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Abstract. We study the design of truthful auction mechanisms for
maximizing the seller’s profit. We focus on the case when the auction
mechanism does not have any knowledge of bidders’ valuations, especially
of their upper bound. For the Single-Item auction, we obtain an
“asymptotically” optimal scheme: for any k ∈ Z+ and ε > 0, we give
a randomized truthful auction that guarantees an expected profit of
Ω( OPT

ln OPT ln lnOPT ···(ln(k) OPT )1+ε ), where OPT is the maximum social

utility of the auction. Moreover, we show that no truthful auction can
guarantee an expected profit of Ω( OPT

ln OPT ln ln OPT ··· ln(k) OPT
).

In addition, we extend our results and techniques to Multi-units
auction, Unit-Demand auction, and Combinatorial auction.

1 Introduction

Auction has become an active area of research in Computer Science both for
its commercial applications in the rapid expanding space of Internet Economy
and for its algorithmic and game-theoretical appeals. A typical auction problem
consists of one or more sellers who have several items to sell and a collection
of bidders who want to buy what they would like to have with as little price
as possible. An auction mechanism then determines who gets which items and
at what price. As the participants (sellers and bidders) in an auction have their
own self-incentive and private information, an auction problem can be viewed
as a game among its participants.

The concept of truthful or incentive compatible mechanism captures the notion
of reasonable auctions — a reasonable auction should encourage its bidders
to show their true valuations. Truthfulness is a quite strong game-theoretical
requirement, stating that for each bidder, bidding his/her true valuation is
among the optimal strategies, no matter how other bidders behave. In another
word, in a truthful auction, the decision and pricing scheme are such that there
is no reason for any bidder to lie.
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1.1 Related Work and Motivations

Many auction problems have truthful mechanisms. An example is the famous
Vickrey-Clarke-Groves (VCG) mechanism that maximizes the social utility
[13,3,7]. However, in VCG, the maximization of the social utility might be
achieved at the expense of the seller’s profit — generally, the VCG scheme
provides no guarantee on the seller’s profit. A natural step is to design a truthful
auction mechanism that maximizes profits.

Assuming that the distribution of valuations are known or can be gathered by
some statistical means, VCG mechanism with a properly chosen reserved price
can obtain very tight bounds on the expected profits [12,11,10]. However, there
are reasons to consider profit-maximization auction without full knowledge of
the valuation distributions[5].

A possible scenario is that the range of bidders’ valuations is known. Given
an upper bound h on the valuations, truthful auction mechanisms have been
developed to achieve a profit of Ω

(
OPT
log h

)
, where OPT is the optimal social

utility of the auction [8,9].
In absence of any valuation information, Goldberg, Hartline, Wright in-

troduced a notion of competitive auctions in [6]. They proposed to measure
the quality of the profit-maximization scheme using a worst-case competitive
analysis against F (2), the optimal single-price auction that sells at least two
items. Since then, several truthful auction schemes with constant competitive
ratios have been developed [5,1,2].

Note that F (2) is a relatively lower bentchmark compared to OPT . In some
cases, one can not bound F (2) with OPT . In this paper, we compare the profit
directly with OPT .

1.2 Our Results

For auctions with a single item, we present a randomized truthful profit-
maximization scheme and prove that it is “asymptotically” optimal. In particu-
lar, for ∀k ∈ Z+, ε > 0, we give a randomized truthful auction that guarantees
an expected profit of Ω( OPT

ln OPT ln ln OPT ···(ln(k) OPT )1+ε ). Moreover, we show that

no truthful auction can always achieve a profit of Ω( OPT
lnOPT ln ln OPT ··· ln(k) OPT

).
Furthermore, we extend our technique for Single-Item auction to more

complex auction problems such as multi-units auction, AdWords auction (Unit-
Demand auction), and combinatorial auction. For multi-units and AdWords
auctions, both our upper and lower bounds can be generalized. All our schemes
also guarantee that the expected social utility are within a constant fraction of
the optimal social utility.

For the general combinatorial auction, we build a profit-oriented auction
scheme on the truthful approximation scheme of Dobzinski, Nisan, and Schapira
[4]. We can achieve a profit of Ω( OPT√

m ln OPT ln ln OPT ···(ln(k) OPT )1+ε ), where m

is the number of items. When the bidders’ utility functions are submodular, a
profit of Ω( OPT

(log m)2 ln OPT ln ln OPT ···(ln(k) OPT )1+ε ) can be obtained.
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2 Notations

We assume that there are n bidders, and a set M of distinct items, M =
{1, 2, · · · ,m}. In addition, the seller has cj copies (cj may be +∞) of item
j ∈ M . A bundle of items can be specified as a vector (d1, d2, · · · , dm), where
0 ≤ dj ≤ cj , ∀j ∈ M , and we denote the collection of all the bundles with D.
Each bidder i has a private valuation function vi, which assigns a non-negative
value to each bundle of items.

Each bidder submits a bid bi = {bi(S), S ∈ D}. An auction mechanism
then outputs an allocation (S1, S2, · · · , Sn), where Si ∈ D, and a price
(p1, p2, · · · , pn). A feasible output of the mechanism must satisfy the following
two conditions:

– Limited Supply: For each item j ∈ M , there are at most cj copies in
(S1, S2, · · · , Sn).

– Individual Rationality: For each bidder i ∈ [n], pi ≤ bi(Si).

A deterministic mechanism is truthful if for each bidder, truth-telling is a
dominant strategy, which means that her utility is maximized when she bids
truthfully no matter how others bid. For randomized mechanisms, there are two
extensions of truthfulness, universally truthful and truthful in expectation. A
randomized mechanism is universally truthful if it is a distribution of truthful
deterministic mechanisms. Truthfulness in expectation means that the expected
utility of a bidder is maximized when bidding truthfully.

In this paper, we focus on several special cases.

1. Single-Item auction: M consists of a single item, possibly with multiple
copies. Each bidder would like to buy at most one copy.

2. Unit-Demand auction: multiple items, each item with one copy. Each bidder
would like to buy at most one item and is considering a number of different
options. In another words, each bidder only bids for Single-Item bundle.

3. Combinatorial auction: multiple items, each item with one copy. The bidder
bids for subsets of M .

3 Single-Item Auction

In this section, we focus on the Single-Item auction. We first consider the case
when there is one copy of the item, and give a profit-optimal truthful mechanism.
We then extend this result to the case of multiple copies.

3.1 Single-Copy Auction

Without loss of generality, we assume the bids are b1 ≥ b2 ≥ · · · ≥ 1. Let g(x) =

lnx + 1, and g̃(k)(x) =
k∏

i=1

g(i)(x), Recall that g(i)(x) = g(g(i−1)(x)), ∀i ≥ 2.
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Algorithm: SingleCopyAuction

INPUT: k ∈ Z+, ε > 0 and δ > 0.

1. If there is only one bidder, we set b2 = 1.
2. With probability 1− δ, we use the second price auction, that is, the

highest bidder wins the item at a price of the second highest price.
3. With probability δ, the seller chooses a reserved price r according to

the distribution with density:

fk,ε(x) =
ε

xg̃(k−1)( x
b2

)
(
g(k)( x

b2
)
)1+ε , x ∈ [b2,+∞)

Then if b1 ≥ r, the highest bidder wins the iterm with price r.
Otherwise, the item remains unsold.

It is well known that the second price auction is truthful. Because the highest
bidder is the only potential recipient of the item and the reserved price r is
chosen independently of her bid b1, the auction of step 3 is a distribution of
truthful mechanism. Thus, our acution scheme is universally truthful.

The algorithm above uses reserved price auction to guarantee the seller’s profit
while uses second price auction to enhance the social utility. The parameter δ
provides a tradeoff between these two objectives.

Theorem 1 (Profit Guarantee). Let E(R) be the expected profit of the
auction and E(SU) be its expected social utility. Let OPT denote the maximum
social utility. Then we have

E(R) = Ω

(
OPT

g̃(k−1)(OPT )
(
g(k)(OPT )

)1+ε

)
E(SU) ≥ (1− δ)OPT

Proof: For simplicity, we give a proof for k = 1, ε = 1, and δ = 1
2 . The proof is

essentially the same for general k, ε, and δ.
In Single-Item auction, the optimal profit OPT is equal to the maximum bid

b1. So it is obvious that E(SU) ≥ 1
2OPT because with probability of 1/2, we

use the second price auction and get a social utility of OPT .
For the seller’s profit, we have:

E(R) =
1
2
b2 +

1
2

∫ b1

b2

xf(x)dx

=
1
2
b2 +

1
2

∫ b1

b2

1
(ln x

b2
+ 1)2

dx
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≥ 1
2
b2 +

1
2

b1 − b2

(ln b1
b2

+ 1)2

≥ b1

2(ln b1
b2

+ 1)2

≥ OPT

2(lnOPT + 1)2
�

We now prove that the bound in Theorem 1 is essentially tight. To show this,
we first give two technical lemmas.

Lemma 1. Let Φ be the distribution of a bid with Pr(b1 = 2j) = 1
2j+1 , j =

0, 1, 2, · · · . Then no truthful ( even in expectation) mechanism can extract
revenue greater than 1 on Φ.

Proof: The distribution we used here is a modified version of distribution used
in [12], and the proof is similar. �

Lemma 2. For a fixed k ∈ Z+,
∑

j≥0
1

g̃(k)(2j)
goes to infinity.

Proof: We show that for any i, there exists constant Ci and Ni > 0, such that
for any x ≥ Ni, we have g(i)(x) ≤ Ci ln(i) x. This is shown by induction on i.

For i = 1, g(x) = lnx + 1 ≤ 2 lnx,∀x ≥ e.

g(i)(x) = g(i−1)(lnx + 1)

≤ g(i−1)(2 lnx) for x ≥ e

≤ Ci−1 lni−1(2 lnx) for 2 lnx ≥ Ni−1

≤ Ci ln(i)(x) exists Ci, and Ni

For a fixed k ∈ Z+, let C = c1c2 · · · ck and J be the smallest integer such
that J ∈ Z+, 2J > max{Ni : 1 ≤ i ≤ k}. Then we have g(i)(2j) ≤ Ci ln(i)(2j) ≤
Ci ln(i−1) j. So we have

∑
j≥0

1
g̃(k)(2j)

≥
J∑

j=0

1
g̃(k)(2j)

+
1
C

∑
j>J

1

j ln j · · · ln(k−1) j
= +∞. �

Theorem 2 (Impossibility Result). For any k ∈ Z+, there is no truthful
(even in expectation) mechanism with an expected profit of Ω( OPT

g̃(k)(OPT )
).

Proof: Assume there is a truthful auction, with an (expected) profit of
Ω
(

OPT
g̃(k)(OPT )

)
. That is to say, ∃c > 0, N > 0, s.t. E(R) ≥ c OPT

g̃(k)(OPT )
, when

OPT > N . Let J be the smallest integer such that 2J > N . Considering the bid
distribution Φ, we have
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E(R) ≥ c
∑
j≥J

1
2j+1

2j

g̃(k)(2j)

≥ c

2

∑
j≥J

1
g̃(k)(2j)

By lemma 2, E(R) goes to infinity, which contradicts with lemma 1. �

3.2 Multi-copy Auction

In a multi-copy auction, there is one item with c copies (c may be unbounded).
We give a similar mechanism as Single-Copy auction. Our analysis can be
extended to this case. Since there is no difference between the case c > n
(c = +∞) and the case c = n, we can assume that c ≤ n, and b1 ≥ b2 ≥ · · · ≥ bn.
We use the following auction scheme.

Algorithm: MultiCopyAuction

INPUT: k ∈ Z+, ε > 0, and δ > 0.

1. If c = n, we set bn+1 = 1.
2. With probability 1− δ, we use the VCG mechanism: sell c items to

the c highest bidder at the price of the (c + 1)-th highest bidder.
3. With probability δ we sell the items to the highest c bidders with a

reserved price r chosen according to the distribution with density:

fk,ε(x) =
ε

xg̃(k−1)( x
bc+1

)
(
g(k)( x

bc+1
)
)1+ε , x ∈ [bc+1,+∞)

Similarly to the Single-Copy auction, we can obtain the following lower and
upper bounds on the expected profit for multi-copy auctions.

Theorem 3. Let OPT denote the optimal social utility and bmax be the highest

bid (By our assumption OPT =
c∑

j=1

bj and bmax = b1). Then we have:

E(R) = Ω

(
OPT

g̃(k−1)(bmax)
(
g(k)(bmax)

)1+ε

)
E(SU) ≥ (1− δ)OPT

In addition, no truthful auction can obtain an expected profit of Ω
(

OPT
g̃(k)(bmax)

)
.

4 Unit-Demand Auction

We now consider the auction of multiple items, as in the keywords auction. Assume
there are n bidders (advertisers), and m slots on the web page to place advertise-
ments.The advertiser bids for each slot on thewebpage, and the search enginemust
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decide which m bidders win slots, as well as the order to place the advertisements
and the prices. We focus on the case when the search engine does not place two
identical advertisements on the same page, which is the so-called Unit-Demand
auction.

As each bidder i has a bid for each item j, we can express their valuations by
a matrix B = (bi(j)).

Algorithm: AdWordAuction

1. Choose a reserved price r according to the following distribution:
with a probability of 1− δ, set r = 1; with a probability of δ, pick r
according to the distribution with density

ε

xg̃(k−1)(x)
(
g(k)(x)

)1+ε , x ∈ [1,+∞)

.
2. Compute prices p and allocation S by running VCG on input B

with reserved prices r = (r, · · · , r). The reserved price VCG works
as follows: add m virtual bidders with bid r = (r, · · · , r) into the
auction, then run VCG to determine the allocation and price of each
item. If an item is sold to a virtual bidder, then it is in fact unsold
in the original auction.

Recall the VCG scheme for Unit-Demand auction computes a maximum
weighted matching betwen bidders and items and allocates the items accordingly.
The price of each item is set to be the bidding price of its recipient minus the
difference of the total weights of this matching and of the maximum weighted
matching without this recipient. Clearly, VCG runs in polynomial time in the
number of bidders and items. Therefore, the algorithm above is a polynomial-
time auction scheme.

Theorem 4. The Unit-Demand auction is truthful and has an expected profit

of E(R) = Ω

(
OPT

g̃(k−1)(bmax)(g(k)(bmax))1+ε

)
, where bmax = maxi,j{bi(j)}. The

expected social utility E(SU) ≥ (1 − δ)OPT .

Proof: Again for simplicity, we prove the theorem for k = 1, ε = 1, and δ = 2
3 .

Let M be a maximum weighted matching between the n bidders and m items,
p1 ≥ p2 ≥ · · · ≥ pm be the prices of the items sold in M , and nx = argmaxj{pj ≥
x}. Using the similar technique in [8], we know that when the reserved price is
picked at x, there are nx items with prices higher than x sold in M , and at least
half of them can be sold by the reserved price auction. So we have:

E(R) =
1
3
m +

2
3

∫ +∞

1

nx

2
xf(x)dx

≥ 1
3
m +

1
3
(

m∑
i=1

∫ pi

pi+1

nx
1

(ln x + 1)2
dx)
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≥ 1
3
m +

1
3

1
(ln p1 + 1)2

m∑
i=1

i(pi − pi+1)

=
1
3
m +

1
3

1
(ln p1 + 1)2

(p1 + p2 + · · ·+ pm −m)

≥ OPT

3(ln bmax + 1)2

With a probability of 1/3, we use the VCG with a reserved price of 1 and can
obtain the optimal social utility OPT . So E(SU) ≥ 1

3OPT . �

5 Combinatorial Auction

We modify the algorithm in [4]. In step 3, they use a second-price auction for
M , the bundle of all items, with a reserved price p0, however, we use a randomly
chosen reserved price. To be self-contained, we include the basic steps of this
algorithm.

Algorithm: CombinatorialAuction

– Phase I: Partitioning the Bidders
1. Assign each bidder to exactly one of the following three sets: SEC-
PRICE with probability 1−ε, FIXED with probability ε

2 , and STAT
with probability ε

2 .
– Phase II: Gathering Statistics

2. Calculate the value of the optimal fractional solution in the
combinatorial auction with all m items, but only with the bidders in
STAT. Denote this value by OPT ∗

STAT .
– Phase III: A Second-Price Auction with reserved price.

3. Randomly pick a reserved price r according to the following density
function: fk,ε1(x) = ε1

xg̃(k−1)( x
p0

)
(

g(k)( x
p0

)
)1+ε1 , x ∈ [p0,+∞) where

p0 = OPT ∗
STAT .

– Phase IV: A Fixed-Price Auction
4. Let R = M,p = εOPT ∗

STAT /(8m).
5. For each bidder i ∈ FIXED, in some arbitrary order:
(a)Let Si be the demand of bidder i given the following prices: p for
each item in R, and +∞ for each item in M −R.
(b) Allocate Si to bidder i, and set his price to be p|Si|.
(c) Let R = R \ Si.

Theorem 5. In the general combinatorial auction,

E(R) = Ω

(
OPT

√
m(g̃(k−1)(OPT ))

(
g(k)(OPT )

)1+ε1

)
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When the bidders’ utility functions are submodular, we have

E(R) = Ω

(
OPT

(logm)2(g̃(k−1)(OPT ))
(
g(k)(OPT )

)1+ε1

)
Proof: The combinatorial auction can be formulated as a linear program. let
OPT ∗ be the optimal fractional solution. As mentioned in [4], there are two
cases:

– There is a bidder i such that vi(M) ≥ OPT∗
√

m
. This is similar to the Single-

Copy auction. Let vmax = maxivi(M), then OPT ≥ vmax ≥ OPT∗
√

m
≥ OPT√

m
.

E(R) = Ω

(
vmax

g̃(k−1)(vmax)
(
g(k)(vmax)

)1+ε1

)

= Ω

(
OPT

√
m(g̃(k−1)(OPT ))

(
g(k)(OPT )

)1+ε1

)

– For each bidder i, vi(M) ≥ OPT∗
√

m
. As shown in [4], E(R) is Ω(OPT∗

√
m

) Thus

the expected profit is Ω

(
OPT√

m(g̃(k−1)(OPT ))(g(k)(OPT ))1+ε1

)
.

The proof is similar for the case when the bidders’ utility functions are
submodular. �

6 Discussions and Future Work

In the scenario that an upper bound h of the valuations is given, we can give
a mechanism which improves the profit guarantee in [8,9] by a constant factor
log e. The algorithm is a VCG scheme with a reserved price, which is randomly
picked according to the density function f(x) = 1

x ln h , x ∈ [1, h]. This scheme
guarantees an expected profit of OPT

ln h , which is proved to be optimal in [12].
All the randomized VCG scheme with reserved price mentioned in our

algorithms can be translated into a Randomized-Fixed-Price Auction. The
fixed price is picked from the same distribution as that of the reserved price. Then
we sell items with the fixed price to the bidders in a random order. All the profit
guarantees and the proofs above still apply. Using this Randomized-Fixed-Price
scheme, we can extend our results to the online auctions[1].

The Unit-Demand auction is in fact a matching problem between bidders
and items. The maximum social utility are achieved by the maximum weighted
matching. A natural generalization of Unit-Demand auction is the following
multi-pattern auction: Given t1 groups of items, the bidders have their
valuations for all items. The auction mechanism then chooses one of the groups
and allocates its items to the bidders.

From the view of matching, the valuations define t1 sets of matching problems
between the bidders and items. The multi-pattern auction could be useful in
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Internet advertising. For example, the search engine can offer several kinds
of patterns for sponsored advertising, each with several slots to place the
advertisements. Each advertiser (bidder) could submit a bid for each slot in
every pattern.

Assuming that there are t1 groups and each group has t2 items, we can extend
our Unit-Demand auction scheme to obtain the following result.

Theorem 6. For any k ∈ Z+, ε > 0, there is a truthful auction scheme with an
expected profit of

E(R) = Ω

(
1
t

OPT

g̃(k−1)(bmax)
(
g(k)(bmax)

)1+ε

)
where bmax = maxi,j{bi(j)}, t = min{t1, t2}.

Open Problem: Can we improve the factor of 1
t in the bound?
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