approach to design truthful mechanisms
for two machines, which contains all the known truthful mechanisms. One main
contribution is that we not only unify all the known mechanisms, but also give
a unified and tight analysis method for their approximation ratios. Based on
this, we are able to give a randomized mechanism for two machines, which is
universally truthful and has an approximate ratio of 1.5963.

A natural question would be how far we can go with this unified approach. We
answer this question by a lower bound of 1.5788 for this approach. Further more,
we also prove a lower bound of 11/7 for all the task independent randomized
mechanisms which are truthful even in a weaker version, i.e., truthful in
expectation. So substantial new techniques are required to significantly improve
our results.
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For the general case, when there are m machines, the only known tech-
nique is to obtain a γm

2 -approximation truthful mechanism by generalizing a
γ-approximation truthful mechanism for two machines[6]. However the lower
bound of 1.5 for scheduling two machines gives a barrier of 0.75m for this
technique. We break this 0.75m barrier by a new designing technique. First, we
adopt a truthful fractional mechanism with ratio (m + 1)/2 by Christodoulou,
Koutsoupias and Kovács [2]. We add into this mechanism an important threshold
so that it satisfies certain “bid condition”, which is essential for us to bound
the loss of approximation ratio during the rounding process. Then we use a
rounding technique in [4] to get a randomized mechanism, which is still truthful
in expectation, and only loses little in approximation ratio. We finally obtain
a randomized mechanism which is truthful in expectation and achieves an
approximation ratio of (m+ 5)/2.

We also give a lower bound of (m+ 1)/2 for all task independent randomized
mechanisms. This result shows that we really need some new techniques to break
this 0.5m barrier.

2 Preliminaries and Notations

In this section we review some definitions and results on mechanism design and
scheduling problem. More details can be found in[8]. In the following, for a
generic matrix a = (aij), we use ai to denote the i-th row of the matrix, and a−i

to denote the matrix obtained from a deleting ai. We also use (v, a−i) to denote
the matrix obtained from a by replacing ai with vector v. We use R+ to denote
the set of nonnegative real numbers.

In a scheduling problem, there are n tasks and m machines, where each
machine i ∈ [m] needs tij units of time to perform task j ∈ [n]. We usually
use the matrix t = (tij) to denote an instance of the scheduling problem. In
this paper, we consider that each machine is controlled by a strategic player. We
assume that player i privately knows ti, and we call the vector ti player i’s type.
After each player i declares his/her type, an allocation algorithm x will decide
an allocation of all the tasks. We assume that all the players are selfish and
want to perform as less tasks as possible, so players may misreport their types.
We use bi ∈ Rn

+ to denote player i’s reported type, and call it player i’s bid.
Obviously bi may not equal to ti if that helps in player i’s interest. To avoid this
lying issue, we introduce the payment algorithm p into a mechanism. Formally,
a mechanism M = (x, p) consists of two parts:

– An allocation algorithm: The allocation algorithm x, given the input of
players’ bid matrix b = (b1, · · · , bm), outputs an allocation denoted by a
matrix x = (xij). xij is 1 if task j is assigned to machine i, and 0 otherwise.
In the fractional scheduling case, xij satisfies 0 ≤ xij ≤ 1 and denotes the
fraction of task j assigned to machine i. Every task must be completely
assigned, hence

∑
j∈[n] xij = 1, ∀i ∈ [m]. Notice that each xij can be viewed

as a function of b.
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– A payment algorithm: The payment algorithm p, given the input of
players’ bid matrix b, outputs a vector p = (p1, · · · , pm), where pi denotes
the money that player i receives from the mechanism. Each pi can also be
viewed as a function of b.

Randomized mechanism is defined to be a distribution of several deterministic
mechanisms. In randomized mechanism, xij is a random variable denoting
whether task j is assigned to machine i. For simplicity, we also use xij to denote
Pr(xij = 1) when the context is clear.

Now we specify the utility of each player. We use the quasi linear utility, which
means the utility ui of player i with type ti over an allocation x and money pi

is defined as:
ui(x, pi|ti) = pi −

∑
j∈[n]

xijtij .

Since x and pi are both functions of bid matrix b, we can also write the
utility as

ui(b|ti) = pi(b)−
∑
j∈[n]

xij(b)tij .

Recall that we want to solve the issue of lying about types, we are interested
in truthful mechanisms. A mechanism M = (x, p) is truthful if for each player i,
reporting his/her true type will maximize his/her own utility. Formally, for any
i, any bids b−i of all other players, we have

ui((ti, b−i)|ti) ≥ ui((bi, b−i)|ti), ∀bi ∈ Rn
+

For randomized mechanism, there are two versions of truthfulness. The
stronger version is universally truthful, which requires the mechanism to be
truthful when fixing all the random bits. The weaker version is truthful in
expectation, which only requires that for each player, reporting his/her true
type will maximize his/her own expected utility.

For a truthful mechanism M , we may assume that all the players will report
their true types, hence b = t. Now, how can we evaluate the performance of
mechanism’s allocation algorithm x? We consider the makespan, which is the
maximum load of all the machines. Given input t, the makespan of mechanism
M is denoted by lM (t), and lM (t) = maxi∈[m]

∑
j∈[n] xijtij . We use lopt(t) to

denote the optimum, and lopt(t) = minx maxi∈[m]
∑

j∈[n] xijtij . A mechanism
M is called c-approximation mechanism if for any instance t, we have lM (t) ≤
c · lopt(t). For randomized mechanism M , we require E[lM (t)] ≤ c · lopt(t), where
the expectation is over the random bits used in the mechanism.

To sum up, we aim at designing (randomized) truthful mechanism with small
approximation ratio. By the way, we also require the algorithms of the mechanism
to be polynomial computable. When designing a mechanism, there are already
several results about the characterization of truthfulness, which may help us
to get rid of the payment issue. We mainly use Archer and Tardos’ monotone
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theorem for one parameter mechanism in [1]. In the one parameter case, each
player i only has a single value as his/her type (i.e. the speed of machine i).
Similar result is obtained in [7] for the auction setting.

Theorem 1. ([7,1]) In a one parameter scheduling mechanism, an allocation
algorithm admits a payment scheme to make the mechanism truthful if and only
if it is monotone decreasing. In this case, the mechanism is truthful if and only
if the payments pi(bi, b−i) are of the form

hi(b−i) + bixi(bi, b−i)−
∫ bi

0
xi(u, b−i) du

where the hi are arbitrary functions, and xi are the allocation functions
(algorithm).

In this paper, we also consider the lower bound of approximation ratio for a
special family of mechanisms, i.e. task independent truthful mechanisms. We
first define task independent mechanisms.

Definition 1. A deterministic mechanism M is task independent, if for any bid
matrices b, b′ such that bij = b′ij for any i ∈ [m], then the allocation of task j
does not change, i.e. xij(b) = xij(b′), ∀i ∈ [m].

For randomized mechanisms, there are also two versions of task independence.
One is weak task independent randomized mechanism, which is a distribution
over several task independent deterministic mechanisms. The other is (strong)
task independent randomized mechanism, which satisfies that not only the
allocation of task j does not change when j’s column of b is not changed, but
also all the random variables xij are independent between different tasks. In this
paper, we consider the stronger version.

The following theorem is a main tool used in proving lower bound.

Theorem 2. (Monotone theorem[8]) In any truthful mechanism, the allocation
algorithm must satisfy the following monotone property: for any two bids b and b′

which differ only on machine i, the corresponding allocation x(b) and x′ = x(b′)
satisfy

m∑
j=1

(xij − x′ij)(bij − b′ij) ≤ 0.

We remark that for randomized mechanism, the monotone property of the
allocation algorithm still holds, which is proved implicitly in [6]. In our paper,
we only use the following corollary for task independent randomized truthful
mechanisms.

Corollary 1. For any task independent randomized truthful mechanism M , any
two bid matrices b, b′ where b′ is obtained from b by only changing bij to b′ij,
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then we have
(
xij(b) − xij(b′)

)
(bij − b′ij) ≤ 0, where xij denotes the probability

of assigning task j to machine i.

3 Scheduling Two Machines

Most of the previous works on this topic are for scheduling two machines. In
this section, we first propose a unified framework for all the known mechanisms.
Based on this framework, we give an improved truthful mechanism. Then we
also explore the limitation of this approach by showing an almost tight lower
bound for all the task-independent truthful mechanisms.

3.1 Unified Randomized Truthful Mechanisms Mf

Let f : R+ ⇀ [0, 1] be a non-decreasing monotone function, satisfying f(0) = 0
and limx→∞ f(x) = 1. Then we have a randomized mechanismMf for scheduling
two machines based on f . Noticing that this kind of function f can be viewed
as a cumulative distribution function for a random variable in R+, we have the
following formal description of the mechanism Mf :

Input: The reported bid matrix b.
Output: A randomized allocation x
and a payment p = (p1, p2).
Allocation and Payment Algorithm:
x1j ← 0, x2j ← 0, j = 1, 2 · · · , n; p1 ← 0; p2 ← 0.
For each task j = 1, 2 · · · , n do

Choose sj ∈ R+ randomly according to function f
such that Pr(sj ≤ u) = f(u).
if b1j ≤ s−1

j b2j ,
x1j ← 1, p1 ← p1 + s−1

j b2j;
else
x2j ← 1, p2 ← p2 + sjb1j.

This unified mechanism Mf is actually a generalization of Nisan and Ronen’s
Biased MinWork Mechanism in a continuous setting. For the truthfulness, we
have the following theorem.

Theorem 3. For any non-decreasing monotone function f : R+ ⇀ [0, 1], where
f(0) = 0 and limx→∞ f(x) = 1, mechanism Mf is universally truthful.

Proof. To prove that the mechanism Mf is universally truthful, we only need
to prove that it is truthful when the random sequence {sj} is fixed. Since the
utility of an agent equals the sum of the utilities obtained from each task and our
mechanism is task-independent, we only need to consider the case of one task.
In this case, say sj is fixed and there is only one task j, the allocation algorithm is
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monotone decreasing and the payment makes the mechanism truthful, according
to the theorem 1(with function h1(b2j) = s−1

j b2j and h2(b1j) = sjb1j).

Now we demonstrate the power of our unified designing approach by showing
that every known mechanism can be viewed as a mechanism Mf with respect to
some function f .

f1(x)=

�
1, x ≥ 1,

0, 0 ≤ x < 1;
f2(x)=

�������
������

1, x ≥ 4
3
,

1
2
,

3
4

≤ x <
4
3
,

0, 0 ≤ x <
3
4
;

f3(x)=

�������������
������������

1, x ≥ α,

r, β ≤ x < α,

1
2
,

1
β

≤ x < β,

1 − r,
1
α

≤ x <
1
β

,

0, 0 ≤ x <
1
α

.

Mf1 is exactly the Min Work Mechanism proposed by Nisan and Ronen
[8]. This is indeed a deterministic mechanism, whose approximation ratio is
2, and it is the best determinate mechanism. Mf2 is the Biased Min Work
Mechanism also proposed by Nisan and Ronen [8], whose approximation ratio
is 1.75. Then we improved their result by Mf3 in our previous work[5]. By
taking α = 1.4844, β = 1.1854, r = 0.7932 in f3, we have a randomized truthful
mechanism with approximation ratio of 1.6737.

We can see that all the previous functions f are distribution functions of some
discrete random variables. One essential reason is that we can apply a “task
reducing” technique [8,5], then analyze the performance using a case by case
method. However the number of subcases increased dramatically if we consider
a more complicated function f . One of our main contribution in this paper is that
we not only propose the unified framework Mf , but also provide a performance
analysis method.

Theorem 4. For any non-decreasing monotone function f : R+ ⇀ [0, 1], the
approximation ratio of the mechanism Mf is exactly maxα1,α2∈R+ F (α1, α2),
where F : R+ × R+ ⇀ R is defined as following (Here r1 = f(α1) and r2 =
f(1/α2))

F (α1, α2)=(1+α2)r1r2+r1(1−r2)+(1+α1)(1−r1)(1−r2)+max{α1, α2}r2(1−r1).

By this theorem, we can easily estimate the approximation ratio of a given
mechanism Mf . In particular, by choosing f(x) = 1 − 1

2x2.3 , we can compute
that its approximation ratio is 1.5963. The function we used here is only an
illustration of our mechanism Mf . We also believe that there exists a better f ,
though very hard to find. It is also an interesting problem to explore the property
of function f with which Mf can have smaller approximation ratio.

Theorem 5. For f(x) = 1 − 1
2x2.3 , the mechanism Mf for two machines is

universally truthful and can achieve an approximation ratio of 1.5963.
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Before we prove the theorem 4, we first give a lemma, which gives an alternative
description of the allocation in our mechanism Mf . Its proof is direct from the
definition of our mechanism. Since we already proved that our mechanism Mf

is truthful, we can also denote the bid as t in the following.

Lemma 1. For any type matrix t of the two machines, Mf allocates each task
independently and for each task j = 1, 2 · · · , n, if t1j = 0, always allocate it to
machine 1, otherwise allocates it to machine 1 with probability f(t2j/t1j) and to
machine 2 with probability 1− f(t2j/t1j).

Proof of Theorem 4: Fix any instance t = (tij), let lopt be the optimal makespan.
Let O1, O2 be the sets of tasks assigned to machine 1 and machine 2 respectively
in an optimal solution. Then we have

lopt = max{
∑
j∈O1

t1j ,
∑

k∈O2

t2k}.

Now we estimate the expected makespan of our mechanism Mf , denoted by
lf . We use lfi , i = 1, 2, to denote the completion time of machine i, then lf =
max{lf1 , l

f
2}. Let M be a random variable such that M = 1 if lf1 ≥ l

f
2 , and M = 2

otherwise. We also denote Pr (M = 1, x1j = 1) as P 1
j and Pr (M = 2, x2j = 1)

as P 2
j in the following calculation. Then we have:

lf =
∑

j∈[m]

t1jP
1
j + t2jP

2
j

=
∑
j∈O1

t1j

(
P 1

j +
t2j

t1j
P 2

j

)
+
∑

k∈O2

t2k

(
t1k

t2k
P 1

k + P 2
k

)

≤ max
j∈O1

(
P 1

j +
t2j

t1j
P 2

j

)
·
∑
j∈O1

t1j + max
k∈O2

(
t1k

t2k
P 1

k + P 2
k

)
·
∑

k∈O2

t2k

≤ lopt

(
max
j∈O1

(
P 1

j +
t2j

t1j
P 2

j

)
+ max

k∈O2

(
t1k

t2k
P 1

k + P 2
k

))
≤ lopt

(
max
j �=k

(
P 1

j +
t2j

t1j
P 2

j +
t1k

t2k
P 1

k + P 2
k

))
So the approximate ratio is bounded by the term

max
j �=k

(
P 1

j +
t2j

t1j
P 2

j +
t1k

t2k
P 1

k + P 2
k

)
.

Fix any j, k, let α1 = t2j

t1j
, α2 = t1k

t2k
and Pabc = Pr (M = a, xbj = 1, xck = 1),

a, b, c ∈ {0, 1}. Then we can expand P 1
j as P111 + P112, since

Pr (M=1, x1j = 1)=Pr (M=1, x1j = 1, x1k = 1)+Pr (M=1, x1j =1, x2k =1) .
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Let r1 = Pr(x1j = 1), r2 = Pr(x1k = 1), then we have:

P 1
j +

t2j

t1j
P 2

j +
t1k

t2k
P 1

k + P 2
k

= (P111 + P112) + α1(P221 + P222) + α2(P111 + P121) + (P212 + P222)
= (P111+P112+P212)+α2(P111+P121+P221) + (α1 − α2)P221 + (1 + α1)P222

≤ Pr(x1j = 1) + α2Pr(x1k = 1) + (α1 − α2)Pr(M = 2, x2j=1, x1k = 1)
+(1 + α1)Pr(M = 2, x2j = 1, x2k = 1)

≤ Pr(x1j = 1) + α2Pr(x1k = 1) + max{α1 − α2, 0}Pr(x2j = 1, x1k = 1)
+(1 + α1)Pr(x2j = 1, x2k = 1)

= (1 + α2)r1r2 + r1(1− r2)+(1 + α1)(1− r1)(1 − r2)+max{α1, α2}r2(1− r1)
= F (α1, α2)

The first inequality is because Pr(x1j = 1) = P111 + P112 + P211 + P212 and so
on. The second inequality is because Pr(M = 2, x2j=1, x1k = 1) ≤ Pr(x2j =
1, x2k = 1). By lemma 1, r1 = f(α1), r2 = f(1/α2), hence the approximation
ratio is bounded by maxα1,α2∈R+ F (α1, α2).

On the other direction, we use the following instance to show that our analysis
of the approximation ratio is tight. We will use the following tables to illustrated
tasks and their allocation throughout this paper. There are two tasks A and B.
The left table shows the instance t, where t1A = 1, t1B = α2, t2A = α1, t2B = 1.
The right table shows the allocation of this instance using our mechanism Mf :
task A is assigned to machine 1 with probability r1, to machine 2 with probability
1− r1, etc. Here r1 = f(α1) and r2 = f(1/α2).

machine 1 machine 2
task A 1 α1

task B α2 1
→

machine 1 machine 2
task A r1 1− r1
task B r2 1− r2

For this instance, we have lopt ≤ 1 and the expected makespan produced by
Mf is exactly F (α1, α2). So the approximation ratio is at least F (α1, α2). �

3.2 Lower Bound for Task Independent Mechanisms

In this section, we show a lower bound for all task independent truthful
mechanisms. This lower bound for task independent randomized truthful
mechanisms is especially interesting, since a recent work in [3] shows that any
truthful mechanism for two machines is task independent, however in the weaker
version. So any lower bound better than 1.5 in the weaker version would imply
an improvement of the lower bound 1.5 for randomized mechanisms for two
machines case.

Theorem 6. For any task independent truthful mechanism for two machines,
its approximation ratio cannot be less than 11/7(≈ 1.5714).
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Proof. Given any task independent truthful mechanism M , consider the follow-
ing four instances(a is a constant to be specified later, and a > 1). We can assume
that r1 ≥ 1/2, otherwise we relabel the machines in instance 1, and modify the
other three instances respectively.

Instance 1:
machine 1 machine 2

task 1 1 1
task 2 1 2

→
machine 1 machine 2

task 1 r1 1− r1
task 2 r2 1− r2

For this instance, we have lM/lopt = 2r1 + (1 − r1)r2 + 3(1 − r1)(1 − r2) ≥
1 + r1 � A1.

Instance 2:
machine 1 machine 2

task 1 1 1
task 2 1 a

→
machine 1 machine 2

task 1 r1 1− r1
task 2 r3 1− r3

For this instance, we have lM/lopt = 2r1r3 − r1 − ar3 + a+ 1 � A2.

Instance 3:
machine 1 machine 2

task 1 a a2

task 2 1 a
→

machine 1 machine 2
task 1 r4 1− r4
task 2 r3 1− r3

For this instance, we have lM/lopt = (1 + 1
a )r3r4 − r3 − ar4 + a+ 1 � A3.

Instance 4:
machine 1 machine 2

task 1 a a
task 2 2a a

→
machine 1 machine 2

task 1 r5 1− r5
task 2 r6 1− r6

For this instance, we have lM/lopt = 2− r5 + 2r5r6 ≥ 2− r5.
Consider instance 3 and 4, we can change task 2’s values in instance 3 to

2a, a without affecting the allocation of task 1 since M is task independent.
Then we decrease machine 2’s value on task 1 from a2 to a. By corollary 1, we
know the probability that machine 2 gets task 1 should increase. That is to say,
1− r5 ≥ 1− r4. Then we have lM/lopt ≥ 2− r4 � A4.

To sum up, mechanismM ’s approximation ratio is at leastmax{A1, A2, A3, A4}
with the condition r1 ≥ 1/2, a > 1, whereA1 = 1+r1, A2 = 2r1r3−r1−ar3+a+1,
A3 = (1 + 1

a )r3r4 − r3 − ar4 + a+ 1, A4 = 2− r4. Choosing a = 3/2 and using
a case-by-case analysis, we can prove that max{A1, A2, A3, A4} ≥ 11/7 for any
r1, r2, r3, r4 with the assumption r1 ≥ 1/2.

4 Scheduling m Machines

First we give the framework of our mechanism for scheduling m machines,
BOUNDED-SQUARE mechanism. (Here we only give the allocation algorithm.)
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Input: The reported bid matrix b = (bij).
Output: A randomized allocation X = (Xij).
Allocation Algorithm:
(1) For each task j = 1, 2 · · · , n do
let Ij ← {i ∈ [m] : bij ≤ 2 mini∈[m] bij}.
if mini∈[m] bij = 0, we assign task j among the machines in Ij with equal
probabilities;
Otherwise we use the SQUARE allocation algorithm[2] in Ij :
For each machine i = 1, 2 · · · ,m do:

if i ∈ Ij , xij ←
1

(bij )2
�

s∈Ij

1
(bsj)2

, otherwise xij ← 0.

(2) Round (xij) to a randomized integer solution (Xij) such that E[Xij ] =
xij ,∀i, j. We will specify the method of rounding later.

In our BOUNDED-SQUARE mechanism, x = (xij) can be viewed as a
fractional solution of the scheduling problem. It is adapted from the fractional
mechanism SQUARE in [2]. However, we need some “bid condition” in order
to bound the loss of performance due to the rounding process. Here we give
a threshold of 2 mini∈[m] bij in the allocation, so if xij > 0, then bij ≤
2 mini∈[m] bij ≤ 2lopt(b). This idea plays an essential role in our mechanism.

Regarding the truthfulness of our mechanism, the proof is based on the fact
that the modified fractional mechanism is still truthful. The proof is similar as
in [2] and omitted here.

Lemma 2. For any rounding method satisfying E[Xij ] = xij ,∀i, j, there is
a payment algorithm to make BOUNDED-SQUARE mechanism truthful in
expectation.

Now we begin to analysis the approximation ratio of our mechanism. Since our
mechanism is already proved truthful, we can assume that the players will report
their types truthfully, and use t instead of b. Given an instance t, we first show
that this fractional solution approximates lopt(t) within a factor of m+1

2 . The
proof is also omitted.

Lemma 3. Let x = (xij) be the fractional solution obtained in the BOUNDED-
SQUARE mechanism, we have maxi∈[m]

∑
j∈[n] xijtij ≤ m+1

2 lopt(t).

For the rounding method, we use the algorithm proposed by Kumar et al. [4].

Lemma 4. (Kumar et al. [4]) Given a fractional assignment x and a processing
time matrix t, there exists a randomized rounding procedure that yields a random
integer assignment X such that,

1. for any i, j, E[Xij ] = xij .
2. for any i,

∑
j Xijtij <

∑
j xijtij + maxj:xij∈(0,1) tij with probability 1.

In our mechanism, we already know that maxj:xij∈(0,1) tij ≤ 2lopt(t) due to the
bid condition. So putting everything together(lemma 2, lemma 3, lemma 4), we
have the following theorem.
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Theorem 7. The BOUNDED-SQUARE mechanism is truthful in expectation
and has an approximation ratio of m+5

2 .
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